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Spin dynamics of trimers on a distorted kagome lattice
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We treat the ground state, elementary excitations, and neutron scattering cross section for a system of trimers
consisting of three tightly bound spins 1

2 on a distorted kagome lattice, subject to isotropic nearest-neighbor
(usually antiferromagnetic) Heisenberg interactions. The interactions between trimers are assumed to be weak
compared to the intratrimer interactions. We compare the spin-wave excitation spectrum of trimers with that
obtained from standard spin-wave theory and attribute the differences at low energy to the fact that the trimer
formulation includes exactly the effects of intratrimer zero-point motion.
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I. INTRODUCTION

Frustrated antiferromagnetic systems have received enor-
mous attention in recent years.1–3 One limit which has attracted
less attention is that when the frustration is removed by
the formation of strongly coupled three-spin units called
spin trimers.4–10 Early experiments and calculations were
performed for high (S = 5

2 ) spin states of Fe3+ and Mn2+

by Falk et al.6 and Furrer and Güdel.5 For S = 1
2 systems,

much work has been focused on chainlike systems consisting
of trimers of Cu ions.4,9,10 Other configurations of trimers were
studied by Qiu et al.7 and Podlesnyak et al.8 In these works,
the interactions between trimers were very weak, so that the
energy of the localized excitations appeared not to depend on
wave vector. In that case, information on the nature of the
excited states of the trimers was obtained by monitoring the
dependence of the magnitude of the inelastic scattering cross
section on wave vector. In contrast, here we will consider a
system of interacting spin- 1

2 trimers where the interactions
between trimers is stronger, in which case the excitations
have a significant dependence on wave vector. We implement
perturbation theory by introducing operators which create or
destroy the the exact excited states of isolated trimers. In the
limit when the intertrimer interactions vanish, our calculation
reduces to that of Refs. 6 and 7.

The system of trimers of spins 1
2 we consider is specified by

Fig. 1 where we show the covering of a distorted kagome lattice
by trimers. The lattice has the connectivity of a kagome lattice,
but lacks its threefold symmetry, so that the nearest-neighbor
isotropic exchange interactions assume three values J , j , and
k, of which J is assumed to be dominant. This model is inspired
by the distorted kagome system Cu2(OD)3Cl.11–14 The aim
of this paper is to develop a calculation which is correct to
leading order in j/J and k/J and to compare results obtained
in this approximation to standard spin-wave theory, based on
the Néel state which treats all the exchange interactions on
an equal footing. We find that there is a one-to-one mapping
connecting the lowest-energy manifold of excitations in the
two approaches and that the differences in energies can be
understood in terms of the differing way quantum zero-point
motion is treated in the two approaches. At higher energy,
the comparison is more complicated. In the trimer approach,
one does have the higher-energy transverse spin waves of

the Néel state. But in addition, some of the higher-energy
trimer excitations correspond to bound states of two or more
Néel-state spin excitations. The trimer approach is clearly
superior when the intertrimer interactions are perturbative, as
we assume in this paper.

For Cu2(OD)3Cl, a first-principles calculation12 based in
the published atomic positions15 gave j/J = 0.35 and k/J =
0.46. However, since these values are probably too large
for our perturbative approach to be valid, and since, as will
become apparent, it seems to be impractical to carry our
calculation to higher order, we will illustrate our results for
much smaller values of these parameters. We hope that our
results will stimulate the search for systems for which the ratios
of the intertrimer interactions to the intratrimer interaction
are smaller than for Cu2(OD)3Cl, but larger than for the
systems mentioned above, in which case the results of this
paper would be highly relevant. Although the results obviously
depend on the details of the lattice structure, many qualitative
features are robust. In particular, these systems are unusual in
that although the spin configuration is collinear, in addition
to the usual transverse spin-wave excitations, this system
displays well-defined longitudinal (and multispin) elementary
excitations which exist for all wave vectors.

Briefly, this paper is organized as follows. In Sec. II, we
give a qualitative overview of the calculation in which the
intertrimer interactions j and k are treated perturbatively with
respect to the strong intratrimer interaction J . In Sec. III,
we show that the low-energy manifold of spin waves can be
mapped onto the usual manifold of spin waves, but with an
effective trimer-trimer interaction playing the role of the usual
spin-spin interaction. Here and in succeeding sections, we treat
the two cases when (a) the net spins of adjacent trimers are
coupled antiferromagnetically and (b) the net spins of adjacent
trimers are coupled ferromagnetically. In Sec. IV, we consider
the exciton spectrum in which trimers are promoted into their
nearly localized excited states. In Sec. V, we present results
of standard spin-wave calculations based on the Néel state
in which all spins in the ground state have Sz = 1

2 or Sz =
− 1

2 . In Sec. VI, we compare the results the spin-wave and
perturbative approaches give for the elastic diffraction pattern.
We attribute the differences in results to the differences in how
quantum zero-point motion is treated in the two approaches.
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FIG. 1. (Color online) A distorted kagome lattice with three
isotropic nearest-neighbor Heisenberg interactions: J (red), j (blue),
and k (green). We assume J is antiferromagnetic and much larger than
j and k, yielding spin trimers (some of which are shown as ellipses)
which consist of three spins connected by two large interactions J .
The dashed rectangle is the unit cell containing two trimers A and
B. The upper right inset shows the four nearest-neighbor vectors of
the trimer lattice as given in Eq. (14). Here, s is the nearest-neighbor
separation between spins on the kagome lattice. The labeling of the
three sites within a trimer is a, b, c in the order of decreasing z

coordinate, as shown for a trimer in the left bottom corner of the unit
cell.

In Sec. VII, we consider the inelastic neutron scattering cross
section from the entire spectrum of trimer excitations. Our
results are summarized and briefly discussed in Sec. VIII.

II. OVERVIEW

In the magnetically disordered phase of Cu(OD)3Cl (which
we take as the exemplar of our trimer model), the unit cell
shown in Fig. 1 contains six Cu spin sites. In Fig. 2, we show
the phase diagram of the trimer model as a function of the
temperature T when J is much larger than either j or k.
When T is large compared to J , the spins are essentially

Trimer Mel�ngTrimer Mel�ng

SPIN 
WAVES

T c

T

FIG. 2. (Color online) The phase diagram of the trimer system
as a function of temperature T , as discussed in the text. Long-range
magnetic order occurs at Tc. Trimer formation occurs over the regime
for which T is of order J .

uncorrelated. As T is reduced to become comparable to J ,
one passes through a regime in which the correlations within
spin trimers become well developed. In Fig. 2, this regime is
labeled “trimer melting.” Below this regime the average spin
of the middle site of the trimer is oppositely oriented to those
of the end sites of the trimer.11,12 However, as long as T > Tc,
the spin correlation function between different trimers decays
rapidly as a function of their separation. When T is reduced
so as to be comparable to j and/or k, one passes through a
phase transition (at T = Tc) below which one has long-range
spin order. As we discuss in the following, depending on how
j and k compare, the adjacent trimers can either be organized
ferromagnetically or antiferromagnetically. In either case, the
magnetic ordering occurs at zero wave vector. In other words,
the magnetic and paramagnetic unit cells are identical, each
containing two trimer units. As we shall see, when T � Tc the
elementary excitations are identical to spin waves in the usual
magnetic systems.

In contrast and as will become apparent, the higher-energy
trimer excitons are qualitatively different from the higher-
energy spin wave relative to the Néel ground state. To obtain a
close correspondence between the two approaches, one should
consider trimers consisting of three large-S spins. In that case,
one should pass continuously between the trimer and Néel
limits as the ratio of j or k to J is varied.

The Hamiltonian for the system of spins 1
2 which we treat

is written as

H =
∑
〈ij〉

Jij Si · Sj , (1)

where 〈ij 〉 indicates that the sum is over pairs of nearest
neighbors on the kagome lattice. Here, we neglect exchange
anisotropy, in particular we do not include the Dzialoshinskii-
Moriya16,17 interaction, which can be the dominant anisotropic
interaction between spins.18,19 The values of the J ’s are defined
in Fig. 1 where the intratrimer interaction J is assumed to
be dominant. We will work to leading order in j/J or k/J

which are assumed to be of order x � 1. Thus, the expansion
parameter x characterizes the ratio of intertrimer to intratrimer
interactions. When intertrimer interactions are turned on, the
spectrum of discrete energy levels of isolated trimers gets
broadened into a band of wavelike excitations, just as happens
for atomic energy levels when placed in a solid.

For this calculation, we obviously need the exact eigen-
functions and eigenvalues of the trimer Hamiltonian

HT = JSa · Sb + JSb · Sc, (2)

where the spins within a trimer are labeled as in Fig. 1.
The total spin S is a good quantum number and assumes
the values 3

2 and 1
2 . The four states S = 3

2 are degenerate
eigenstates of HT with eigenvalue J/2. The remaining four
eigenstates form two S = 1

2 doublets. The eigenstates and
eigenvalues of HT are listed in Table I. In the next section,
we consider the ground-state manifold and in the following
sections we consider excitations to the higher manifolds
centered at energy J and 3J/2 above the ground state.

Before starting the calculation, we should discuss when
the trimer limit we consider is appropriate. First of all, our
results show the obvious fact that when the trimers interact
with one another, the single-trimer energy levels get broadened
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TABLE I. Eigenvectors ψn and eigenvalues λn of HT. The states specified by three vertical arrows give the
values of Sz for spins a, b, and c (reading from left to right), as shown in Fig. 1. The index n is only used to label
excited states.

n S Sz ψn λn

6 3
2

3
2 |↑,↑,↑〉 J/2

5 3
2

1
2 [|↑,↑,↓〉 + |↑,↓,↑〉 + |↓,↑,↑〉]/√3 J/2

4 3
2 − 1

2 [|↑,↓,↓〉 + |↓,↑,↓〉 + |↓,↓,↑〉]/√3 J/2
3 3

2 − 3
2 |↓,↓,↓〉 J/2

2 1
2

1
2 [|↑,↑,↓〉 − |↓,↑,↑〉]/√2 0

1 1
2 − 1

2 [|↑,↓,↓〉 − |↓,↓,↑〉]/√2 0
1
2

1
2 [|↑,↑,↓〉 − 2|↑,↓,↑〉 + |↓,↑,↑〉]/√6 −J

1
2 − 1

2 [−|↑,↓,↓〉 + 2|↓,↑,↓〉 − |↓,↓,↑〉]/√6 −J

into a band. Clearly, a condition for treating isolated trimers
as a starting point would be that this broadening is small
enough that the bands are separated and qualitatively retain
their identity from the noninteracting limit.20 But additionally,
in view of the fact that the trimers will be shown to act as
spin 1

2 ’s, one could question whether this calculation improves
the treatment of quantum zero-point which can be severe for
S = 1

2 . The following qualitative estimate indicates why the
trimer calculation can be useful. Let us consider excitation
relative to the Néel state in which spins are aligned along the z

axis. The perturbation which creates zero-point motion comes
from terms such as JijS−(i)S+(j )/2, where the subscript labels
the Cartesian component of spin and the largest such terms
are those for which sites i and j are inside the same trimer.
This perturbation V connects the ground state to a state with
excitation energy E = 2zJS, where z, the number of nearest
neighbors, should be taken to be 1 or 2 because for each
site there are only 1 or 2 strongly coupled neighbors. Thus,
V/E ≈ 1

2 . In contrast, when this type of calculation is repeated
for the trimer state z is now 4, the number of trimer-trimer
nearest neighbors. Also, perturbative corrections to a system
of isolated trimers are of order V/E = j/J , where j is one of
the intertrimer interactions. So, zero-point corrections are less
important for the trimer analog of the Néel state than for the
usual Néel state in the limit when j/J is small.

III. GROUND-STATE EXCITATIONS

We first consider the 2N -fold degenerate manifold of
N trimers when intertrimer interactions are turned off, so
that each trimer has energy −J . To implement degenerate
perturbation theory when intertrimer interactions are turned
on, it is convenient to map this manifold of states onto the 2N

states associated with a system of N pseudospin 1
2 operators,

such that the pseudospin operator of each trimer is simply
the total ground-state spin operators S of that trimer. For the
trimer at position R we denote this pseudospin operator as
σ (R). Then, any operator within the ground manifold can be
expressed in terms of products of one or more σ (R). We then
use the wave functions in Table I to express matrix elements
of spin operators for individual sites within the trimer at R to
σ (R). For this purpose, we label the three spins within a trimer
as a, b, and c as in Fig. 1. Using Table I we note that for an
A trimer (for which σ z = 1

2 ), the expectation value of the z

component of the kth spin in the ground state of the trimer
denoted Sz(k) (where k = a,b,c) is

Sz(a) = 1/3, Sz(b) = −1/6, Sz(c) = 1/3. (3)

This result reflects the fact that the central spin partakes of spin
fluctuations with its two neighbors inside the trimer whereas an
end spin of the trimer has only one neighbor with which to fluc-
tuate. Below we will discuss the experimental consequences of
this result. In fact, the Wigner-Eckart theorem21 indicates that
we have, as an operator equality within the ground manifold,
that

S(a; R) = 2σ (R)/3,

S(b; R) = −σ (R)/3, (4)

S(c; R) = 2σ (R)/3,

where S(k; R) is the operator for the kth spin in the trimer
whose center is at R and, as we have said, the pseudospin
operator is identified as the total spin of the trimer:

σ (R) =
c∑

k=a

S(k; R). (5)

These equalities make it a trivial matter to write the intertrimer
interactions in terms of the σ ’s. So we see, even without
calculation, that the low-energy spectrum of the trimer system
is identical to that of a system in which each trimer is replaced
by an ordinary spin 1

2 .
We now consider the ground state and elementary excita-

tions of the system when weak interactions between trimers
are included. We will assume that all end-to-end exchange
interactions between nearest-neighbor trimers assume a com-
mon value k and those between the end of one trimer and
the center of its nearest neighbor assume a common value
j as shown in Fig. 1. This symmetry we have imposed
makes the calculations algebraically simple. If the intratrimer
and intertrimer interactions have no special symmetry, the
calculations become algebraically more complicated but are
conceptually no more difficult. So, here we give results only
for the model of Fig. 1.

We now construct the effective Hamiltonian within the
ground-state manifold. Consider the interaction V (A,B) be-
tween trimers A and B. We use the Wigner-Eckart theorem
to express the spin operators in terms of the pseudospin or
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FIG. 3. (Color online) As Fig. 1, the ferromagnetic (F) and
antiferromagnetic (AF) arrangement of trimers, with spin orientation
indicated by + or −. The inset graph shows the phase diagram of the
trimer system in the j -k plane. The F-AF phase boundary based on
the Néel state is at j = k and according to the trimer calculation is at
j = 2k. The latter calculation is more nearly correct when J is large
compared to j or k, whereas the former is more accurate when J is
not large compared to j and k.

total spin of the trimer, as done in Eq. (4). Then, one sees that
V (A,B) within the ground manifold is given by

V (A,B) = [σ (A) · σ (B)][4k − 2j ]/9

≡ J [σ (A) · σ (B)], (6)

where

J = (4k − 2j )/9. (7)

One sees that the effective exchange interaction between two
nearest-neighboring trimers is antiferromagnetic if 2k − j >

0 and is ferromagnetic if 2k − j < 0.22 Thus, the trimer-
trimer interaction can be ferromagnetic even if all the spin-
spin interactions are positive (antiferromagnetic) providing
j > 2k. These configurations are shown in Fig. 3. The
elementary excitations within the ground manifold are those
of a rectangular centered lattice. Then, if the trimers are
antiferromagnetically coupled, standard spin-wave theory23

gives the doubly degenerate spin-wave energy ω±(q) as a
function of wave vector q, for −π/(2s) < qy < π/(2s) and
−π/(2

√
3s) < qz < π/(2

√
3s), as

ω(q) = zJ S
√

1 − γ (q)2, (8)

where z = 4 is the number of nearest neighbors, S = 1
2 , and

γ (q) = (1/z)
∑

δ

exp(iq · δ) = cos(sqy) cos(
√

3sqz). (9)

Here, δ is summed over nearest-neighbor vectors between
trimers and s is the nearest-neighbor separation in the kagome

0.00

0.05

0.10

ω
/J

j=0.2

k=0.2

ΓΓ X S

(2)

(2)

j=0.15

k=0.05

FIG. 4. (Color online) Spectrum of excitation energy ω(q) within
the ground manifold for wave vectors in special directions. Here and
below, we plot the spectra for J = 1 for wave vectors on the lines
joining � and X, X, and S, and S and �, where � = (0,0), X =
[π/(2s),0], and S = [π/(2s),π/(2

√
3s)]. For (j = 0.15, k = 0.2)

one has an antiferromagnetic configuration of trimers and for (j =
0.2, k = 0.05) one has a ferromagnetic configuration of trimers. The
modes shown here appear only in the transverse (+−) response
function. Modes are nondegenerate unless labeled “(2)” to indicate a
twofold degeneracy.

lattice, as in Fig. 1. If the trimers are ferromagnetically
coupled, then one has two nondegenerate modes whose energy
is given by

ω±(q) = z|J |S[1 ± γ (q)]. (10)

Here (in Fig. 4) and in the following, we give results for
J = 1 for the antiferromagnetic configuration of trimers with
j = 0.15 and k = 0.2 and for the ferromagnetic configuration
with j = 0.2 and k = 0.05. Note that transverse (+−) modes
of the antiferromagnetic configuration of trimers are doubly
degenerate for all wave vectors. Also, here and below note
that the spectrum is always twofold degenerate for wave
vectors on the face of the Brillouin zone [ky = π/(2s)] due
to the Kramers-type degeneracy from the twofold screw axis
(Ref. 24).

IV. EXCITON SPECTRUM

Now we turn to the excitations out of the ground-state
manifold.

A. Manifold at energy J for the antiferromagnetic
configuration

Here, we treat the case of antiferromagnetic coupling
(J > 0). The situation for this manifold is more complicated
than that for the ground manifold. For the ground manifold, we
could develop degenerate perturbation theory for the manifold
of 2N states of the system of N trimers in which each trimer
independently occupies one of its two degenerate ground
states. The result was embodied in an effective Hamiltonian
in which the interactions between nearest-neighboring trimers
was given by Eq. (7). For excitations near energy J we might
consider the manifold of states in which one trimer occupies
one of the excited states of Table I and all the other N − 1
trimers are distributed over the two degenerate ground states.
Strictly speaking, this involves the solution to a many-body
problem for the states of a spin excitation within the ground
manifold and an exciton at excitation energy J or 3J/2. We
will not treat this system with this degree of sophistication.
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Instead, we will treat the manifold of excited states at relative
energy J or 3J/2 when all the background trimers are confined
to their broken symmetry ground state. Thus, our treatment is
limited to the range of temperature T for which kT � J . We
therefore introduce operators a

†
n(R) which take the trimer at R

from its ground state to its nth excited state, where the labeling
of sites is given in the first column of Table I. The Hamiltonian
which describes the manifold at energy J is

H(J ) = J
∑

R

2∑
n=1

nn(R) + V (J ), (11)

where R is summed over trimer sites and nn = a
†
nan. Within

the manifold near energy J , the term in Eq. (11) proportional to
J is a constant and the nature of the band states is determined
solely by the perturbation V (J ), which contains only terms
proportional to j or k. To obtain results to leading order
in the expansion parameter x, the perturbation V (J ) is thus
restricted to terms which conserve the unperturbed energy J .
Accordingly, the most general such form of V (J ) is

V (J ) =
∑
R,R′

2∑
n,m=1

cnm(R,R′)a†
n(R)am(R′) + · · · , (12)

where the ellipsis denotes terms containing p creation op-
erators (all with indices in the range 1,2) and p analogous
destruction operators with p > 1. Since we only consider
nearest-neighbor interactions, we set

R′ = Rn = R + δn, (13)

where δn are the nearest-neighbor intertrimer displacements
shown in Fig. 1:

δ1 = −sĵ −
√

3sk̂, δ2 = sĵ −
√

3sk̂,
(14)

δ3 = sĵ +
√

3sk̂, δ4 = −sĵ +
√

3sk̂.

The effect of these 2pth order terms in Eq. (12) on the
mode energies is proportional to the (p − 1)th power of the
density of excitations. Since we assume that kT � J , this
density is small and we keep only the terms with p = 1. In
addition, we ignore the kinematic constraint which allows one
to map the finite number of trimer states onto the infinite
number of bosonic states.25 The discussion for the band at
energy 3J/2 is completely analogous to that for energy J and
the analogous result holds for that case. So, the band states
are completely determined by the matrix cn,m(R,R′) or, as we
shall see, by its Fourier transform which is a 4 × 4 matrix for
the band at energy J and an 8 × 8 matrix for the band at energy
3J/2. To explicitly determine V (J ), we must express the spin
Hamiltonian in terms of the creation and annihilation operators
of Eq. (12). The spin interaction between the kth spin of an up
trimer at R and the k′th spin of a down trimer at R′ is

S(k; R) · S(k′; R′) = Sz(k; R)Sz(k
′; R′) + [S+(k; R)S−(k′; R′)

+ S−(k; R)S+(k′; R′)]/2. (15)

Since S+ and S− each involve at least one creation or
annihilation operator, to construct the boson Hamiltonian, we

need only keep terms in these operators which are linear in the
creation or destruction operators. In contrast, since Sz has a
nonzero value in the ground state, we also need to keep terms
in Sz which involve one creation operator and one destruction
operator within the band. These considerations will be used
implicitly below to limit the complexity of the mapping from
spins to bosons.

For the case of an “up” trimer at R (one whose ground state
has Sz = 1

2 and which we refer to as an “A” trimer), we find
(keeping only terms linear in the boson operators) that

S−(a; R) = a
†
1(R)/

√
3 − a

†
4(R)/

√
18 + a6(R)/

√
6,

S−(b; R) = 2a
†
4(R)/

√
18 − 2a6(R)/

√
6, (16)

S−(c; R) = −a
†
1(R)/

√
3 − a

†
4(R)/

√
18 + a6(R)/

√
6.

The expression for S+(k,R) is obtained by Hermitian conju-
gation. To determine the bosonic equivalent of Sz we write

Sz = a0 +
∑
nm

anma†
nam. (17)

To determine the coefficients, we require that the two
representations lead to the same matrix elements. Thus, if 0
labels the ground state (i.e., whichever of the −J states of the
trimer is the ground state), then, by taking matrix elements of
both sides of Eq. (17) we get

a0 = 〈0|Sz|0〉, an,m = 〈n|Sz|m〉, n �= m
(18)

a0 + an,n = 〈n|Sz|n〉, n �= 0.

So, for diagonal elements we must remember to subtract off
the ground-state value when identifying the bosonic matrix
elements ann. Thus,

Sz(a; R) = 1/3 + a
†
2(R)/

√
12 − a

†
5(R)/

√
18

+ a2(R)/
√

12 − a5(R)/
√

18 − [2n1(R) + 2n2(R)

+ 5n3(R) + 3n4(R) + n5(R) − n6(R)]/6,

Sz(b; R) = −1/6 + 2a
†
5(R)/

√
18

+ 2a5(R)/
√

18 − n1(R)/3 + 2n2(R)/3 − n3(R)/3

+ n5(R)/3 + 2n6(R)/3,

Sz(c; R) = 1/3 − a
†
2(R)/

√
12 − a

†
5(R)/

√
18

− a2(R)/
√

12 − a5(R)/
√

18 − [2n1(R) + 2n2(R)

+ 5n3(R) + 3n4(R) + n5(R) − n6(R)]/6. (19)

Here, we needed to keep a+
p ap ≡ np terms in view of Eqs. (15)

and (18).
For the case of a “down” trimer (one whose ground state

has Sz = − 1
2 at R and which we refer to as a “B” trimer), we

similarly find that

S+(a; R) = a
†
2(R)/

√
3 + a

†
5(R)/

√
18 − a3(R)/

√
6,

S+(b; R) = −2a
†
5(R)/

√
18 + 2a3(R)/

√
6,

S+(c; R) = −a
†
2(R)/

√
3 + a

†
5(R)/

√
18 − a3(R)/

√
6,

Sz(a; R) = −1/3 − a
†
1(R)/

√
12 − a

†
4(R)/

√
18 − a1(R)/

√
12

− a4(R)/
√

18 + n1(R)/3 + n2(R)/3 − n3(R)/6

+ n4(R)/6 + n5(R)/2 + 5n6(R)/6,
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Sz(b; R) = 1/6 + 2a
†
4(R)/

√
18

+ 2a4(R)/
√

18 − 2n1(R)/3 + n2(R)/3

− 2n3(R)/3 − n4(R)/3 + n6(R)/3,

Sz(c; R) = −1/3 + a
†
1(R)/

√
12

− a
†
4(R)/

√
18 + a1(R)/

√
12 − a4(R)/

√
18

+ n1(R)/3 + n2(R)/3 − n3(R)/6

+ n4(R)/6 + n5(R)/2 + 5n6(R)/6. (20)

The next step is to write the interaction between trimers in
terms of boson operators. Since we treat here the case when
the trimers are antiferromagnetically coupled, all interactions
couple an up (A) trimer to a down (B) trimer. Since we
treat only nearest-neighbor interactions, we need consider only
interactions between an up trimer at R and one of its four down
neighbors at R ± δ1 and R ± δ2. For the excitations band near
energy J the boson Hamiltonian is obtained in Appendix A.
We define the Fourier transformed variables as

a
†
n,A(k) = N−1/2

∑
R∈A

eik·Ra†
n(R),

(21)
a
†
n,B (k) = N−1/2

∑
R∈B

eik·Ra†
n(R),

where N is the total number of unit cells in the system. The
quadratic Hamiltonian is of the canonical form H = ∑

q Hq,
where q is the wave vector and because we need consider only
terms which conserve the unperturbed energy J :

Hq =
∑

n,n′;τ,τ ′
Ast (q)a†

s (q)at (q), (22)

where s ≡ (n,τ ) and t ≡ (n′,τ ′).
According to Table I, excitations near energy J involve

states 1 and 2 of the two spins in the unit cell, whereas
excitations near energy 3J/2 involve states 3, 4, 5, and 6
of the two spins in the unit cell. For excitations near energy J

we write

A = JI + kAk + jAj , (23)

where I is the 4 × 4 unit matrix and Eq. (A31) of Appendix A
implies that

Ak = 1

9

⎡
⎢⎣

4 0 0 0
0 4 3γ (q) 0
0 3γ (q) 4 0
0 0 0 4

⎤
⎥⎦ (24)

and

Aj = 1

9

⎡
⎢⎣

1 0 0 0
0 −5 0 0
0 0 −5 0
0 0 0 1

⎤
⎥⎦ . (25)

The rows and columns of the matrices A are labeled in the
order (1,A), (2,A), (1,B), (2,B).

Thus, the creation operators for the normal modes are
a1,A(q)†, a2,B (q)†, and

ρ
†
± = [a1,B (q)† ± a2,A(q)†]/

√
2, (26)

0.95

1.00

1.05

1.10

ω
(k

)/
J

0.95

1.00

1.05

1.10
j=0.15
k=0.2

Γ X S Γ Γ X S Γ

j=0.2
k=0.05

ANTI FERRO

+ - (2)

(2)

zz

zz

z z (2)

+ - (2)

FIG. 5. (Color online) As Fig. 4, but for excitations in the mani-
fold near energy J for the antiferromagnetic (left) and ferromagnetic
(right) configurations. The curve labeled ”+−” indicates the energy
in the transverse (+−) response function and those labeled “zz” are
the energies in the longitudinal (zz) response function. The numbers
in parentheses indicate the degeneracy of the mode.

with associated eigenenergies

ω1A(q) = ω2B(q) = J + (4k + j )/9 (27)

and

ω±(q) = J + (4k − 5j )/9 ± (k/3)γ (q). (28)

These results are shown in Fig. 5. For an A (up) trimer a
†
1,A

corresponds to S− and a
†
2,B corresponds to S+ for a B (down)

trimer. So, these operators create transverse excitations and
similarly one sees that ρ

†
± create a longitudinal excitation. It

may be surprising that, unlike for a Néel antiferromagnet, the
longitudinal excitations exhibit dispersion, but the transverse
ones do not. However, note that for a Néel antiferromagnet, the
dispersion comes from a†a† terms which here are eliminated
since they do not conserve the large unperturbed energy.

B. Manifold at energy J for the ferromagnetic configuration

The calculations for the ferromagnetic configuration (in
which all trimers start in their “up” ground state) are similar
and are done in Appendix C. In terms of Fourier transformed
variables, Eq. (C31) implies, in the notation of Eq. (23), that

Aj = 1

9

⎡
⎢⎣

−1 0 0 0
0 5 0 0
0 0 −1 0
0 0 0 5

⎤
⎥⎦ , (29)

Ak = 1

9

⎡
⎢⎣

−4 0 −6γ (q) 0
0 −4 0 −3γ (q)

−6γ (q) 0 −4 0
0 −3γ (q) 0 −4

⎤
⎥⎦ , (30)

where the rows and columns are labeled in the order (A,1),
(A,2), (B,1), (B,2). The eigenvalues give the mode energies

ω1,2 = J − j/9 − 4k/9 ± 2kγ (q)/3,
(31)

ω3,4 = J + 5j/9 − 4k/9 ± kγ (q)/3.

These mode energies are shown for high-symmetry wave
vectors in Fig. 5. Since a

†
A1 or a

†
B1 connects the up ground

state to a state with Sz = − 1
2 , these operators correspond to an

S−. Thus, we identify ω1,2 as energies of transverse excitations
and ω3,4 as energies of longitudinal excitations as indicated in
Fig. 5.
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C. Manifold at energy 3 J/2 for the antiferromagnetic
configuration

Here, we adopt the same simplified approximation in which
trimers not in excited states remain in their Néel state. Then,
to leading order in the intertrimer interactions, we only keep
terms which are quadratic in the variables 3, 4, 5, and 6
and which conserve the total number of excitations. Thus,
analogously to Eq. (11) we write

H(3J/2) = (3J/2)
∑

R

6∑
n=3

nn(R) + V (3J/2). (32)

The evaluation of V (3J/2) for the antiferromagnetic configu-
ration is given in Eq. (B38) of Appendix B. In the notation of
Eq. (23), where we label the rows and columns of the matrices
in the order 3A, 6B, 4A, 3B, 5A, 4B, 6A, 5B, that result
implies that

Ak = 1

9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0
0 0 6 X 0 0 0 0
0 0 X −2 0 0 0 0
0 0 0 0 2 Y 0 0
0 0 0 0 Y 2 0 0
0 0 0 0 0 0 −2 X

0 0 0 0 0 0 X 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

Aj = 1

18

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −3 T 0 0 0 0
0 0 T −7 0 0 0 0
0 0 0 0 −5 U 0 0
0 0 0 0 U −5 0 0
0 0 0 0 0 0 −7 T

0 0 0 0 0 0 T −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(34)

where

T = −4
√

3γ (q), U = −8γ (q),
(35)

X =
√

3γ (q), Y = 2γ (q).

Thus, we have the mode energies, with their degeneracies in
parentheses:

ω1 = 3J/2 + 10k/9 − j/18 (2),

ω2,3 = 3J/2 + 2k/9 − 5j/18 ± (4j − 2k)γ (q)/9, (1)

ω4,5 = 3J/2 + 2k/9 − 5j/18

±
√

(4k + j )2 + 3(k − 2j )2γ (q)2/9 (2). (36)

We determine the polarization of the modes as follows. The
mode ω1 involves state 3A which has SA,z = − 3

2 or state 6B

which has SB,z = 3
2 and is therefore not accessible via a single

spin operator from the SA,z = 1
2 , SB,z = − 1

2 ground state. The
modes ω2 and ω3 arise from states 5A and 4B. State 5A has
SA,z = 1

2 , which is activated from theSA,z = 1
2 ground state by

anSA,z operator and state 4B hasSB,z = − 1
2 which is activated

from the SB,z = − 1
2 ground state by an SB,z operator. The

modes ω4 and ω5 arise from states 4A, 3B, 6A, or 5B. State
4A has SA,z = − 1

2 , which is activated by an SA,− operator and
state 5B has SB,z = 1

2 which is activated by an SB,+ operator.

1.40
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1.60

1.70

ω
/J

j=0.15
k=0.2
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ω2

ΓΓ X S

ω3

(2)

ω4

ω1

ω5

z z (2)

+ - (2)

FIG. 6. (Color online) As Fig. 5, but for modes near energy 3J/2
for the antiferromagnetic configuration. The highest-energy mode is
not accessible in linear (in S) response theory.

States 3B or 6A lead to similar results. These modes (with
their polarizations) are shown in Fig. 6.

D. Manifold at energy 3 J/2 for ferromagnetic configuration

The result of the calculation of V (3J/2) for the ferromag-
netic configuration is given in Eq. (D44) of Appendix D, which
implies, in the notation of Eq. (23), that

Ak = 1

9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10 0 0 0 0 0 0 0
0 −6 0 0 0 1 0 0
0 0 −2 0 0 0 2 0
0 0 0 2 0 0 0 3
0 0 0 0 −10 0 0 0
0 1 0 0 0 −6 0 0
0 0 2 0 0 0 −2 0
0 0 0 3 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (37)

Aj = 1

18

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 3 0 0 0 4 0 0
0 0 5 0 0 0 8 0
0 0 0 7 0 0 0 12
0 0 0 0 1 0 0 0
0 4 0 0 0 3 0 0
0 0 8 0 0 0 5 0
0 0 0 12 0 0 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

where the rows and column are labeled in the order 3A, 4A,
5A, 6A, 3B, 4B, 5B, 6B. We thereby find the mode energies
to be

ω1,2 = 1.5J + j − 20k

18
,

ω3,4 = 1.5J + 3j − 12k

18
± k − 2j

9
γ (q),

(39)

ω5,6 = 1.5J + 5j − 4k

18
± 2k − 4j

9
γ (q),

ω7,8 = 1.5J + 7j + 4k

18
± k − 2j

3
γ (q).

The determination of the polarization of the mode is done as
we did for the modes of Eq. (36). The results are shown in
Fig. 7.

V. NÉEL SPIN WAVES

In this section, we compare the results obtained above
with those from ordinary spin-wave theory. In Fig. 8, we
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ω
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ω7
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ω4

ω8ω6

z z (2)

ω1,2

(2)

FIG. 7. (Color online) As Fig. 5, but for excitations in the
manifold near energy 1.5J for the ferromagnetic configuration from
Eq. (39). The lowest-energy mode is not accessible in linear (in S)
response theory.

show the six branches of transverse excitations from the Néel
ground state. Note that apart from the lowest manifold, the
two approaches lead to quite different spectra. As we showed
above, the lowest manifold of trimer excitations is obtained
by an exact mapping onto a Néel spin spectrum. One sees
that for the antiferromagnetic configuration the energy scale
of the lowest branch of spin waves is significantly larger
for the trimer approach than for the Néel approach. This is
because the trimer approach takes better account of quantum
zero-point motion than does the Néel approach. It is well
known that zero-point fluctuations tend to increase the spin-
wave energies. This is shown by exact calaculations for one-
dimensional spin chains26 and by perturbative calculations for
three-dimensional systems.27 In contrast, for the ferromagnetic
configuration, the opposite effect occurs because the energies
are proportional to the spin magnitudes.

VI. NEUTRON DIFFRACTION

Some aspects of neutron diffraction have been discussed
by Furrer et al.6 and by Qiu et al.7 Here, we discuss briefly
the difference between the diffraction spectrum of the trimer
system and that of the associated Néel state. The elastic
magnetic scattering intensity at wave vector Q is

dσ

d�
≈

∑
G

[|F(Q)|2 − |Q̂ · F(Q)|2]δ(Q − G), (40)

0

0.2

0.4

0.6

ω
(k

)/J

0

0.2

0.4

0.6

0.8

1

j=0.15
k=0.2

Γ X S Γ Γ X S Γ

j=0.2
k=0.05ANTI

FERRO

FIG. 8. (Color online) As Fig. 4. Néel (transverse) spin-wave
spectrum for the antiferromagnetic (left) and ferromagnetic (right)
configurations. Note that the twofold degeneracy of the antiferro-
magnetic spectrum is broken along the low-symmetry S-� line.

TABLE II. Structure parameters (Ref. 13) (very similar results
are given in Ref. 28) for the distorted kagome system Cu2(OD)3Cl
(Refs. 11 and 12). Here, x, y, and z are the P21c fractional
coordinates with respect to axes a = 9.1056 Å, b = 6.8151 Å,
and c = 11.829 Å, with β = 30.825◦. We choose the P21c setting
because the kagome plane is x ≈ 0 in the this setting. The last
column S shows the nonzero spin component in the trimer phase
and is taken as along the a, b, and c axes, respectively, in Fig. 9. For
the Néel model, we set the spin magnitude to 0.5 instead of 1

3 and 1
6 .

The Cu3 sites are in the triangular lattice planes which interleave
the kagome planes, but our calculations do not include their
moments.

Cu sites x y z S

Cu1(1) 0 0 0 −1/6
Cu1(2) 0 1/2 1/2 1/6
Cu2(2) 0.0072 0.2658 0.2409 −1/3
Cu2(3) 0.9929 0.7658 0.2591 −1/3
Cu2(4) 0.9929 0.7342 0.7591 −1/3
Cu2(2) 0.0072 0.2342 0.7409 1/3
Cu3(1) 1/2 0 1/2 0
Cu3(2) 1/2 1/2 0 0

where G is summed over all reciprocal lattice vectors and the
magnetic vector structure factor F is

F(Q) ≈
∑

τ

〈Sτ 〉eiQ·τ , (41)

where τ are the copper spin positions given in Table II and 〈Sτ 〉
is the thermal average of the spin at site τ . For the Néel model,
we take the spin values as 0.5, while for the trimer model it is 1

6

and 1
3 as shown in Table II. To simplify the presentation, we do

not discuss the atomic form factor and the Debye-Waller factor.
The magnetic elastic diffraction intensities (apart from the
thermal and magnetic form factors) are summarized in Fig. 9
for different collinear spin configurations along the crystal axes
for both the trimer and Néel models, including AF and F spin
configurations. As expected, there are significant differences
between the antiferromagnetic and ferromagnetic ordered
trimer configurations. Also, for a given spin configuration,
the trimer model is significantly different than the Néel model.
Due to smaller spin values in the trimer phase, the intensities
are much weaker. Hence, observation of the magnetic Bragg
peaks would be much more difficult in the trimer phase than
for the Néel model. Other than this difference, there are other
differences at various scattering angle and it may be possible
to distinguish the Néel and trimer model experimentally.
In Fig. 9, we also show nuclear scattering, which has
some overlap with the strongest magnetic peaks. The unique
magnetic peaks are at low angle and there are only a few of
them.

VII. INELASTIC SCATTERING CROSS SECTION

In this section, we evaluate the inelastic cross section for
the antiferromagnetic configuration at zero temperature. To
do this, we will construct the appropriate response functions,
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FIG. 9. (Color online) Elastic magnetic Bragg peaks for different
spin alignments for trimer and Néel models for the AF (left) and F
(right) configurations, respectively. The gray lines in the background
show the nuclear scattering.

namely,

〈〈A; B〉〉 ≡
∑

n

〈0|A|n〉〈n|B|0〉δ(En − h̄ω), (42)

where |0〉 denotes the ground state and the sum is over all
states |n〉 with energy En relative to the ground state. Here, the
operators A and B are proportional to the Fourier transforms
of the spin operators. In particular, we will need

Sαβ(q,ω) = 〈〈Sα(q); Sβ(−q)〉〉. (43)

Thus,

S+−(q,ω) =
∑

n

|〈n|S−(q)|0〉|2δ(En − h̄ω),

S−+(q,ω) =
∑

n

|〈n|S+(q)|0〉|2δ(En − h̄ω), (44)

Szz(q,ω) =
∑

n

|〈n|Sz(q)|0〉|2δ(En − h̄ω).

(We later set h̄ = 1.) To analyze the single-magnon contribu-
tions to these quantities we need to relate the spin operators
to the normal mode operators. Note that when we evaluate
Eq. (44) at zero temperature, only contributions to the operator
Sβ(q) proportional to creation operators are nonzero. We will
quote results for the transverse and longitudinal cross sections,
given respectively by

Itrans(q,ω) = S+−(q,ω) + S−+(q,ω),
(45)

Ilong(q,ω) = Szz(q,ω).

In the calculations which follow, we use the notation intro-
duced in Sec. VI.

1. Ground-state excitations

We first consider inelastic scattering from pseudospin
waves. Accordingly, we discuss spin-wave theory for this
situation. We express the pseudospin operators in terms of
boson creation operators c

†
A and c

†
B for the A (up) and B

(down) trimers, respectively, as

σz(A) = 1/2 − c
†
AcA, σz(B) = −1/2 + c

†
AcA, (46)

and (with σ± = σx ± iσy)

σ−(A) = c
†
A, σ−(B) = cB. (47)

Then, following the standard spin-wave treatment for such a
spin- 1

2 system we write

cA(q) = N−1/2
∑
R∈A

e−iq·RcA(R), (48)

and similarly for cB(q), where R is summed over all the N

positions of A trimers. Then, the boson Hamiltonian H ≡∑
q Hq at quadratic order is

Hq = 2J {c†A(q)cA(q) + c
†
B(−q)cB(−q)

+ γ (q)[c†A(q)c†B(−q) + cA(q)cB(−q)]}. (49)

Then, the operators which create normal modes are ρ†(q) and
η†(q), which are determined by

c
†
A(q) = l(q)ρ†(q) − m(q)η(−q) (50)

and

cB(−q) = −m(q)ρ†(q) + l(q)η(−q), (51)

where

l(q)2 = 1 + ε(q)

2ε(q)
, m(q)2 = 1 − ε(q)

2ε(q)
, l(q)m(q) = γ (q)

2ε(q)
,

(52)

with ε(q) = [1 − γ (q)2]1/2. Apart from the constant zero-
point energy, one has

H =
∑

q

ω(q)[ρ†(q)ρ(q) + η†(q)η(q)], (53)

where Eq. (8) is ω(q) = 2J ε(q).
Using Eq. (4) we note that the Fourier transform of the spin

operators is

Sα(q) = N−1/2
∑
R∈A

σα(R)e−iq·RτA(q)

+N−1/2
∑
R∈B

σα(R)e−iq·RτB(q). (54)

Here, we have introduced the trimer form factors

τX(q) = 4
3 cos(q · n̂X) − 1

3 , (55)

where n̂X incorporates the locations of the sites of trimer X

relative to its center of gravity:

n̂A = s(0,1/2,
√

3/2), n̂B = s(0,−1/2,
√

3/2). (56)

Within the approximation of a Néel state

τX(q) = 2 cos(q · n̂X) − 1. (57)

014411-9



A. B. HARRIS AND T. YILDIRIM PHYSICAL REVIEW B 88, 014411 (2013)

When B in Eq. (42) is proportional to S−(q) we have (at zero
temperature)

B = τA(q)c†A(q) + τB(q)cB(−q)

→ [l(q)τA(q) − τB(q)m(q)]ρ†(q) + · · · , (58)

where the dots indicate terms involving η(q) which do not
contribute at zero temperature. In Itrans we also have the
contribution when B in Eq. (42) is proportional to S+(q), in
which case

B = [l(q)τB(q) − τA(q)m(q)]η†(−q) + · · · . (59)

Thus, the contribution to the inelastic transverse cross section
is given by

Itrans(q,ω) = {[l(q)2 + m(q)2][τA(q)2 + τB(q)2]

− 4l(q)m(q)τA(q)τB(q)}δ[ω − ω(q)]

= 1

ε(q)
{[τA(q)2 + τB(q)2]

− 2γ (q)τA(q)τB(q)}δ[ω − ω(q)]. (60)

In the case of a standard two-sublattice antiferromagnet, one
has the same result but with τA(q) = τB(q) = 1. In that case,
the inelastic scattering cross section for spin waves alternates
in intensity as one goes from one Brillouin zone to the
next due to the alternating sign of γ (q). Here, the result is
more complicated because of the form factor of the unit cell,
reflected by the factor τX(q).

2. Excitons near energy J

To get the response near energy J for the antiferromagnetic
case, we need to construct the nonzero matrix elements
required to evaluate Eq. (44). To obtain the cross section near
energy J we only consider contributions which involve a

†
1(R)

or a
†
2(R). From Eq. (16) and following, we see that the only

nonzero contributions of this type are,

S−(a,R) = a
†
1(R)/

√
3 = −S−(c,R),

(61)
Sz(a,R) = a

†
2(R)/

√
12 = −Sz(c,R),

where R is an A, or up, trimer and

S+(a,R) = a
†
2(R)/

√
3 = −S+(c,R),

(62)
Sz(a,R) = −a

†
1(R)/

√
12 = −Sz(c,R),

when R is a B, or down, trimer. These results lead to

S−(q) = a
†
1A(q)[eiq·nA − e−iq·nA ]/

√
3

= (2i/
√

3)ξA(q)a†
1A(q), (63)

where ξX(q) = sin(q · nX). Similarly,

S+(q) = (2i/
√

3]ξB(q)a†
2B(q),

(64)
Sz(q) = (i/

√
3)[ξA(q)a†

2A(q) − ξB(q)a†
1B(q)].

Then, using Eq. (44), we have

Itrans = [4ξA(q)2/3]〈〈a1A; a†
1A〉〉

+ [4ξB(q)2/3]〈〈a2B ; a†
2B〉〉, (65)

where Eq. (27) gives

〈〈a1A; a†
1A〉〉 = 〈〈a2B ; a†

2B〉〉 = δ[ω − ω1A(q)]. (66)

Also, Eq. (26) gives

a
†
1B(q) = [ρ†

+(q) + ρ
†
−(q)] /

√
2,

(67)
a
†
2A(q) = [ρ†

+(q) − ρ
†
−(q)] /

√
2,

so that

Sz(q) = (i/
√

6)([ξA(q) − ξB(q)]ρ†
+(q)

−[ξA(q) + ξB(q)]ρ†
−(q)]). (68)

Then, we obtain

〈〈Sz(q); Sz(−q)〉〉
= (1/2)[ξA(q) + ξB(q)]2〈〈ρ+(q); ρ†

+(q)〉〉
+ (1/2)[ξA(q) − ξB(q)]2〈〈ρ−(q); ρ†

−(q)〉〉, (69)

where Eq. (28) gives that

〈〈ρ±(q); ρ†
±(q)〉〉 = δ[ω − ω±(q)]. (70)

3. Excitons near energy 3 J/2

Here, we keep only contributions involving creation opera-
tors a

†
n, with n > 2. In this case,

S−(a,R) = −a
†
4A/

√
18 = S−(c,R),

S−(b,R) = 2a
†
4A/

√
18,

S+(a,R) = a
†
6A/

√
6 = S+(c,R),

(71)
S+(b,R) = −2a

†
6A/

√
6,

Sz(a,R) = −a
†
5A/

√
18 = S−(c,R),

Sz(b,R) = 2a
†
5A/

√
18

when R is an A, up, site. Also,

S+(a,R) = a
†
5B/

√
18 = S−(c,R),

S+(b,R) = −2a
†
5B/

√
18,

S−(a,R) = −a
†
3B/

√
6 = S−(c,R),

(72)
S−(b,R) = 2a

†
3B/

√
6,

Sz(a,R) = −a
†
4B/

√
18 = S−(c,R),

Sz(b,R) = 2a
†
4B/

√
18

when R is a B, down, site. Thus,

S−(q) = −μA(q)a†
4A(q)/

√
18 − μB(q)a†

3B(q)/
√

6,

S+(q) = μA(q)a†
6A(q)/

√
6 − μB(q)a†

5B(q)/
√

18, (73)

Sz(q) = −[μA(q)a†
5A(q) + μB(q)a†

4B(q)]/
√

18,

where

μX(q) = 2 cos(q · nX) − 1. (74)

The intensities can be obtained by inverting the transformation
which diagonalizes V (3J/2) whose eigenvalues are given
in Eq. (36). Since the algebraic expression for the mode
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intensities is too complicated to be enlightening, we confine
ourselves to some general remarks. We verify that S−(q)
involves the third and fourth rows and columns of the
dynamical matrices of Eqs. (33) and (34). Likewise, S+(q)
involves the seventh and eighth rows and columns of the
dynamical matrices of Eqs. (33) and (34). Thus, the transverse
response is associated with modes ω4 and ω5, in agreement
with our previous identification. Similarly, we confirm the
identification of ω2 and ω3 as belonging to the longitudinal
response.

VIII. CONCLUSIONS

We may summarize our results as follows.
(a) The lowest-energy modes of the trimer system shown

in Fig. 4 are only slightly different from what one gets (see
Fig. 8) using the Néel approximation for the ground state.
There is a slight difference in symmetry in that the breaking
of degeneracy of Néel spin wave in nonspecial directions does
not occur in leading order of perturbation theory within the
trimer approximation.

(b) The elastic diffraction pattern shows differences (see
Fig. 9) which, in principle, allow one to distinguish between a
trimer system and one that is closer to the Néel limit.

(c) The excitation spectra at high energy we have obtained
show dramatic differences between the trimer and Néel
limits. In the former case, well-defined modes appear in the
longitudinal response functions. In general, the trimer limit
gives rise to many more elementary excitations and thereby
provides a conclusive way to identify a system as being in the
trimer limit.

(d) A possible future project would be to develop an
interpolation scheme to pass between the qualitatively different
Néel and trimer limits.

ACKNOWLEDGMENT

A.B.H. was supported in part by a grant from the department
of commerce.

APPENDIX A: ANTIFERROMAGNETIC EXCITATIONS
AT ENERGY J

Here, position coordinates are given relative to R a
lattice site occupied by an “up” trimer. Thus, a2(0) denotes
a2(R), a1(δ1) denotes a1(R + δ1), and so forth. We treat the
interaction of one of the spins (a, b, or c) of the trimer at R with
one of the spins (a, b, or c) of a neighboring trimer at R + δn,
for n = 1,2,3,4. In this section, we drop all terms referring to
states n > 2 since such states occur at energy 3J/2. Also, as
mentioned, we drop all terms which are off diagonal in J .

1. a at 0 interacts with b at δ3

Within the band at energy J we may write

S−(a) = a
†
1(0)/

√
3, S+(a) = a1(0)/

√
3, (A1)

Sz(a) = 1

3
+ a

†
2(0)√
12

+ a2(0)√
12

− n1(0)

3
− n2(0)

3
(A2)

and

S−(b,δ3) = 0, S+(b,δ3) = 0, (A3)

Sz(b,δ3) = 1

6
− 2n1(δ3)

3
+ n2(δ3)

3
. (A4)

Thus, this interaction leads to the Hamiltonian

H = j [−2n1(δ3) + n2(δ3)]/9 − j [n1(0) + n2(0)]/18. (A5)

2. a at 0 interacts with c at δ3 and δ4

Here,

S−(a) = a
†
1(0)/

√
3, S+(a) = a1(0)/

√
3, (A6)

Sz(a) = 1

3
+ a

†
2(0)√
12

+ a2(0)√
12

− n1(0)

3
− n2(0)

3
, (A7)

and, where δ assumes the values δ3 and δ4,

S−(c,δ) = −a2(δ)/
√

3, (A8)

S+(c,δ) = −a
†
2(δ)/

√
3, (A9)

Sz(c,δ) = −1/3 + a
†
1(δ)/

√
12 + a1(δ)/

√
12

+ n1(δ)/3 + n2(δ)/3. (A10)

Thus, this interaction leads to the Hamiltonian

H = k

9

∑
δ

[n1(δ) + n2(δ) + n1(0) + n2(0)]

+ k

12

∑
δ

[a†
2(0)a1(δ) + a

†
1(δ)a2(0)]. (A11)

3. b at 0 interacts with a at δ2

Here,

S−(b) = 0, S+(b) = 0, (A12)

Sz(b) = −1/6 + 2n2(0)/3 − n1(0)/3 (A13)

and

S−(a,δ2) = a2(δ2)√
3

, S+(a,δ2) = a
†
2(δ2)√

3
, (A14)

Sz(a,δ2) = −1/3 − a
†
1(δ2)/

√
12 − a1(δ2)/

√
12

+ n1(δ2)/3 + n2(δ2)/3. (A15)

These interactions lead to the Hamiltonian

H = −j [n2(δ2) + n1(δ2)]/18 + j [n1(0) − 2n2(0)]/9.

(A16)

4. b at 0 interacts with c at δ4

Here,

S−(b) = 0, S+(b) = 0, (A17)

Sz(b) = −1/6 + 2n2(0)/3 − n1(0)/3 (A18)
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and

S−(c,δ4) = −a2(δ4)√
3

, S+(c,δ4) = −a
†
2(δ4)√

3
, (A19)

Sz(c,δ4) = −1/3 + a
†
1(δ4)/

√
12 + a1(δ4)/

√
12

+ n1(δ4)/3 + n2(δ4)/3. (A20)

These interactions lead to the Hamiltonian

H = −j [n1(δ4) + n2(δ4)]/18 + j [n1(0) − 2n2(0)]/9.

(A21)

5. c at 0 interacts with a at δ1 and δ2

Here,

S−(c) = −a
†
1(0)/

√
3, S+(c) = −a1(0)/

√
3, (A22)

Sz(c) = 1

3
− a

†
2(0)√
12

− a2(0)√
12

− n1(0)

3
− n2(0)

3
. (A23)

and, where δ assumes the values δ1 and δ2,

S−(a,δ) = 0, S+(b,δ) = 0, (A24)

Sz(a,δ) = −1/3 − a
†
1(δ)/

√
12 − a1(δ)/

√
12

+ n1(δ)/3 + n2(δ)/3. (A25)

These interactions lead to the Hamiltonian

H = k

9

∑
δ

[n1(δ) + n2(δ) + n1(0) + n2(0)]

+ k

12

∑
δ

[a†
2(0)a1(δ) + a

†
1(δ)a2(0)]. (A26)

6. c at 0 interacts with b at δ1

Here,

S−(c) = −a
†
1(0)/

√
3, S+(c) = −a1(0)/

√
3, (A27)

Sz(c) = 1

3
− a

†
2(0)√
12

− a2(0)√
12

+ n1(0)

3
+ n2(0)

3
(A28)

and

S−(b,δ1) = 0, S+(b,δ1) = 0,
(A29)

Sz(b,δ1) = 1

6
− 2n1(δ1)

3
+ n2(δ1)

3
.

These lead to the Hamiltonian

H = −j [n1(0) + n2(0)]/18 + j [−2n1(δ1) + n2(δ1)]/9.

(A30)

7. Summary

Summing all the above contributions, we get the Hamil-
tonian for the band at energy J for the antiferromagnetic
configuration

V (J ) =
∑

R

(
j [n1(R) − 5n2(R) + n2(R1)

− 5n1(R1)]/9 + 4k[n1(R) + n2(R) + n1(R1)

+ n2(R1)]/9 +
∑

δ

k[a†
2(R)a1(R + δ)

+ a
†
1(R + δ)a2(R)]/12

)
, (A31)

where δ is summed over the four values shown in Fig. 1.

APPENDIX B: ANTIFERROMAGNETIC EXCITATIONS
AT ENERGY 3 J/2

1. a at 0 interacts with b at δ3

Here,

S−(a) = −a
†
4(0)/

√
18 + a6(0)/

√
6,

(B1)
S+(a) = −a4(0)/

√
18 + a

†
6(0)/

√
6,

Sz(a) = 1

3
− a

†
5(0)√
18

− a5(0)√
18

+ n6(0)

6

−n5(0)

6
− n4(0)

2
− 5n3(0)

6
(B2)

and

S−(b,δ3) = −2a5(δ3)/
√

18 + 2a
†
3(δ3)/

√
6, (B3)

S+(b,δ3) = −2a
†
5(δ3)/

√
18 + 2a3(δ3)/

√
6, (B4)

Sz(b,δ3) = 1

6
+ 2a

†
4(δ3)√
18

+ 2a4(δ3)√
18

+ n6(δ3)

3
− n4(δ3)

3
− 2n3(δ3)

3
. (B5)

These interactions give rise to the Hamiltonian

H =
√

3j [−a
†
4(0)a3(δ3) − a

†
5(δ3)a6(0) − a

†
3(δ3)a4(0)

− a
†
6(0)a5(δ3)]/18 + j [4n6(δ3) − 4n4(δ3) − 8n3(δ3)

+ n6(0) − n5(0) − 3n4(0) − 5n3(0)]/36

+ j [−a
†
5(0)a4(δ3) − a5(0)a†

4(δ3)]/9. (B6)

2. a at 0 interacts with c at δ3 and δ4

Here,

S−(a) = −a
†
4(0)/

√
18 + a6(0)/

√
6, (B7)

S+(a) = −a4(0)/
√

18 + a
†
6(0)/

√
6, (B8)

Sz(a) = 1

3
− a

†
5(0)√
18

− a5(0)√
18

+ n6(0)

6
− n5(0)

6

− n4(0)

2
− 5n3(0)

6
, (B9)

and, with δ = δ3 or δ = δ4, we have

S−(c,δ) = a5(δ)/
√

18 − a
†
3(δ)/

√
6, (B10)

S+(c,δ) = a
†
5(δ)/

√
18 − a3(δ)/

√
6, (B11)

Sz(c,δ) = −1

3
− a

†
4(δ)√
18

− a4(δ)√
18

+ 5n6(δ)

6
+ n5(δ)

2

+ n4(δ)

6
− n3(δ)

6
. (B12)
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These interactions lead to the Hamiltonian

H =
∑

δ

(√
3k

36
[a†

4(0)a3(δ) + a
†
5(δ)a6(0)

+ a
†
6(0)a5(δ) + a

†
3(δ)a4(0)]

+ k

18
[5n6(δ) + 3n5(δ) + n4(δ) − n3(δ)

− n6(0) + n5(0) + 3n4(0) + 5n3(0)]

+ k

18
[a†

5(0)a4(δ) + a
†
4(δ)a5(0)]

)
. (B13)

3. b at 0 interacts with a at δ2

Here,

S−(b) = 2a
†
4(0)/

√
18 − 2a6(0)/

√
6, (B14)

S+(b) = 2a4(0)/
√

18 − 2a
†
6(0)/

√
6, (B15)

Sz(b) = −1

6
+ 2a

†
5(0)√
18

+ 2a5(0)√
18

+ 2n6(0)

3
+ n5(0)

3
− n3(0)

3
(B16)

and

S−(a,δ2) = a5(δ2)/
√

18 − a
†
3(δ2)/

√
6,

(B17)
S+(a,δ2) = a

†
5(δ2)/

√
18 − a3(δ2)/

√
6,

Sz(a,δ2) = −1

3
− a

†
4(δ2)√

18
− a4(δ2)√

18
+ 5n6(δ2)

6

+ n5(δ2)

2
+ n4(δ2)

6
− n3(δ2)

6
. (B18)

Thus, the Hamiltonian for this interaction is

H =
√

3j [−a
†
4(0)a3(δ2) − a

†
5(δ2)a6(0)

− a
†
3(δ2)a4(0) − a

†
6(0)a5(δ2)]/18

+ j [−5n6(δ2) − 3n5(δ2) − n4(δ2) + n3(δ2)

− 8n6(0) − 4n5(0) + 4n3(0)]/36

+ j [−a
†
5(0)a4(δ2) − a

†
4(δ2)a5(0)]/9. (B19)

4. b at 0 interacts with c at δ4

Here,

S−(b) = 2a
†
4(0)/

√
18 − 2a6(0)/

√
6, (B20)

S+(b) = 2a4(0)/
√

18 − 2a
†
6(0)/

√
6, (B21)

Sz(b) = −1

6
+ 2a

†
5(0)√
18

+ 2a5(0)√
18

+ 2n6(0)

3

+ n5(0)

3
− n3(0)

3
(B22)

and

S−(c,δ4) = a5(δ4)/
√

18 − a
†
3(δ4)/

√
6,

S+(c,δ4) = a
†
5(δ4)/

√
18 − a3(δ4)/

√
6,

Sz(c,δ4) = −1

3
− a

†
4(δ4)√

18
− a4(δ4)√

18
+ 5n6(δ4)

6

+ n5(δ4)

2
+ n4(δ4)

6
− n3(δ4)

6
. (B23)

These results lead to the Hamiltonian

H =
√

3j [−a
†
4(0)a3(δ4) − a

†
5(δ4)a6(0)

− a
†
3(δ4)a4(0) − a

†
6(0)a5(δ4)]/18

+ j [−5n6(δ4) − 3n5(δ4) − n4(δ4) + n3(δ4)

− 8n6(0) − 4n5(0) + 4n3(0)]/36

+ j [−a
†
5(0)a4(δ4) − a

†
4(δ4)a5(0)]/9. (B24)

5. c at 0 interacts with a at δ1 and δ2

Here,

S−(c) = −a
†
4(0)/

√
18 + a6(0)/

√
6, (B25)

S+(c) = −a4(0)/
√

18 + a
†
6(0)/

√
6, (B26)

Sz(c) = 1

3
− a

†
5(0)√
18

− a5(0)√
18

+ n6(0)

6

− n5(0)

6
− n4(0)

2
− 5n3(0)

6
(B27)

and, where δ assumes the values δ1 and δ2,

S−(a,δ) = a5(δ)/
√

18 − a
†
3(δ)/

√
6,

(B28)
S+(a,δ) = a

†
5(δ)/

√
18 − a3(δ)/

√
6,

Sz(a,δ) = −1

3
− a

†
4(δ)√
18

− a4(δ)√
18

+ 5n6(δ)

6
+ n5(δ)

2
+ n4(δ)

6
− n3(δ)

6
. (B29)

Thus, the Hamiltonian from this interaction is

H =
∑

δ

(√
3k

36
[a†

4(0)a3(δ) + a6(0)a†
5(δ)

+ a4(0)a†
3(δ) + a

†
6(0)a5(δ)]

+ k

18
[5n6(δ) + 3n5(δ) + n4(δ) − n3(δ)

− 2n6(0) + 2n5(0) + 6n4(0) + 10n3(0)

+ a
†
5(0)a4(δ) + a5(0)a†

4(δ)]

)
. (B30)

6. c at 0 interacts with b at δ1

Here,

S−(c) = −a
†
4(0)/

√
18 + a6(0)/

√
6, (B31)

S+(c) = −a4(0)/
√

18 + a
†
6(0)/

√
6, (B32)

Sz(c) = 1

3
− a

†
5(0)√
18

− a5(0)√
18

+ n6(0)

6

− n5(0)

6
− n4(0)

2
− 5n3(0)

6
(B33)
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and

S−(b,δ1) = −2a5(δ1)/
√

18 + 2a
†
3(δ1)/

√
6, (B34)

S+(b,δ1) = −2a
†
5(δ1)/

√
18 + 2a3(δ1)/

√
6, (B35)

Sz(b,δ1) = 1

6
+ 2a

†
4(δ1)√
18

+ 2a4(δ1)√
18

+ n6(δ1)

3
− n4(δ1)

3
− 2n3(δ1)

3
. (B36)

Thus, the Hamiltonian from this interaction is

H =
√

3j [−a
†
4(0)a3(δ) − a

†
5(δ)a6(0)

− a
†
3(δ)a4(0) − a

†
6(0)a5(δ)]/18

+ j [4n6(δ) − 4n4(δ) − 8n3(δ) + n6(0)

− n5(0) − 3n4(0) − 5n3(0)]/36

+ j [−a
†
5(0)a4(δ) − a

†
4(δ)a5(0)]/9. (B37)

7. Summary

Summing all the above contributions, we get the Hamil-
tonian for the band at energy 3J/2 for the antiferromagnetic
configuration

V (3J/2) = j
∑

R

[
[−n3(R) − 3n4(R) − 5n5(R) − 7n6(R)

− n6(R1) − 3n5(R1) − 5n4(R1) − 7n3(R1)]/18

+
∑

δ

(−[a†
5(R)a4(R + δ) + a

†
4(R + δ)a5(R)]/9

−
√

3[a†
4(R)a3(R + δ) + a

†
3(R + δ)a4(R)

+ a
†
5(R + δ)a6(R) + a

†
6(R)a5(R + δ)]/18)

]

+ k
∑

R

[
2[−n6(R) + n5(R) + 3n4(R) + 5n3(R)

+ 5n6(R1) + 3n5(R1) + n4(R1) − n3(R1)]/9

+
∑

δ

(
√

3[a†
4(R)a3(R + δ) + a

†
3(R + δ)a4(R)

+ a
†
5(R + δ)a6(R) + a

†
6(R)a5(R + δ)]/36

+ [a†
5(R)a4(R + δ) + a

†
4(R + δ)a5(R)]/18)

]
.

(B38)

APPENDIX C: FERROMAGNETIC EXCITATIONS
AT ENERGY J

1. a at 0 interacts with b at δ3

Here,

S−(a) = a
†
1(0)/

√
3, S+(a) = a1(0)/

√
3, (C1)

Sz(a) = 1

3
+ a

†
2(0)√
12

+ a2(0)√
12

− n1(0)

3
− n2(0)

3
(C2)

and

S−(b,δ3) = 0, S+(b,δ3) = 0, (C3)

Sz(b,δ3) = −1

6
− n1(δ3)

3
+ 2n2(δ3)

3
. (C4)

These results lead to the Hamiltonian

H = j [2n2(δ3) − n1(δ3)]/9 + j [n1(0) + n2(0)]/18. (C5)

2. a at 0 interacts with c at δ3 and δ4

Here,

S−(a) = a
†
1(0)/

√
3, S+(a) = a1(0)/

√
3, (C6)

Sz(a) = 1

3
+ a

†
2(0)√
12

+ a2(0)√
12

− n1(0)

3
− n2(0)

3
(C7)

and, where δ assumes the values δ3 and δ4,

S−(c,δ) = −a
†
1(δ)√

3
, S+(c,δ) = −a1(δ)√

3
, (C8)

Sz(c,δ) = 1/3 − a
†
2(δ)/

√
12 − a2(δ)/

√
12

− n1(δ)/3 − n2(δ)/3. (C9)

Thus, we have that

H =
∑

δ

(
−k

9
[n1(δ) + n2(δ) + n1(0) + n2(0)]

+ k

12
[−a

†
2(δ)a2(0) − a

†
2(δ)a2(0)]

− k

6
[a†

1(0)a1(δ) + a
†
1(δ)a1(0)]

)
. (C10)

3. b at 0 interacts with a at δ2

Here,

S−(b) = 0, S+(b) = 0, (C11)

Sz(b) = −1

6
+ 2n2(0)

3
− n1(0)

3
(C12)

and

S−(a,δ2) = a
†
1(δ2)√

3
, S+(a,δ2) = a1(δ2)√

3
, (C13)

Sz(a,δ2) = 1/3 + a
†
2(δ2)/

√
12 + a2(δ2)/

√
12

− n1(δ2)/3 − n2(δ2)/3. (C14)

Thus, we obtain the Hamiltonian

H = j [n1(δ2) + n2(δ2)]/18 + j [−n1(0) + 2n2(0)]/9.

(C15)

4. b at 0 interacts with c at δ4

Here,

S−(b) = 0, S+(b) = 0, (C16)

Sz(b) = −1

6
+ 2n2(0)

3
− n1(0)

3
(C17)

and

S−(c,δ4) = −a
†
1(δ4)√

3
, S+(c,δ4) = −a1(δ4)√

3
, (C18)
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Sz(c,δ4) = 1/3 − a
†
2(δ4)/

√
12 − a2(δ4)/

√
12

− n1(δ4)/3 − n2(δ4)/3. (C19)

These interactions give rise to the Hamiltonian

H = j [n1(δ4) + n2(δ4)]/18 + j [−n1(0) + 2n2(0)]9. (C20)

5. c at 0 interacts with a at δ1 and δ2

Here,

S−(c) = −a
†
1(0)√

3
, S+(c) = −a1(0)√

3
, (C21)

Sz(c) = 1/3 − a
†
2(0)/

√
12 − a2(0)/

√
12

− n1(0)/3 − n2(0)/3 (C22)

and, where δ assumes the values δ1 and δ2,

S−(a,δ) = a
†
1(δ)√

3
, S+(a,δ) = a1(δ)√

3
, (C23)

Sz(a,δ) = 1/3 + a
†
2(δ)/

√
12 + a2(δ)/

√
12

− n1(δ)/3 − n2(δ)/3. (C24)

These results lead to the Hamiltonian

H =
∑

δ

[
−k

9
(n1(δ) + n2(δ) + n1(0) + n2(0))

− k

12
(a†

2(0)a2(δ) + a
†
2(δ)a2(0))

− k

6
(a†

1(0)a1(δ) + a
†
1(δ)a1(0))

]
. (C25)

6. c at 0 interacts with b at δ1

Here,

S−(c) = −a
†
1(0)√

3
, S+(c) = −a1(0)√

3
, (C26)

Sz(c) = 1

3
− a

†
2(0)√
12

− a2(0)√
12

− n1(0)

3
− n2(0)

3
(C27)

and

S−(b,δ1) = 0, S+(b,δ1) = 0, (C28)

Sz(b,δ1) = −1

6
+ 2n2(δ1)

3
− n1(δ1)

3
. (C29)

These terms give rise to the Hamiltonian

H = j [n1(0) + n2(0)]/18 + j [2n2(δ1) − n1(δ1)]/9. (C30)

7. Summary

Summing all the above contributions, we get the Hamil-
tonian for the band at energy J for the ferromagnetic
configuration as

V (J ) =
∑

R

[
j [5n2(R) − n1(R) − n1(R1) + 5n2(R1)]

− 4k[n1(R) + n2(R) + n1(R1) + n2(R1)]/9

− k

12

∑
δ

([2a
†
1(R)a1(R + δ) + a

†
2(R)a2(R + δ)

+ 2a
†
1(R + δ)a1(R) + a

†
2(R + δ)a2(R)])

]
. (C31)

APPENDIX D: FERROMAGNETIC EXCITATIONS
AT ENERGY 3 J/2

1. a at 0 interacts with b at δ3

Here,

S−(a) = −a
†
4(0)/

√
18 + a6(0)/

√
6, (D1)

S+(a) = −a4(0)/
√

18 + a
†
6(0)/

√
6, (D2)

Sz(a) = 1

3
− a

†
5(0)√
18

− a5(0)√
18

+ n6(0)

6

− n5(0)

6
− n4(0)

2
− 5n3(0)

6
(D3)

and

S−(b,δ3) = 2a
†
4(δ3)/

√
18 − 2a6(δ3)/

√
6, (D4)

S+(b,δ3) = 2a4(δ3)/
√

18 − 2a
†
6(δ3)/

√
6, (D5)

Sz(b,δ) = −1/6 + 2a
†
5(δ3)/

√
18 + 2a5(δ3)/

√
18

+ 2n6(δ3)/3 + n5(δ3)/3 − n3(δ3)/3. (D6)

Thus, these interactions lead to the Hamiltonian

H = j [−a
†
4(0)a4(δ3) − 3a

†
6(δ3)a6(0)

− a
†
4(δ3)a4(0) − 3a

†
6(0)a6(δ3)]/18

+ j [−4n3(δ3) + 4n5(δ3) + 8n6(δ3)

− n6(0) + n5(0) + 3n4(0) + 5n3(0)]/36

+ j [−a
†
5(0)a5(δ3) − a

†
5(δ3)a5(0)]/9. (D7)

2. a at 0 interacts with c at δ3 and δ4

Here,

S−(a) = −a
†
4(0)/

√
18 + a6(0)/

√
6, (D8)

S+(a) = −a4(0)/
√

18 + a
†
6(0)/

√
6, (D9)

Sz(a) = 1

3
− a

†
5(0)√
18

− a5(0)√
18

+ n6(0)

6

− n5(0)

6
− n4(0)

2
− 5n3(0)

6
(D10)

and, where δ assumes the values δ3 and δ4,

S−(c,δ) = −a
†
4(δ)/

√
18 + a6(δ)/

√
6, (D11)

S+(c,δ) = −a4(δ)/
√

18 + a
†
6(δ)/

√
6, (D12)

Sz(c,δ) = 1

3
− a

†
5(δ)√
18

− a5(δ)√
18

− 5n3(δ)

6
(D13)

− n4(δ)

2
− n5(δ)

6
+ n6(δ)

6
. (D14)
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Thus,

H =
∑

δ

(
k

36
[a†

4(δ)a4(0) + 3a
†
6(δ)a6(0)

+ a
†
4(0)a4(δ) + 3a

†
6(0)a6(δ)]

+ k

18
[−5n3(δ) − 3n4(δ) − n5(δ) + n6(δ)

+ n6(0) − n5(0) − 3n4(0) − 5n3(0)]

+ k

18
[a†

5(0)a5(δ) + a
†
5(δ3)a5(0)]

)
. (D15)

3. b at 0 interacts with a at δ2

S−(b) = 2a
†
4(0)/

√
18 − 2a6(0)/

√
6, (D16)

S+(b) = 2a4(0)/
√

18 − 2a
†
6(0)

√
6, (D17)

Sz(b) = −1/6 + 2a
†
5(0)/

√
18 + 2a5(0)/

√
18

+ 2n6(0)/3 + n5(0)/3 − n3(0)/3 (D18)

and

S−(a,δ2) = −a
†
4(δ2)/

√
18 + a6(δ2)/

√
6, (D19)

S+(a,δ2) = −a4(δ2)/
√

18 + a
†
6(δ2)/

√
6, (D20)

Sz(a,δ2) = 1

3
− a

†
5(δ2)√

18
− a5(δ2)√

18
− 5n3(δ2)

6

− n4(δ2)

2
− n5(δ2)

6
+ n6(δ2)

6
. (D21)

Thus, we obtain the Hamiltonian

H = j [−a
†
4(0)a4(δ2) − 3a

†
6(δ2)a6(0) − a

†
4(δ2)a4(0)

− 3a
†
6(0)a6(δ2)]/18 + j [5n3(δ2) + 3n4(δ2) + n5(δ2)

− n6(δ2) + 8n6(0) + 4n5(0) − 4n3(0)]/36

+ j [−a
†
5(0)a5(δ2) − a

†
5(δ2)a5(0)]/9. (D22)

4. b at 0 interacts with c at δ4

Here,

S−(b) = 2a
†
4(0)/

√
18 − 2a6(0)/

√
6, (D23)

S+(b) = 2a4(0)/
√

18 − 2a
†
6(0)/

√
6, (D24)

Sz(b) = −1/6 + 2a
†
5(0)/

√
18 + 2a5(0)/

√
18

+ 2n6(0)/3 + n5(0)/3 − n3(0)/3 (D25)

and

S−(c,δ4) = −a
†
4(δ4)/

√
18 + a6(δ4)/

√
6, (D26)

S+(c,δ4) = −a4(δ4)/
√

18 + a
†
6(δ4)/

√
6, (D27)

Sz(c,δ4) = 1

3
− a

†
5(δ4)√

18
− a5(δ4)√

18
− 5n3(δ4)

6

− n4(δ4)

2
− n5(δ4)

6
+ n6(δ4)

6
. (D28)

Thus, we obtain the Hamiltonian

H = j [−a
†
4(0)a4(δ4) − 3a

†
6(δ4)a6(0)

− a
†
4(δ4)a4(0) − 3a

†
6(0)a6(δ4)]/18

+ j [5n3(δ4) + 3n4(δ4) + n5(δ4) − n6(δ4)

+ 8n6(0) + 4n5(0) − 4n3(0)]/36

+ j [−a
†
5(0)a5(δ4) − a

†
5(δ4)a5(0)]/9. (D29)

5. c at 0 interacts with a at δ1 and δ2

Here,

S−(c) = −a
†
4(0)/

√
18 + a6(0)/

√
6, (D30)

S+(c) = −a4(0)/
√

18 + a
†
6(0)/

√
6, (D31)

Sz(c) = 1

3
− a

†
5(0)√
18

− a5(0)√
18

+ n6(0)

6
− n5(0)

6

− n4(0)

2
− 5n3(0)

6
(D32)

and, where δ assumes the values δ1 and δ2,

S−(a,δ) = −a
†
4(δ)/

√
18 + a6(δ)/

√
6, (D33)

S+(a,δ) = −a4(δ)/
√

18 + a
†
6(δ)/

√
6, (D34)

Sz(a,δ) = 1

3
− a

†
5(δ)√
18

− a5(δ)√
18

− 5n3(δ)

6

− n4(δ)

2
− n5(δ)

6
+ n6(δ)

6
. (D35)

Thus,

H =
∑

δ

(
k

36
[a†

4(0)a4(δ)

+ 3a
†
6(δ)a6(0) + a

†
4(δ)a4(0) + 3a

†
6(0)a6(δ)]

+ k

18
[−5n3(δ) − 3n4(δ) − n5(δ) + n6(δ)

+ n6(0) − n5(0) − 3n4(0) − 5n3(0)]

+ k

18
[a†

5(0)a5(δ) + a5(0)a†
5(δ)]

)
. (D36)

6. c at 0 interacts with b at δ1

Here,

S−(c) = −a
†
4(0)/

√
18 + a6(0)/

√
6, (D37)

S+(c) = −a4(0)/
√

18 + a
†
6(0)/

√
6, (D38)

Sz(c) = 1

3
− a

†
5(0)√
18

− a5(0)√
18

+ n6(0)

6

− n5(0)

6
− n4(0)

2
− 5n3(0)

6
(D39)

and

S−(b,δ1) = 2a
†
4(δ1)/

√
18 − 2a6(δ1)/

√
6, (D40)

S+(b,δ1) = 2a4(δ1)/
√

18 − 2a
†
6(δ1)/

√
6, (D41)
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Sz(b,δ1) = −1

6
+ 2a

†
5(δ1)√
18

+ 2a5(δ1)√
18

− n3(δ1)

3

+ n5(δ1)

3
+ 2n6(δ1)

3
. (D42)

Thus,

H = j [−a
†
4(0)a4(δ1) − 3a

†
6(δ1)a6(0) − a

†
4(δ1)a4(0)

− 3a
†
6(0)a6(δ1)]/18 + j [−4n3(δ1) + 4n5(δ1) + 8n6(δ1)

− n6(0) + n5(0) + 3n4(0) + 5n3(0)]/36

+ j [−a
†
5(0)a5(δ1) − a5(0)a†

5(δ1)]/9. (D43)

7. Summary

Summing all the above contributions, we get the Hamil-
tonian for the band at energy J for the ferromagnetic
configuration as

V (3J/2) =
∑

R

[
2k[n6(R) − n5(R) − 3n4(R) − 5n3(R)

− 5n3(R1) − 3n4(R1) − n5(R1) + n6(R1)]/9

+ j [7n6(R) + 5n5(R) + 3n4(R) + n3(R)

+ n3(R1) + 3n4(R1) + 5n5(R1) + 7n6(R1)]/18

+
∑

δ

j ([−a
†
4(R)a4(R + δ) − a

†
4(R + δ)a4(R)

− 3a
†
6(R)a6(R + δ) − 3a

†
6(R + δ)a6(R)

− 2a
†
5(R)a5(R + δ) − 2a

†
5(R + δ)a5(R)]/18

+ k[a†
4(R)a4(R + δ) + a

†
4(R + δ)a4(R)

+ 2a
†
5(R)a5(R + δ) + 2a

†
5(R + δ)a5(R)]

+ 3a
†
6(R)a6(R + δ) + 3a

†
6(R + δ)a6(R)]/36)

]
.

(D44)

j J

J

k

k

k

k

j

j

FIG. 10. (Color online) As Fig. 1 for a covering with one trimer
per unit cell. In this case, the paramagnetic unit cell contains a single
trimer. The magnetic unit cell in the presence of antiferromagnetic
trimer ordering is the same as that in Fig. 1 and contains two trimers.

APPENDIX E: ANOTHER TRIMER COVERING

In Fig. 10, we show another covering of the kagome
lattice with trimers. If the trimers are antiferromagnetically
ordered, then the magnetic unit cell is the same as that of
Fig. 1 and one can verify that the spectrum within the ground
manifold is again given by Eqs. (8) and (10). However, (as
noted by the referee) since this model does not have a screw
axis, the degeneracy on the face of the Brillouin zone for
the ferromagnetic configuration of trimers will be broken by
higher-order corrections.
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M. Telling, J. Phys.: Conf. Ser. 145, 012056 (2009).

15The refined crystal structure of Cu2(OD)3Cl is given in the
Supplementary Information section of Ref. 11.

16I. E. Dzialoshinskii, J. Phys. Chem. Solids 4, 241 (1958).
17T. Moriya, Phys. Rev. 120, 91 (1960).
18T. Yildirim and A. B. Harris, Phys. Rev. B 73, 214446 (2006).

014411-17

http://dx.doi.org/10.1103/PhysRevD.61.034505
http://dx.doi.org/10.1021/cm062793f
http://dx.doi.org/10.1038/nphys749
http://dx.doi.org/10.1038/nphys749
http://dx.doi.org/10.1143/JPSJ.69.340
http://dx.doi.org/10.1016/0304-8853(79)90134-3
http://dx.doi.org/10.1103/PhysRevB.35.4893
http://dx.doi.org/10.1103/PhysRevB.35.4893
http://dx.doi.org/10.1103/PhysRevB.71.214439
http://dx.doi.org/10.1103/PhysRevB.76.064420
http://dx.doi.org/10.1088/0953-8984/11/50/336
http://dx.doi.org/10.1088/0953-8984/11/50/336
http://dx.doi.org/10.1103/PhysRevB.63.174407
http://dx.doi.org/10.1038/nmat1986
http://dx.doi.org/10.1103/PhysRevLett.101.107201
http://dx.doi.org/10.1103/PhysRevLett.101.107201
http://dx.doi.org/10.1088/0953-8984/20/47/472206
http://dx.doi.org/10.1088/0953-8984/20/47/472206
http://dx.doi.org/10.1088/1742-6596/145/1/012056
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1103/PhysRevB.73.214446


A. B. HARRIS AND T. YILDIRIM PHYSICAL REVIEW B 88, 014411 (2013)
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