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Negative thermal expansion in cubic ZrW2O8: Role of phonons in the entire Brillouin zone
from ab initio calculations
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We report the ab initio density functional theory calculation of phonons in the cubic phase of ZrW2O8 in the
entire Brillouin zone and identify specific anharmonic phonons that are responsible for large negative thermal
expansion (NTE) in terms of the translation, rotation, and distortion of WO4 and ZrO6. We have used density
functional calculations to interpret the experimental phonon spectra as a function of pressure and temperature as
reported in literature. We discover that the phonons showing anharmonicity with temperature are not necessarily
the same as those showing anharmonicity with pressure although both are of similar frequencies. Only the latter
phonons are associated with NTE. Therefore, the cubic and/or quadratic anharmonicity of phonons is not relevant
to NTE but just the volume dependence of frequencies. The calculations are able to reproduce the observed
anomalous trends, namely, the softening of the low-frequency peak at about 4 meV in the phonon spectra with
pressure and its hardening with temperature, whereas, both changes involve a compression of the lattice.
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The discovery of large isotropic negative thermal expansion
(NTE) in the cubic phase of ZrW2O8 two decades ago has led
to great excitement in the field of material science. Since then,
anomalous thermal expansion behavior has been found in a
large number of open frame work compounds.1–3 ZrW2O8 has
M-O-M ′ (M ,M ′ = Zr,W) types of linkages and shows1 a nega-
tive volume thermal expansion coefficient of − 29 × 10−6 K−1

at 300 K. Increasing flexibility in the structure has led to
the discovery of compounds exhibiting4 colossal positive and
negative thermal expansions. The compounds find applications
in forming the composites with tailored thermal expansion
coefficients useful for applications, such as in fiber-optic
communication systems.

At ambient pressure, ZrW2O8 crystallizes1 in a cubic
structure (P 213, Z = 4) that consists of ZrO6 octahedral
and WO4 tetrahedral units. Diffraction, spectroscopic, as
well as computer simulation techniques5–12 have been used
to understand the thermodynamic behavior of ZrW2O8. All
these papers show that the anharmonicity of low-energy
phonon modes has a major contribution to the observed
thermal expansion behavior. X-ray absorption fine-structure
measurements12 led to a suggestion that NTE in ZrW2O8

could be due to the translational motion of WO4 tetrahedra
along the 〈111〉 axis along with the correlated motion of three
nearest ZrO6 octahedra. The reverse Monte Carlo analysis of
the neutron-total-scattering data suggested10 that WO4 as well
as ZrO6 polyhedra rotate and translate as rigid units. Earlier, a
rigid unit mode model10 was also used to understand the NTE
behavior of ZrW2O8. Hancock et al.11 proposed other modes
involving translation and rotation of polyhedra. It seems all
the phonon modes identified from various techniques could
contribute to NTE.

Earlier neutron-scattering data9 as well as theoretical8

estimates of the anharmonicity of the phonons in ZrW2O8

using the interatomic potential model indicated that modes
of energy below 8 meV are responsible for observed NTE.
However, estimates based on Raman spectroscopy showed7

that several modes up to 50 meV contribute to NTE. The large
disagreement in the energy range as well as the nature of the

low-energy modes in previous papers indicated the need for an
understanding of the NTE behavior in ZrW2O8 using ab initio
calculations. Recently, ab initio calculations of zone-center
phonon modes have been published.6 However, the authors
concluded6 that one should fully explore the nature of the
phonons in the entire Brillouin zone for understanding the
mechanism of NTE. Here, we report such a comprehensive
calculation and identify specific zone-boundary modes that
are highly anharmonic. The calculations are able to reproduce
the observed NTE as well as anomalous trends of the phonon
spectra with increases in temperature and pressure.

Important soft modes were identified in cubic ReO3

(Ref. 13) and ScF3 (Ref. 14) at M and R points, respectively, in
the Brillouin zone. These modes simultaneously show both a
large negative Grüneisen parameter as well as a large quadratic
anharmonicity, the former leading to NTE, and the latter
leading to the temperature dependence. In the case of ZrW2O8,
we find that the modes that show the large negative Grüneisen
parameter and contribute to NTE are not necessarily the same
as those showing cubic and/or quadratic anharmonicity and
significant temperature dependence. This finding means that
the modes found to be anharmonic in temperature-dependent
measurements are not necessarily relevant to NTE.

The first-principles calculations of the lattice dynamics
have been performed using the Vienna ab initio simulation
package15–18 and the PHONON5.2 software.19 The details
are given in the Supplemental Material.20 The calculations
reproduce the equilibrium crystal structural parameters, elastic
constants, and mean-squared amplitude of various atoms quite
satisfactorily as given in Tables SI and SII of the Supplemental
Material.20

The calculated phonon spectrum is found to be in excellent
agreement with the experimental phonon spectrum5 as shown
in Fig. 1. The calculated energies of all the zone-center modes
are also shown in Fig. 1. The calculated partial density of states
of various atoms shows (Fig. S1 of Ref. 20) that vibrations due
to Zr atoms span only up to 50 meV, whereas, vibrations due
to W and O span the entire energy range. The W-O stretching
modes lie in the energy range from 85 to 130 meV.
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FIG. 1. The calculated (0 K) and experimental (300 K) (Ref. 5)
neutron-weighted phonon spectra in ZrW2O8. The phonon spectra
are normalized to unity. For better visibility, the experimental phonon
spectra5 are shifted along the y axis by 0.03 meV−1. The calculated
zone-centeroptic modes A, E, F (TO), and F (LO) are also shown. TO
and LO correspond to transverse optic and longitudinal optic modes
respectively.

The calculated phonon dispersion relation along the high-
symmetry directions is shown in Fig. S2.20 The low-energy
range of phonon dispersion up to 50 meV contains large
number of nondispersive phonon branches, which give rise
to several peaks in the density of states. To emphasize the
anharmonic nature of low-energy phonons, we have also
shown the phonon dispersion up to 10 meV (Fig. 2) at 0
and 1 kbar. We find that several phonon branches soften with
increasing pressure. The lowest optic mode is calculated at
40 cm−1 (∼5 meV), which is in excellent agreement with
the experimental value of 40 cm−1 from Raman spectroscopic
studies7 as well as infrared measurements.6 The optic modes
along with several phonon branches give rise to the first peak
in the calculated phonon density of states at 4.5 meV, which
is observed at 3.8 meV in neutron-scattering experiments.5

The low-energy peak also leads to a sharp increase in the
specific heat at low temperatures [Fig. S3 (Ref. 20)]. The good
agreement between our calculated and experimental specific
heat21,22 supports the correctness of the low-energy phonon
density of states provided by the ab initio calculations.

The calculation of thermal expansion is carried out using the
quasiharmonic approximation. Each phonon mode of energy
Ei contributes to the volume thermal expansion coefficient23

that is given by the relation αV = 1
BV

∑
i �iT CV i (T ),

where V is the unit-cell volume, B is the bulk modulus,

Γ X
0

5

10

M R Γ M

 0 kbar
 1 kbar

E
 (m

e
V

)

FIG. 2. (Color online) Calculated low-energy part of the pressure-
dependent dispersion relation for ZrW2O8. � = (0,0,0); X =
(1/2,0,0); M = (1/2,1/2,0); and R = (1/2,1/2,1/2).

FIG. 3. The calculated Grüneisen parameters as a function of
phonon energy.

�iT (=−∂ ln Ei /∂ ln V ) are the mode Grüneisen parameters,
and CV i is the specific-heat contribution of the phonons of en-
ergy Ei . The index i runs over the various phonon branches and
all the wave vectors in the Brillouin zone. The Grüneisen pa-
rameters �iT (Fig. 3) are numerically calculated from the pres-
sure dependence of phonon modes around ambient pressure.

The calculated αV at 300 K from the ab initio calculation
is − 22.5 × 10−6 K−1, whereas, the experimental value1 is
about − 29 × 10−6 K−1. The calculated relative volume
thermal expansion is shown in Fig. 4(a). The discontinuity
in the experimental data at about 400 K is associated with
an order-disorder phase transition. We find that there is
a slight deviation between the experimental data1 and the
calculations at low temperatures due to the underestimation
of the contribution from low-energy phonon modes. A similar
underestimation of the anharmonicity of low-energy phonon
modes is also found in cases of Zn(CN)2 (Ref. 24) as well
as Ag3M(CN)6 (M = Co,Fe).25 The properties of the low-
energy phonon modes are very sensitive to the volume of the
crystal. Density functional theory calculations overestimate
or underestimate crystal volume depending on the exchange-
correlation functional.

The contribution of the phonon density of states at energy E

to the thermal expansion has been determined [Fig. 4(b)] as a
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FIG. 4. (a) The calculated and experimental1 relative volume
thermal expansion for ZrW2O8, (VT /V300 − 1) × 100%, VT and V300

being the cell volumes at temperatures T and 300 K, respectively.
There is a small drop in volume at about 400 K associated with an
order-disorder phase transition. (b) The contribution of the phonons
of energy E to the volume thermal expansion as a function of E at
300 K from the ab initio calculation as well as the phonon data.9
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FIG. 5. (Color online) Polarization vectors of selected phonon
modes in ZrW2O8. The numbers after the wave vectors (X and M)
give the phonon energies and Grüneisen parameters, respectively. The
lengths of the arrows are related to the displacements of the atoms.
The atoms are labeled as indicated in Ref. 1.

function of phonon energy at 300 K. We find that the maximum
contribution to αV is found to be from phonon modes of energy
4.5 ± 1 meV, which is consistent with the previous analysis of
high-pressure inelastic-neutron-scattering measurements9 as
well as diffraction data.5

The eigenvectors of a few of the low-energy modes
(Table I) that contribute most to NTE have also been plotted
(Figs. 5 and S4). The nature of these phonons can be
best understood by the animations which are available in
the Supplemental Material.20 The lowest �-point mode of
4.93 meV (�iT = − 7.0) involves the out-of-phase translation
of two chains consisting of WO4 and ZrO6, whereas, the �-
point mode of 5.21 meV (�iT = − 5.7) shows the out-of-phase
rotation of WO4 and the translation of ZrO6 in two different
chains. These modes also involve significant distortion of WO4

tetrahedra formed around W1 and W2.
Hancock et al.11 proposed two types of modes for under-

standing the mechanism of NTE. In one of the modes, both
ZrO6 as well as WO4 in a chain rotate and translate along
the 〈111〉 axis. As discussed above, for the two lowest optic
modes, we have not found simultaneous rotational motion of
both ZrO6 as well as WO4. However, we find that, for the
X-point modes of 3.90 meV (�iT = −5.7) and 4.16 meV
(�iT = −2.4), the motion of the polyhedral units is similar to
that proposed by Hancock et al.11 The modes show in-phase
translation and rotation of WO4 and ZrO6 in a single chain.
The motion of tetrahedral and octahedral units in two different
chains is also in phase. Although the two modes seem to be of
a similar nature, the relative amplitudes of Zr, W, and O atoms
are found to be different.

The second mode proposed by Hancock et al.11 indicates
that the ZrO6 octahedron rotates opposite to the WO4 tetrahe-
dra. We find that the R-point (0.5 0.5 0.5) mode of 5.29 meV
with a �iT value of − 11.7 shows a similar behavior. The two
WO4’s around W1 and W2 in a chain rotate in phase, whereas,
ZrO6 rotates out of phase. In general, we find that, in most of
the modes, the amplitude of the free oxygens O3 and O4 are
larger as compared to that of the shared oxygens O1 and O2.
This means that the rotation of WO4 and ZrO6 is accompanied
by a distortion of these polyhedra.

The M-point modes of 4.51- and 4.65-meV energy have a
negative Grüneisen parameter �iT value of about − 12.7 and
− 12.8, respectively. The mode at 4.51 meV involves in-phase

translation and bending of the WO4 and ZrO6 networks. The
mode is very similar to that previously described by Cao et al.12

where a correlated motion between WO4 and it nearest ZrO6

is shown to lead NTE. However, for the 4.65-meV mode, we
find out-of-phase translation of WO4 and ZrO6 in two chains.

The temperature dependence of the phonon density of states
of ZrW2O8 shows5 hardening of the peak at 3.8–4.05 meV
on an increase in temperature from 50 to 300 K. On the
other hand, the same peak is found to soften with pressure,9

although both increases in pressure and temperature involve
compression of the lattice. Temperature and pressure variations
in the phonon energy are known to occur due to anharmonicity
of the interatomic potential. The change in phonon energies
is due to two effects. The so-called “implicit” anharmonicity
refers to the volume dependence of the phonon spectra that can
be calculated in the quasiharmonic approximation. The second
is the “explicit” anharmonicity, which refers to the changes in
phonon frequencies due to the large thermal amplitude of the
atoms. The change in phonon energies with temperature is due
to both the implicit as well as the explicit anharmonicities,
whereas, the pressure effect only involves the implicit part.
We would also call the implicit and explicit parts volume and
amplitude effects, respectively.

In a complex crystal, it is quite difficult to rigorously
estimate the anharmonic effects. However, one can make
certain simplifying assumptions and can arrive at qualitative
trends in the shifts in selected phonons as a function of
temperature. The potential wells of a few of the phonon
modes at high-symmetry points in the cubic Brillouin zone
have been calculated and have been used to estimate the
temperature dependence of the phonon frequencies. The
detailed procedure for the calculation of the explicit part of
the temperature dependence of the phonon modes can be found
in the Supplemental Material20 as well as in Refs. 26–28.

The potential wells (Figs. 6 and S5) of the seven modes
of energy around 4.5 meV along the high-symmetry points,
namely, �, X, M , and R in the cubic Brillouin zone, have been
calculated. The energy of the modes may increase or decrease
with increases in temperature, depending on the nature of
the anharmonicity. The potential wells for the �-point mode
of energy at 4.93 and 5.21 meV (Table SIII) have cubic as
well as quadratic anharmonicities, whereas, all the remaining
five modes only have quadratic anharmonicity. The potential
well for the M-point mode of 4.65 meV with the Grüneisen
parameter �iT value of about − 12.7 has also been plotted at
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FIG. 6. (Color online) Calculated potential wells of selected
phonon modes in ZrW2O8. The numbers after the wave vectors (X and
M) give the phonon energies and Grüneisen parameters, respectively.
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FIG. 7. (Color online) Calculated temperature dependence of
selected phonon modes in ZrW2O8. The numbers after the wave
vectors (X and M) give the phonon energies and Grüneisen pa-
rameters, respectively. For comparison, the experimental temperature
dependence of the phonon peak at 3.8 meV in the density of states5 is
also shown, which involves an average over the entire Brillouin zone.

1 kbar. As expected, the width of the well is slightly increased
due to the softening of the phonon mode on compression.

The anharmonicity parameters (Table SIII) as obtained
from the fitting of Eq. (S1) to the potential well are used
for calculating the temperature dependence of the phonon
modes. We find (Figs. 7 and S6) that the zone-boundary mode
of energy 4.16 meV (0 K) at the X point shows maximum
hardening and shifts to 4.78 meV on increases in temperature
to 300 K. The low-energy �-point modes do not respond to
temperature and remain nearly invariant with temperature.
The R-point mode of energy, 5.29 meV, shows the normal
behavior of a decrease in phonon energy with an increase in
temperature. The calculated energy shift for low-energy modes
on an increase in temperature from 0 to 300 K is given in
Table I. Ab initio calculations are able to qualitatively explain
the experimentally observed5 temperature dependence of the
low-energy phonon spectra of ZrW2O8 (Fig. 7).

We would like to draw attention to the fact that the modes at
the M and R points show large implicit anharmonicity. These
modes are important for understanding the NTE behavior.
However, as far as temperature dependence is concerned, the
X-point mode, having a low negative Grüneisen parameter
�iT value of − 2.4, shows maximum temperature dependence.

TABLE I. The calculated change in energy of selected phonon
modes on increases in temperature from 0 to 300 K. Ei and �iT

are the phonon energy at 0 K and the Grüneisen parameter. �EV

and �EA are the changes in the phonon energy due to a change in
volume (implicit anharmonicity) and due to an increase in the thermal
amplitudes of the atoms (explicit anharmonicity), respectively, and
�ET is the total change in the phonon energy. All the energy values
are in meV units.

Wave vector Ei �iT �EV �EA �ET

� 4.93 −7.0 −0.22 0.15 −0.07
� 5.21 −5.7 −0.19 0.16 −0.03
X 3.90 −5.7 −0.14 0.22 0.08
X 4.16 −2.4 −0.06 0.68 0.62
M 4.51 −12.7 −0.36 0.42 0.06
M 4.65 −12.8 −0.37 0.55 0.18
R 5.29 −11.7 −0.39 −0.38 −0.77

Recently, in the case of NTE compounds ScF3 (Ref. 14) and
ReO3 (Ref. 13), respectively, R-point and M-point modes
are found to show high pressure as well as temperature
dependence. The authors also found large quadratic
anharmonicity for the same modes. We would like to say that
quadratic anharmonicity is useful for explaining the large
temperature dependence of the R-point and M-point modes
and is not relevant to NTE.

To summarize, the ab initio density functional calculations
of the phonons modes of ZrW2O8 have been reported in the
entire Brillouin zone. Certain phonon modes are found to be
highly anharmonic in nature. The calculations agree quite well
with the reported NTE behavior of ZrW2O8. We have also been
able to explain the observed anomalous pressure as well as the
temperature variation in the energies of the phonon modes.
The increase in the frequency with temperature essentially
results from the cubic and/or quadratic anharmonic part of the
phonon potential, which is able to explain the temperature
dependence of the low-energy modes as reported in the
literature.
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