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Current-induced instability of a composite free layer with antiferromagnetic interlayer coupling
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Stability conditions for a spin valve with a composite free layer consisting of two antiferromagnetically
coupled films—known as synthetic antiferromagnet or ferrimagnet—is studied theoretically by means of the
linearized coupled Landau-Lifshitz-Gilbert equations. The Lyapunov and Routh-Hurwitz methods have been
used to examine stability of the free layer subject to external in-plane magnetic field and electric current flowing
perpendicularly to the layers’ plane. A simple formula for the critical current density, valid for a variety of
composite free layer structures, also has been derived. The analytical results are compared with those obtained
from numerical simulations in which we took into account the spin transfer torque in the diffusive spin-dependent
transport model. An excellent agreement between the analytical and numerical results has been achieved.
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I. INTRODUCTION

The physics of current-induced magnetic switching and
excitations in spin valves with one reference (fixed) and one
sensing (free) layers is already well understood. The driving
force responsible for the magnetic dynamics is the spin torque,
which is a result of spin angular momentum transfer be-
tween conduction electrons (current) and local magnetization.
The current-induced magnetization dynamics of the sensing
layer can be described by the Landau-Lifshitz-Gilbert (LLG)
equation1 with the spin transfer torque (STT) included.2,3 It has
been shown in many experimental4,5 and theoretical6–8 studies,
that this equation of motion provides a proper framework
for studying the current-induced magnetization dynamics in
metallic spin valves as well as in magnetic tunnel junctions.9

Additionally, it has been shown that the linearized LLG
equation in static magnetic configurations can provide useful
information on the magnetization stability and critical current
density required for exciting the magnetization dynamics.10–12

In the case of a simple sensing layer (a single uniform magnetic
film), the critical current can be determined from the signs of
trace and determinant of the corresponding 2 × 2 dynamic
matrix.10,13 This, however, does not apply to the case of a
composite free layer (CFL). The CFL is a sensing layer which
consists of two or more magnetic films separated by thin
nonmagnetic layers. The adjacent magnetic layers are usually
coupled ferromagnetically or antiferromagnetically due to the
interlayer exchange coupling of the Ruderman-Kittel-Kasuya-
Yosida (RKKY) type.14,15 The coupled spin dynamics of
the CFL enlarges dimensionality of the dynamic matrix and
therefore complicates the stability analysis of the relevant static
states.

In this paper we consider stability conditions for CFLs,
and focus on a CFL consisting of two magnetic films with
antiferromagnetic interlayer coupling. When both magnetic
films are equally thick, such a CFL is called synthetic
antiferromagnet (SyAF), otherwise, it is called a synthetic
ferrimagnet (SyF). Current-induced switching and stability of
a SyAF/SyF free layer was demonstrated experimentally16,17

as well as studied theoretically.18–20 In our previous nu-
merical analysis of the current-induced dynamics of CFL
structures,21 we pointed out a nonlinear variation of the

critical current density with applied magnetic field. We have
also shown that the analysis of a single spin stability is
not sufficient to describe the most important features of
the current-induced dynamics. Thus, the present paper is a
continuation of our earlier work. The main objective of this
paper is to properly establish the stability conditions for the
static states of a CFL, and find an appropriate description of
the critical current density. Therefore, we linearize the coupled
LLG equations around the in-plane static configurations of
the CFL. This leads to four coupled ordinary differential
equations of first order for the macrospin excitations. Then,
we employ the Lyapunov theorem of stability.22 Making use
of the Routh-Hurwitz method,23 we formulate the stability
conditions for the CFL, which allows us to study the crit-
ical current density. Comparing the analytical results with
numerical simulations, we show that the model based on
the linearized LLG equation gives appropriate results for the
critical current density in the whole range of the considered
parameters. In this paper we restricted our considerations to
relatively small external magnetic fields which do not destroy
the equilibrium antiparallel configuration of CFLs. Moreover,
in order to describe the spin transfer torque in the spin valve,
we assume the model of diffusive spin-dependent electronic
transport, as described in Refs. 13 and 24.

The paper is organized as follows. In Sec. II we introduce
the model of current-induced dynamics of the CFL, and derive
the linearized LLG equation for two coupled magnetizations.
This section also describes the methods used to study stability
of the static configurations of the CFL. The results are pre-
sented and accounted for in Sec. III. Summary and concluding
remarks are given in Sec. IV. Additional information can be
found in the Appendix.

II. THEORETICAL FORMULATION

A. Model

We consider a spin valve structure AF/F0/N0/CFL, shown
in Fig. 1, where AF is an antiferromagnetic layer used to bias
magnetization of the reference magnetic layer F0,25 and N0 is
the nonmagnetic spacer. In turn, CFL stands for the composite
free layer F1/N/F2.
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AF

FIG. 1. (Color online) Scheme of the studied spin valve with a
composite free layer F1/N/F2.

In the macrospin approximation, the magnetization dy-
namics of the CFL is described by two coupled LLG
equations,

d Ŝi

dt
+ α Ŝi × d Ŝi

dt
= �i ,

�i = −|γg|μ0 Ŝi × Heff i + |γg|
Msdi

τ i , (1)

for i = 1,2, where Ŝi stands for a unit vector along the net spin
moment of the ith layer, while Heff i and τ i are the effective
magnetic field and current-induced spin torque, respectively,
both acting on Ŝi . The damping parameter α, and the saturation
magnetization Ms, are assumed the same for both magnetic
components of the CFL. Furthermore, γg is the gyromagnetic
ratio, μ0 is the vacuum permeability, and di stands for the
thickness of the Fi layer.

The effective magnetic field for the Fi layer is

Heff i = −Happ êz − Hani(Ŝi · êz) êz + Hdem i

+HRKKY i Ŝj , (2)

where i,j = 1,2 and i �= j . In the latter equation, Happ

is the external magnetic field applied in the layers’ plane
and along the easy axis (oriented opposite to the axis z),
Hani is the uniaxial anisotropy field (the same for both
magnetic layers), and Hdem i = (H d

ixSix,H
d
iySiy,H

d
izSiz) is the

self-demagnetization field of the Fi layer. In the calculations
and simulations described below, the demagnetization fields
have been calculated numerically by means of the generalized
demagnetizing tensor formalism introduced by Newell et al.26

For simplicity, the magnetostatic interaction between the
magnetic layers has been disregarded here. This interaction,
however, can be easily added to the effective field, making
use of the generalized demagnetizing tensor formalism.21,26

The influence of the magnetostatic interlayer coupling on the
critical current density shall be discussed in the summary.
Finally, HRKKY i stands for the RKKY exchange field acting
on Ŝi , which is related to the RKKY coupling constant JRKKY

as HRKKY i = −JRKKY/(μ0Msdi).27

Generally, the torques induced by spin polarized current
flowing perpendicularly to the layers’ plane and acting on F1

and F2 can be expressed as sums of their in-plane and out-
of-plane components, τ 1 = τ 1‖ + τ 1⊥ and τ 2 = τ 2‖ + τ 2⊥,
respectively. In the CFL structure, STT acting on the F1 layer
results from the polarizer F0, as well as from the F2 layer, while
the STT acting on F2 is due to the F1 layer. Hence we can write

τ 1‖ = I Ŝ1 × [
Ŝ1 × (

a
(0)
1 Ŝ0 + a

(2)
1 Ŝ2

)]
, (3a)

τ 1⊥ = I Ŝ1 × (
b

(0)
1 Ŝ0 + b

(2)
1 Ŝ2

)
, (3b)

τ 2‖ = Ia
(1)
2 Ŝ2 × (Ŝ2 × Ŝ1), (3c)

τ 2⊥ = Ib
(1)
2 Ŝ2 × Ŝ1, (3d)

where I is the charge current density, which is positive when
electrons flow from the layer F2 towards F0 (see Fig. 1). The
parameters a

(j )
i and b

(j )
i (i,j = 1,2) are independent of current

I , but generally depend on the magnetic configuration of the
whole structure. Moreover, their magnitudes depend on the
model of electronic transport. Here, we calculate them as a
function of magnetic configuration in the regime of diffusive
transport.21,24

Finally, we write the thickness of F1 as d1 = ξd, where
d = d2. Then the interlayer exchange fields can be written as
HRKKY 2 = HRKKY and HRKKY 1 = ξ−1HRKKY. In this paper
we focus on ξ > 1.21 Dynamical features of the opposite case
(ξ < 1) have been studied in Refs. 28 and 29.

B. Linearized Landau-Lifshitz-Gilbert equation

In order to study stability of the static states we first write
the two coupled equations (1) in the local coordinates defined
by the base vectors êφi = (êz × Ŝi)/ sin θi and êθi = Ŝi × êφi ,
where i = 1,2 and θi is the angle between Ŝi and êz. In this
coordinate system, configuration of the CFL can be described
as a point in the four-dimensional space, S̃ = (θ1,φ1,θ2,φ2)ᵀ,
and the LLG equation reads

d S̃
dt

= M̄ · ω̃, (4)

where M̄ is the 4 × 4 block-diagonal matrix, M̄ = ( L1 0
0 L2

) ,
where

Li =
(

1 α

−α/ sin θi 1/ sin θi

)
(5)

for i = 1,2. For simplicity, we assumed that the damp-
ing parameter is small, i.e., α2 � 1. Moreover, ω̃ =
(ωθ1,ωφ1,ωθ2,ωφ2)ᵀ, where ωθi = �i · êθi , and ωφi = �i · êφi .
The point S̃0 = (θ01,φ01,θ02,φ02)ᵀ is said to be static when
ωθi = 0 and ωφi = 0 for i = 1,2, and hence d S̃0/dt = 0.

In order to study stability of the static points we shall
linearize Eq. (4) in the vicinity of S̃0. The linearized LLG
equation for the deviations from the static point, δ S̃(t) =
S̃(t) − S̃0, can be then written as

d

dt
δ S̃ = D̄ · δ S̃, (6)

where D̄ is the 4 × 4 dynamic matrix, calculated in the static
point S̃0. This matrix can be written as D̄ = M̄ · J̄ , with J̄
being the 4 × 4 Jacobian matrix of elements Jij = ∂ω̃i/∂S̃j .
Structure of the matrix D̄ is given in Appendix A, where
we assumed that the out-of-plane STT components were
negligible in comparison to the in-plane ones and hence were
disregarded.

C. Methods of stability analysis

In the following we shall focus on the stability of static
points in the layers’ plane. The CFL with antiferromagnetic
coupling has two such points. Following Fig. 1, one of the static
points of the CFL dynamics corresponds to the configuration
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with Ŝ1 = −êz and Ŝ2 = êz. In this configuration, Ŝ1 is
antiparallel to the fixed layer’s spin Ŝ0. Therefore, we shall
call this configuration (static state) as an antiparallel (AP) one.
The second static point of the CFL corresponds to Ŝ1 = êz

and Ŝ2 = −êz. This configuration will be referred to in the
following as the parallel (P) one.

We shall investigate stability of these static points by
analyzing signs of the eigenvalues of the dynamic matrix,
using the Lyapunov method.22 Then we will apply the Routh-
Hurwitz criterion to study the critical current required for the
current-induced excitation of the studied CFL.

1. Lyapunov method

Considering the linearized LLG Eq. (6) for δ S̃(t), one can
write the solution in the form δ S̃(t) = exp( D̄t) δ S̃0, where
δ S̃0 is the initial deviation of S̃ from the equilibrium S̃0. The
Lyapunov theorem says that the studied static state S̃0 is stable,
if and only if all the eigenvalues of D̄ have negative real parts.
If one of them becomes positive, the static point is unstable.
More precisely, if all the eigenvalues have negative real parts
we call the static point as stable node. Oppositely, when all
of them are positive we talk about unstable node. If some of
the eigenvalues have positive and some negative real parts, the
static point is a saddle point.22

2. Routh-Hurwitz method

The Routh-Hurwitz theorem23 allows one to decide when
the eigenvalues of the dynamic matrix have negative real parts.
Let us assume the characteristic polynomial of D̄, P (λ) =
det( D̄ − λ Ī), where Ī is the 4 × 4 unit matrix. P (λ) is a fourth-
order polynomial, which can be generally written as

P (λ) = λ4 + c3λ
3 + c2λ

2 + c1λ + c0. (7)

Now let us consider matrix of the form,

HP =

⎛
⎜⎜⎜⎝

c1 c0 0 0

c3 c2 c1 c0

0 1 c3 c2

0 0 0 1

⎞
⎟⎟⎟⎠. (8)

The Routh-Hurwitz theorem says that the eigenvalues λ of D̄
have negative real parts if and only if all the leading principal
minors of HP are positive. In other words, the considered static
point is stable when the following inequalities are obeyed:


1 = c1 > 0, (9a)


2 = det

(
c1 c0

c3 c2

)
> 0, (9b)


3 = det

⎛
⎜⎝

c1 c0 0

c3 c2 c1

0 1 c3

⎞
⎟⎠ > 0. (9c)

Since the fourth leading principal minor, 
4, is identical to
the third one, 
3, the stability of a static state is described
by the three conditions (9) in terms of the coefficients of the
characteristic polynomial. The determinants 
i are also known
as the Hurwitz determinants.

The coefficients ci can be expressed in terms of the elements
of dynamic matrix D̄, given in Appendix A. Thus, c0 = det{ D̄}

and c3 = −Tr{ D̄}. In turn, c2 can be calculated as a sum of all
2 × 2 principal minors of D̄, while c1 is equal to the minus
sum of all 3 × 3 principal minors of D̄ (see, e.g., p. 196 in
Ref. 30).

III. RESULTS

Let us now analyze the LLG equation, linearized in the
static points. First, we will consider the AP static configuration
(Ŝ1 = −Ŝ2 = −êz), and at the end of this section we will
analyze briefly the second static configuration, i.e., the P one.
We start our considerations from the analysis of the eigenvalues
of the matrix D̄ as a function of applied magnetic field and
current density. Then, we shall study the signs of the Hurwitz
determinants. Finally, we will analyze the critical current
and compare the results with those obtained from numerical
simulations.

In the numerical calculations of the spin trans-
fer torque we assume the following structure, Cu–
IrMn(10)/Py(8)/Cu(8)/Co(ξd)/Ru(1)/Co(d)–Cu, where the
numbers in the brackets are layer thicknesses in nanometers.
The electrodes and the first nonmagnetic spacer, N0, are made
of copper. As the antiferromagnetic layer we assume a 10-nm
thick layer of IrMn. The polarizing layer is assumed to be
made of 8 nm of permalloy (Py), while the CFL consists of
cobalt films separated by a 1-nm thick layer of Ruthenium.
Other parameters used in the simulations are Hani = 0.56 kOe
(45 kAm−1) and Ms = 17.84 kOe (1.42 MAm−1). The domi-
nant components of the demagnetizing fields are H d

ix � Ms.
The Gilbert damping parameter was as large as α = 0.01.
For zero and relatively small applied magnetic fields, smaller
than the spin-flop fields, H−

sf < Happ < H+
sf , the CFL remains

antiparallel and aligned along the effective magnetic field in the
absence of current.27 We estimated numerically the spin-flop
fields of the studied free layers to be close to |H±

sf | � 2.5 kOe.
To remain in this regime, we shall focus on the applied
magnetic fields |Happ| � |H±

sf |. Some other parameters used
in simulations are given in Appendix B.

A. Antiparallel configuration

1. Eigenvalues of D̄ and Lyapunov analysis

Consider two CFL structures—a SyAF corresponding to
ξ = 1, and a SyF corresponding ξ = 2. In both cases we
assume d = 2 nm for the thickness of the layer F2, and
HRKKY = −2 kOe for the corresponding interlayer exchange
field. The latter corresponds to JRKKY � −0.6 mJ/m2, which
is close to experimentally measured values.27,31 Figure 2
presents results of the stability analysis of the AP magnetic
configuration of both CFL structures. The maps presenting
signs of the eigenvalues of the matrix D̄ are shown as a function
of the applied magnetic field, Happ, and current density I .
These maps are divided into several regions. In both cases,
(i) labels the regions where all eigenvalues of D̄ have negative
real parts and hence the AP configuration is a stable node.
In contrast, the regions (ii) and (iii) cover the values of Happ

and I , where the AP configuration is unstable. In the regions
(ii) the studied static point is a saddle point with two of the
eigenvalues having positive and two negative real parts. In turn,
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FIG. 2. (Color online) Maps presenting signs of the eigenvalues
of the dynamic matrix in the AP configuration for a CFL with
(a) ξ = 1 (SyAF) and (b) ξ = 2 (SyF). In the calculations we assumed
d = 2 nm and HRKKY = −2 kOe. All the eigenvalues have negative
real parts in the areas marked as (i). Two eigenvalues have positive
real parts in the areas (ii), while in the regions (iii) all the eigen-
values have positive real parts. The other parameters as described in
the text.

in the regions (iii) the AP configuration becomes an unstable
node since all the eigenvalues have positive real parts.

In both cases the CFL dynamics is excited for negative
currents. In the case of SyF, an unstable region appears also for
I > 0 and Happ > 0, as one can see in Fig. 2(b). An important
feature of the diagrams in Fig. 2 is a nonmonotonous variation
of the boundary between the stable and unstable regions
with Happ. This boundary corresponds to the critical current
density, IAP

c (Happ), needed to destabilize the AP configuration
at a given value of Happ. Now we shall analyze the AP state in
more detail, using the Routh-Hurwitz formulation of the local
stability.

2. Hurwitz determinants

Figure 3 depicts signs of the Hurwitz determinants, 
i (i =
1,2,3), as a function of I and Happ in the AP configuration and
for the same parameters as in Fig. 2. The stable (S) and unstable
(U) regions are separated by the red (solid) lines. Moreover,
the dashed and dot-dashed lines correspond to the points where

1 and 
2 change sign, i.e., they correspond to the solutions
of 
1 = 0 and 
2 = 0, respectively. Finally, the color (dark)
areas correspond to negative 
3; elsewhere 
3 is positive. Two
important features of the diagrams can be noticed immediately.
First, the areas with 
3 < 0 coincide exactly with the areas,
where the AP static point is a saddle point, i.e., with the regions
marked as (ii) in Fig. 2. Moreover, when increasing the current
density (either in the positive or negative direction), 
3 is the
first of the three Hurwitz determinants which becomes negative
at a given Happ. Hence, its sign determines stability of the
AP state, and the whole information about the critical current
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FIG. 3. (Color online) Maps of the signs of Hurwitz determinants
in the AP configuration for CFL with (a) ξ = 1 (SyAF) and (b) ξ = 2
(SyF). The other parameters are the same as in Fig. 2. The stable
(S) and unstable (U) regions are separated by the red (solid) lines,
which correspond to the critical current densities. The color (dark)
areas cover the range of parameters where 
3 < 0. The dashed and
dot-dashed lines correspond to 
1 = 0 and 
2 = 0, respectively.

density can be obtained from solution of 
3 = 0. Second, from
the numerical calculations it seems that all the three curves
corresponding to sign change of the corresponding Hurwitz
determinants intersect at one point marked with the circle on
the diagrams. In the following, the current density in the AP
configuration corresponding to this point will be denoted as
IAP

0 , and the corresponding applied magnetic field as H AP
0 . The

negative critical current reaches maximum at the intersection
point. In our previous numerical study we have shown that this
point is important for the description of the current-induced
dynamics of a CFL.21 Therefore, we shall study it in more
detail.

Let us consider the intersection point of the curves de-
termined by 
1 = 0 and 
2 = 0. The first equation gives
c1 = 0, while from the second one follows that c0c3 = 0,
i.e., either c0 = 0 or c3 = 0. When c1 = 0, the third Hurwitz
determinant is 
3 = −c0c

2
3, which vanishes in the considered

points of intersection. This proves that all three lines given
by 
i = 0 (i = 1,2,3) intersect in the same point obeying
either c1 = c0 = 0 or c1 = c3 = 0. Moreover, taking the first
derivatives of 
3 = 
3(I,Happ), one can see that ∂
3/∂I =
∂
3/∂Happ = 0 when c1 = c3 = 0. This means that this
intersection represents a double point of the curve given
by 
3 = 0 (see, e.g., Ref. 32). Depending on the second
derivatives of 
3, this point may be either a node or a cusp. In
Fig. 3, this intersection corresponds to IAP

0 and H AP
0 . On the

other hand the first derivatives of 
3 do not generally vanish in
the point given by c1 = c0 = 0, which rules out the existence of
a double point there. These results fully agree with numerical
evaluation of the Hurwitz determinants and are independent
on the form of effective magnetic field and STT.
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3. Critical currents

Let us now make use of the above observations and derive
the formula for the maximum critical current density given by
the intersection point of the curves defined by 
i = 0 (i =
1,2,3) and corresponding to the conditions c1 = c3 = 0. From
the equation c3 = 0 one can obtain a simple solution for the
maximum critical current density in the form,

IAP
0 = −α

μ0Ms ξ d

a
(0)
1 + a

(2)
1 + ξ a

(1)
2

× [
2 Hani + H d

1 + H d
2 − (1 + ξ−1) HRKKY

]
, (10)

where H d
i = (H d

ix + H d
iy)/2 − H d

iz, and the parameters a
(j )
i

correspond to the AP configuration. Note, equation c3 = 0
is equivalent to Tr{ D̄} = 0, used to derive Eq. (12) in Ref. 21.
Moreover, the condition c0 = 0, equivalent to det{ D̄} = 0, also
determines intersection points of 
i = 0. This condition leads
to a fourth-order equation for the current density with the
corresponding coefficients dependent on the applied magnetic
field. However, c0 has no real roots in the range of Happ

under consideration. Substituting Eq. (10) into the equation

1 = 0 one obtains a quadratic equation for H AP

0 , with one
solution being in the range of interest. Since the analytical
expression for H AP

0 is cumbersome, we shall study it only
numerically.

Figures 4(a)–4(d) show variation of IAP
0 and H AP

0 with
the magnitude of HRKKY and ξ . Note that when varying
ξ at constant d, one has to change the thickness of the
layer F1, and consequently also its demagnetization field.
In addition, the torque parameters a

(j )
i also depend on the

layer’s thicknesses. Since these quantities are obtained from
independent numerical calculations, we evaluated them for
several pillar structures and fitted them as linear functions of
ξ . In Fig. 4(a), the linear dependence of IAP

0 on HRKKY is
shown for several values of ξ ranging from ξ = 1 to ξ = 2.
Magnitude of the critical current density, |IAP

0 |, increases
with increasing magnitude of the interlayer exchange field,
|HRKKY|. Moreover, |IAP

0 | increases with increasing CFL
asymmetry (increasing ξ ). The slope of IAP

0 (HRKKY) only
slightly changes with ξ . The increase of |IAP

0 | with ξ is
systematically shown in Fig. 4(b) for HRKKY = −1, −2, and
−3 kOe. It can be noticed that IAP

0 depends rather weakly on the
RKKY coupling field. Figure 4(c) shows H AP

0 as a function of
HRKKY. In the case of SyAF (ξ = 1), H AP

0 is rather independent
of HRKKY and H AP

0 � 0. For SyF (ξ > 1), H AP
0 changes

linearly with HRKKY, and the slope of this linear dependence
strongly increases with increasing ξ . Finally, Fig. 4(d) shows
the variation of H AP

0 with ξ . Similarly to |IAP
0 |, H AP

0 in the
SyF free layers is shifted towards higher absolute values with
increasing ξ . This trend is even more pronounced when the
magnitude of interlayer exchange coupling is stronger. In
addition, the circles in Fig. 4 correspond to the results of
numerical macrospin simulations based on the LLG equations
with the in-plane and out-of-plane STT included, as described
by Eq. (1). In Figs. 4(a) and 4(c) we compare the analytical
results with numerical simulations for the SyF free layer with
ξ = 1.25 and HRKKY ranging from −1 to −3 kOe. In turn,
in Figs. 4(b) and 4(d) we show the results of simulations
for HRKKY = −2 kOe, and ξ varying from 1 to 2.25. A good

FIG. 4. (Color online) The dependence of IAP
0 (a) and H AP

0

(c) on the magnitude of HRKKY for indicated values of ξ . The circles
present the results of numerical simulations for ξ = 1.25. (b) and
(d) The dependence of IAP

0 and H AP
0 on ξ for various values of

HRKKY. The circles show the results of numerical simulations for
|HRKKY| = 2 kOe. All results are for d = 2 nm and other parameters
as in Fig. 2.

agreement of the analytical results with those obtained from
model macrospin simulations is evident.

Consider now the critical current IAP
c in the whole consid-

ered range of the applied magnetic fields Happ. This critical
current can be obtained from solution of the equation 
3 = 0,
which is a sixth-order equation in I . Here, we restrict ourselves
to the solutions which are real in the whole range of magnetic
field under consideration. These solutions correspond to the
red (solid) lines in Figs. 3(a) and 3(b) for the SAF and SyF free
layers, respectively. The variation of IAP

c (Happ) with ξ is shown
in more detail in Fig. 5(a). One can note a systematical shift in
the amplitude of the critical current with increasing ξ . The inset
in Fig. 5(a) shows the positive branch of the solution for critical
current. When the CFL asymmetry increases (increasing ξ ),
the positive unstable region is shifted towards lower values
of the current density and applied magnetic field. The direct
comparison of the numerical simulations based on the LLG
equation with the results derived from the analytical model
is shown in Fig. 5(b). The simulations were performed as
follows. We started from a configuration, where the free layer’s
spins were tilted by 1◦ from the AP configuration. Initially, for
given values of Happ and I , we solved numerically Eq. (1)
for 50 ns of the simulated dynamics, until the system reached
its equilibrium. Then, for the next 30 ns we were collecting
the data for averaging. The time-averaged resistance of the
spin valve R is shown on the map in Fig. 5(b). The largest
values of R correspond to the AP magnetic configuration.
When the current amplitude exceeds the critical value, the
CFL either switches to another static state, or remains in
a steady-state dynamic mode. In both cases there is a drop
in the average resistance. For more details on the numerical
simulations we refer to Ref. 21. The dashed line in Fig. 5(b)
corresponds to the results based on the linearized LLG
equation and the stability analysis. This figure shows a
very good agreement of the model calculations with the
macrospin numerical simulations. Some small deviations may
be attributed to neglecting the out-of-plane torque components
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FIG. 5. (Color online) (a) Critical current density in the AP
configuration, as a function of applied magnetic field for CFLs
corresponding to indicated values of ξ . (b) Direct comparison of
the numerical macrospin simulations and the analytical model for
the SyF free layer with ξ = 2, d = 2 nm, and HRKKY = −2 kOe. The
resistance of spin valve after 30 ns of the current-induced dynamics
is shown in the color (gray) scale. The dashed line corresponds to
the analytical result derived from the model calculations. The other
parameters as in Fig. 2.

in the linearized LLG equation, and/or to nonlinearities of the
LLG equation.

In addition, using the tangents of 
3 = 0 in the vicinity of
the double point, the critical current line can be approximated
at this point as IAP

0± = IAP
0 + K± (H AP

0 − Happ), where

K± =
qc2 − 2c′

1 ± q

√
c2

2 − 4c2
0

2[(c′
1)2 − qc2c

′
1 + c0q2]

∂c1

∂Happ

, (11)

with c′
1 = ∂c1/∂I . Here, we already took into account

that c3 is independent on Happ, and q = 2 γg (a(0)
1 + a

(2)
1 +

ξ a
(1)
2 )/(Ms ξ d).

B. Parallel configuration

Consider now the second static state of the CFL,
i.e., the parallel configuration, Ŝ1 = −Ŝ2 = êz. Figure 6
shows the maps of the signs of the three Hurwitz determinants
in the P configuration for SyAF (a) and for SyF corresponding
to ξ = 2.25 (b). All the other parameters are the same as in
Fig. 3. Similarly as in the case of AP configuration, there
is a point, where all the three lines determined by 
i = 0
(i = 1,2,3) intersect. Critical current corresponding to this
point will be denoted as I P

0 and the corresponding magnetic
field as H P

0 . For the SyAF free layer, I P
0 is the maximum

positive critical current. However, apart from the positive
branch of critical current (including the I P

0 point), there is
another real solution of 
3 = 0 for negative values of I .
Moreover, I P

0 becomes negative in the case of a SyF free
layer. To elucidate the change of I P

0 sign, we first derive the
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FIG. 6. (Color online) Map of the signs of Hurwitz determinants
in the P configuration for CFL with (a) ξ = 1 (SyAF) and (b) ξ = 2.25
(SyF). Other parameters are the same as in Fig. 2. The stable (S) and
unstable (U) regions are separated by the red (solid) lines which
correspond to the critical current. The color (gray) areas cover the
range of parameters where 
3 < 0. The dashed and dot-dashed lines
correspond to the solutions of 
1 = 0 and 
2 = 0, respectively. The
other parameters are as in Fig. 2.

corresponding formula in the same way as in the case of AP
configuration. As a result we find

I P
0 = α

μ0Ms ξ d

a
(0)
1 − a

(2)
1 − ξ a

(1)
2

× [
2 Hani + H d

1 + H d
2 − (1 + ξ−1) HRKKY

]
, (12)

where a
(j )
i are taken now in the P configuration. Analyzing

Eq. (12) one finds that I P
0 changes sign at the point where the

corresponding denominator becomes zero. Hence, the critical
value of ξ , ξ = ξc, at which the critical current changes sign
is given by the equation,

a
(0)
1 (ξc) − a

(2)
1 (ξc) − ξc a

(1)
2 (ξc) = 0. (13)

Taking into account the linear dependence of a
(j )
i on ξ , Eq. (13)

becomes a quadratic equation with the relevant solution for the
studied CFL structures, ξc � 1.85. Such a critical value of ξ ,
where critical current changes sign, does not appear in the AP
configuration, since the denominator of (10) does not vanish
for any real value of the parameter ξ .

Figure 7(a) shows the dependence of I P
0 on |HRKKY| for

several values of ξ . The three top lines were calculated for ξ <

ξc, and hence I P
0 > 0. The magnitude of I P

0 slightly increases
with the interlayer coupling and also with increasing ξ . For
ξ > ξc we obtain negative I P

0 in the whole range of the studied
values of HRKKY. The absolute magnitude of critical current
density increases then with increasing HRKKY and diminishes
with increasing ξ . Variation of the critical current with ξ is
shown in Fig. 7(b). I P

0 initially increases with increasing ξ ,
until ξ passes the critical value, at which the current changes
sign to negative and then it increases towards I P

0 = 0. Note
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FIG. 7. (Color online) (a) and (c) The dependence of I P
0 and H P

0

on the magnitude of HRKKY for various values of ξ . The circles show
the results of numerical simulations for ξ = 1.25. (b) and (d) The
dependence of I P

0 and H P
0 on ξ for various values of HRKKY. In

(b) only the curve for |HRKKY| = 2 kOe is shown as the other two are
very close. The circles show the results of numerical simulations for
|HRKKY| = 2 kOe. The vertical line corresponds to the critical value
of ξ , ξc � 1.85. All results are for d = 2 nm and the other parameters
are as in Fig. 2.

that Fig. 7(b) shows the curve for HRKKY = −2 kOe since the
curves calculated for HRKKY = −1 and −3 kOe are very close.
Magnitude of the corresponding applied magnetic field, H P

0 , is
shown in Fig. 7(c) as a function of HRKKY. For all considered
values of ξ , we find linear increase of H P

0 with the coupling
strength. Figure 7(d) shows H P

0 as a function of ξ . One can see
that the magnitude of H P

0 initially increases and then abruptly
falls down in the vicinity of ξ = ξc. Above the critical value
ξc, H P

0 varies rather slowly with increasing ξ . As before, the
points marked by the circles were obtained from numerical
simulations. Similarly as in the AP configuration, a very good
agreement of the model calculations based on the linearized
LLG equation and numerical simulations has been achieved.

Finally, Fig. 8 shows the critical current I P
c in the P

configuration as a function of Happ. The case of ξ < ξc is shown
in Fig. 8(a), where the curves clearly show the shift of I P

0 with ξ

and also increase in I P
c with increasing ξ . The inset to this figure

shows the solution for critical current on the negative current
side, I < 0. In contrast, Fig. 8(b) depicts critical currents for
ξ > ξc. These results clearly show a reduction of I P

c , and also
of I P

0 , at higher values of ξ (when it exceeds ξc). The branch
for positive I P

c is shown in the inset.
As in the AP configuration, the critical current near

the double point can be expressed by Eq. (11) with q =
−2 γg (a(0)

1 − a
(2)
1 − ξ a

(1)
2 )/(Ms ξ d). As one can note, both

tangents become identical when ξ = ξc.

IV. SUMMARY AND CONCLUSIONS

We have carried out a stability analysis of the in-
plane static configurations of a spin valve composed of
polarizer and composite free layer with antiferromagnetic
interlayer exchange coupling. The approach was based on
the linearized Landau-Lifshitz-Gilbert equation. Employing
the Routh-Hurwitz theorem we have described the critical
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FIG. 8. (Color online) Critical current density in the P configura-
tion as a function of the applied magnetic field, calculated for CFLs
with (a) ξ < ξc and (b) ξ > ξc. The results are for HRKKY = −2 kOe
and d = 2 nm, and the other parameters are as in Fig. 2.

current density for the current-induced dynamic excitations. A
satisfactory agreement between the presented analytical model
and numerical simulations in the macrospin approximation has
been achieved. This agreement indicates a minor importance of
the out-of-plane torque components, which were disregarded
in the linearized model but were included in the numerical
simulations—similarly as in the case of a single spin stability,
where the out-of-plane components enter the expression for
critical current via a term proportional to the (small) Gilbert
damping constant.13

In particular, we have shown that the complete information
about the critical current density in the studied range of applied
magnetic field, Happ, is given by the roots of the third Hurwitz
determinant, 
3 = 0. This, however, might change at stronger
magnetic fields, close to the spin-flop phase, where 
1 or 
2

might become negative at smaller current densities than 
3

does. In such a case, the condition 
1 = 0 or 
2 = 0 would
yield the critical current at a given Happ.

For both studied magnetic configurations (static states), we
have derived analytical expressions for the critical current
density at the points given by condition c1 = c3 = 0, where
the roots of all three Hurwitz determinants intersect. We have
shown that this point is a double point of the curve described
by 
3 = 0, which appears as a cusp on the critical current
line. Near the double point, the critical current density can be
approximated by a second-order curve. It can be shown that
IAP

0 and I P
0 are simply related via the spin torque amplitudes

as

I P
0

IAP
0

= −a
(0)
1 [AP] + a

(2)
1 [AP] + ξ a

(1)
2 [AP]

a
(0)
1 [P] − a

(2)
1 [P] − ξ a

(1)
2 [P]

. (14)
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In our previous numerical study21 of the current-induced dy-
namics of CFL structures, we have shown that the expressions
for IAP

0 and I P
0 give maximum values of the current density

required to observe current-induced reversal of the CFL in
the AP and P configurations, respectively. Therefore, they
may be useful in optimizing the CFL structures, in order
to obtain current-induced switching at low current densities.
It also has been shown that the sign of I P

0 can be changed
by manipulating relative thicknesses of the two components
of the CFL.

In addition, a frequently used approximation in composite
layers is based on neglecting STT acting at the internal
interfaces of CFL. Indeed, the magnitudes of internal STT
components are smaller than the STT components due to
the fixed layer. However, depending on the current direction,
the internal STT components may stabilize or destabilize the
relative magnetic configuration of the CFL, and therefore can
influence the critical current. To evaluate the impact of internal
STT components, one can, for instance, consider Eq. (10)
for the critical current in the AP configuration at the cusp
point. Neglecting the STT components acting on the internal
interface of the F1 layer (proportional to a

(2)
1 ), and taking

calculated values of the parameters a
(2)
1 , a(0)

1 , and a
(1)
2 , one finds

∝18% reduction of the critical current when ξ = 1, which is
quite a significant amount.

In the presented stability analysis we have disregarded
the interlayer magnetostatic interaction. This interaction can
be easily included into the effective field in the form of
generalized demagnetizing tensors.26 From comparison with
Ref. 21, one can conclude that the magnetostatic coupling does
not change qualitatively the presented results, and gives rise to
a shift of the critical current lines, mainly H AP

0 (H P
0 ). Note, that

neglecting the magnetostatic interactions might have a more
serious influence on the CFL magnetization dynamics, which,
however, was not studied in this paper.
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APPENDIX A: DYNAMIC MATRIX

In this paper we focused on the study of static points in
the layers’ plane. To avoid the singularities of the chosen
coordinate system at θ1 = 0 and θ2 = 0, we rotate the device
so that the êz axis is perpendicular to the layer’s plane. The
in-plane static points of the dynamics are then located at
θ1 = θ2 = π/2, and the static point marked as AP is given
by φ1 = 0 and φ2 = π , while the static point P is located at
φ1 = π and φ2 = 0.

Evaluating M̄ and J̄ for θ1 = θ2 = π/2, one obtains the
dynamic matrix which can be written in the block form

TABLE I. Bulk material parameters used for the layers.

Material ρ∗ (μ
cm) β λsf (nm)

Co 5.1 0.51 60
Py 16 0.77 5.5
Cu 0.5 0 350
Ru 9.5 0 14
IrMn 150 0 2

D̄ = ( D1 C12
C21 D2

), where Di is the single spin dynamic matrix,

Di =
(

ωτ
i − αωh1

i αωτ
i − ωh2

i

−αωτ
i − ωh1

i ωτ
i + αωh2

i

)
, (A1)

and C ij express the coupling between the free layer’s spins,

C ij =
(

−ωτ
ij + α ωJi −(αωτ

ij + ωJi) cos 
φ

αωτ
ij + ωJi −(ωτ

ij − αωJi) cos 
φ

)
. (A2)

In the latter expressions, the contribution due to effective field
is included in ωh1

i and ωh2
i , which read

ωh1
i = |γg|μ0

[(
Hani − H d

iz

)
cos2 φi + H d

ix

−H d
iy sin2 φi − Happ cos φi

] + ωJi cos 
φ, (A3a)

ωh2
i = |γg|μ0

[(
Hani + H d

iy − H d
iz

)
cos 2φi

+Happ cos φi

] − ωJi cos 
φ, (A3b)

with 
φ = φ1 − φ2, and ωJ1 = ωJ /ξ and ωJ2 = ωJ , where

ωJ = |γg|μ0 HRKKY = − |γg|
Msd

JRKKY. (A4)

The spin torque contribution is given by ωτ
i and ωτ

ij , where

ωτ
1 = −ωτ

10 cos φ1 + ωτ
12 cos 
φ, (A5a)

ωτ
2 = ωτ

21 cos 
φ, (A5b)

and

ωτ
ij = a

(j )
i I

μ0Msdi

. (A6)

APPENDIX B: PARAMETERS USED IN NUMERICAL
CALCULATIONS

Using the generalized demagnetizing tensor formalism26

we calculated the demagnetization field of the free layers with
elliptical cross section and with the major and minor axes

TABLE II. Interface material parameters used for the interfaces.
The mixing conductance is given in 1/f
m2.

Interface R∗ (f
m2) γ Re G↑↓ Im G↑↓

IrMn/Co 0.5 0.7 – –
Co/Py 0.5 0.7 0.390 0.012
Co/Cu 0.5 0.77 0.542 0.016
Co/Ru 0.5 −0.2 0.260 0.008
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of 130 and 60 nanometers, respectively. The elements of the
demagnetization field have been fitted as a function of the
layer’s width, where di is given in nanometers,

H d
ix = (0.973 − 0.027 di)Ms, (B1a)

H d
iy = (0.019 + 0.019 di)Ms, (B1b)

H d
iz = (0.008 + 0.007 di)Ms. (B1c)

The spin transfer torque, calculated in the frame of the
diffusive transport model,13,24 was evaluated for the material
bulk and interfacial parameters given in Tables I and II,
respectively.13 In the tables, ρ∗ describes the bulk resistivity,
β is the bulk spin asymmetry parameter, and λsf is the spin
diffusion length. The interface resistance is described by R∗,
and γ the interface spin asymmetry factor. G↑↓ stands for the
mixing conductance, which is a complex number in general.
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