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Competing antiferromagnetic and spin-glass phases in a hollandite structure
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We introduce a simple lattice model with Ising spins as a zeroth-order approximation of the hollandite-
type magnetic compounds. We argue that geometrical frustration of the lattice in combination with nearest-
neighbor antiferromagnetic (AFM) interactions are responsible for the appearance of a spin-glass phase in
presence of disorder. We investigate this system numerically using parallel tempering. The model reproduces
magnetic transitions present in some oxides with hollandite structure and displays a rich phenomenology: in
the absence of disorder we have identified five different ground states, depending on the relative strength and
sign of the interactions: one ferromagnetically ordered, three antiferromagnetically ordered, and one disordered,
macroscopically degenerate ground state. Remarkably, for the sets of AFM couplings having an AFM ground
state in the clean system, there exists a critical value of the disorder above which the ground state becomes a spin
glass while maintaining all the couplings antiferromagnetically. This model presents this kind of transition with
nearest-neighbor frustrated AFM interactions. We argue that this model is useful for understanding the relation
between AFM coupling, disorder, and appearance of spin-glass phases.
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I. INTRODUCTION

Spin glasses are magnetic phases where disorder and
frustration suppress any simple ordered patterns, like ferro-
or antiferromagnetic states, and have instead a spin-freezing
transition into an amorphous glassy ordered state at low
temperature (or other control parameters). Such glassy states
feature many interesting and unusual properties,1 like power-
law correlations in the absence of any broken symmetry2 and
nontrivial long-time behavior. The free-energy landscape of
such systems is very rough and has many metastable states
that are separated by high barriers.3

Two crucial ingredients necessary to produce a spin glass
are disorder and frustration. The canonical representatives
of spin glasses, magnetic alloys, have an oscillating long-
range Ruderman-Kittel-Kasuya-Yosida (RKKY) spin-spin
interaction.4 The standard Edwards-Anderson model5 has
quenched random nearest-neighbor couplings of both signs
which mimics the frustrating effect of the longer-ranged
RKKY interaction. In both cases, as well as in many others,
it is the interaction, which is both disordered and frustrating
[i.e., a mixture of ferromagnetic (FM) and antiferromagnetic
(AFM) couplings], that is responsible for the appearance of
a spin glass. There is also a large class of materials where
frustration has geometrical origin: the combination of the AFM
interactions and geometry of the lattice suppresses the natural
AFM order6 and makes the system extremely susceptible to
perturbations.6 In this case often even a small disorder in the
coupling strengths, that does not change their AFM character,
is enough to obtain a spin-glass.7–9 Consider now a geometrical
frustrated system with nearest-neighbor AFM couplings of
different strengths. Can the AFM ground state still survive?
If so, is it possible to obtain a spin-glass phase by tuning the
disorder and maintaining the AFM interactions? How much
disorder is needed to break the AFM ground state?

In this paper we introduce a model which addresses these
points and extends the previously studied models of spin-glass

transition in the presence of geometrical frustration. In the
absence of disorder in the couplings, we have identified
five main types of ground states: one FM ordered, three
AFM ordered, and one disordered, macroscopically degenerate
ground state. From the theoretical point of view it is interesting
to study the transition from an AFM ground state to a spin-glass
phase by increasing disorder in a system containing only
nearest-neighbor AFM couplings. Remarkably, despite the
geometrical frustration, the natural AFM order is not always
suppressed by introducing disorder and a critical amount is
required to introduce a spin-glass phase. This provides an
example of a system where the geometry forces different
ground states to compete and there is a direct transition from
an AFM state to a spin-glass phase by tuning the disorder,
while maintaining AFM couplings only. This model presents
this kind of transition with nearest-neighbor frustrated AFM
interactions. In other models such transition becomes possible
if longer ranged interactions are allowed.9

This model is inspired by manganese oxides compounds
(MnO2) with the hollandite structure, such as α-MnO2,10,11

K1.5(H3O)xMn8O16,12 Ba1.2Mn8O16,13 etc. Experimentally
these materials have a rich magnetic phenomenology12,14–17

whose origin is poorly understood. In particular it is not
clear whether the magnetic properties can be explained by
considering only bulk properties, like the effects of doping
and frustration, or whether surface effects have to be taken into
account as well. Therefore a theoretical description of these
materials is needed for a better understanding of their magnetic
behavior. This will open the venue for a systematic approach
to tune and optimize the properties of these compounds. The
simple model presented here is a first step in this direction.

Hollandite-type Mn oxides are nanoporous materials10,11

that are interesting on their own for their large number
of applications, as ionic conductor, as catalysts for oxygen
reduction and oxygen evolution reactions, in lithium-air
batteries,18–20 in supercapacitors,21 for the energy extraction
from salinity differences,22 and as a water oxidation catalyst.23
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The large lateral size of the channels [see Fig. 1(a)], of the
order of 0.46 nm, makes it possible for some big cations
such as K+, Na+, Ba2+, and H3O+ to be introduced during
material synthesis,12–15,24 thus opening the possibility to tune
the magnetic, chemical, and physical properties by cation
doping. The magnetic nature of this compound originates from
the presence of the manganese ions, which have localized
magnetic moments due to the open shell of d electronic
states.12,24,25 These properties, together with the magnetic
frustration due to the structural triangles [see Fig. 1(c)], are
at the origin of the rich variety of magnetic ordered phases
that have been identified experimentally in these materials.

For example, α-MnO2 in the absence of doping elements in
the channels, i.e., in the absence of disorder, has an AFM phase
at low temperatures (T ).16,17 Luo et al. have investigated the
dependence of the magnetic phase on the doping of potassium
ions,14,15 and have shown that above a critical concentration of
K+ ions, a difference in the magnetic susceptibilities between
zero-field-cooled and field-cooled samples is observed which
is interpreted as the onset of the spin-glass phase. When all the
sites available for K insertion became full, the AFM behavior
was recovered. The spin-glass phase was previously observed
in the case of the KMn8O16 material11 with the same behavior
of the magnetic susceptibilities. Lan and co-workers proposed
a surface effect to be responsible for the spin-glass behavior
in sodium-doped α-MnO2 nanorods.17 They proposed that, at
low temperatures, the bulk of the system is in an AFM state
while the surface spins contribute to a net magnetic moment
of the specimen.17 Their explanation thus relies on the high
surface area present in the nanostructured material rather than
on the doping.

Due to the complicated structure of these materials, it is
important, as a starting point, to disentangle the contributions
of bulk effects (doping and frustration) and surface effects, in
order to gain a better understanding of the magnetic properties
of these compounds. In this paper we study a simple model
based on Ising spins. Our aim is to identify mechanisms
that create spin-glass phases in this class of materials, i.e.,
manganites. The Ising spins are more convenient for this
purpose: identifying a spin glass in a model with vector
spins is a much more challenging problem. Therefore we

FIG. 1. (Color online) Different views of the hollandite structure
for the case of α-MnO2 compound (Refs. 14 and 15): (a) the XZ

plane containing both Mn and oxygen (O) atoms; (b) panoramic view
of the channel with only Mn atoms; (c) structural triangles composed
by magnetic atoms that play an important role in setting the magnetic
properties of the oxide.

decided to analyze the Ising model first, since, if the spin-glass
transition is not present in the Ising case, there is definitely
no spin-glass phase for vector spins. Another motivation to
study the Ising model is the fact that even such a simple
model features a rich phase diagram, which is of interest in its
own right. Its study suggests a new way to closely investigate
the role and importance of frustration and disorder for the
emergence of spin-glass phases. Additionally, this model is
able to reproduce essential features of manganese oxides,
i.e., an AFM ground state in the clean case, transition to
a spin-glass phase at increasing disorder, and the need of a
critical amount of disorder for this transition to occur.14 At the
same time, this model is a crude approximation to manganese
oxides, which are known to be Heisenberg magnets with weak
exchange anisotropy.26–28 Consequently, our model cannot
capture realistic low-T magnetic configurations of manganites,
like noncollinear AFM or helical magnetic ground states, that
were identified in some compounds.12,25 Summarizing, we
consider this model as a zeroth-order approximation towards
more realistic models that describe magnetic properties of
materials with hollanditelike lattice structures.

The paper is organized as follows: We introduce the model
in Sec. II and study its properties in the clean limit in Sec. III.
Next we discuss the mechanism which generates a spin-glass
phase in the doped samples and present numerical results in
support the mechanism in Sec. IV. Conclusions are given at
the end.

II. MODEL

The materials that inspired this study have a complicated
lattice structure known as the hollandite lattice. This structure
consists of two octahedra joined at the edges to form the wall
of (2 × 2) channels (see Fig. 1), and belongs to a family of
crystals which differ from each other only by the lateral size
of the channels, like ramsdellite (1 × 2), romanechite (2 × 3)
and todorokite (3 × 3).10,29–32 In the case of manganese oxides
each octahedron is formed by a MnO6 unit.

The magnetism is due to the interaction of the
magnetic moments localized on the manganese ions,
which interact with each other through oxygen-mediated
superexchange.12,13,24,33,34 We consider the simplest possible
model compatible with the lattice structure and place classical
Ising spins on Mn sites of the hollandite lattice. The choice
of the Ising spins is mainly dictated by simplicity. The real
manganese oxides do not have a strong Ising anisotropy and
are better described by Heisenberg spins. However for our
purposes, i.e., identifying a possible mechanism that leads to
spin-glass phase, the Ising spins are more convenient. Simu-
lating vector spins glass is a much more difficult problem and,
even when the spin-glass phase is identified in simulations, its
nature is still debated.35,36 Therefore it is better to simulate
first the Ising model since, if the spin-glass transition is not
present in this case, there is definitely no spin-glass phase for
the vector spins. Another reason for studying the Ising model
is the fact that even this case has a phase diagram which is
interesting in its own right.

We get a lattice of spins which has eight spins per unit cell
as shown in Fig. 1. We consider nearest-neighbor interactions
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FIG. 2. (Color online) The graphical representation of the
Hamiltonian (1). Links of different color represent the three couplings
J1 (blue), J2 (black), and J3 (red).

and the Hamiltonian reads

H =
∑
〈ij〉1

J
ij

1 sisj +
∑
〈ij〉2

J
ij

2 sisj +
∑
〈ij〉3

J
ij

3 sisj , (1)

where 〈ij 〉k denotes three different groups of nearest neighbors
of a spin i. The partitioning of the neighbors and the
corresponding couplings J1, J2, J3 are detailed in Fig. 2. Such
division and the choice of three different coupling constants
are dictated by the structure of the material: all these three
classes of nearest neighbors are quite close to the atom i: the
distance to atoms of the first group is ∼2.86 Å, while the atoms
of the second and third groups are at distances of 2.91 and
3.44 Å, respectively.

Despite the simplicity of the Hamiltonian (1) it admits
many different ordered magnetic ground states depending
on relative strengths and signs of the couplings Jk for
k = 1,2,3. This richness reflects the complicated geometry
of the hollandite lattice. There is no experimental insight
for the selection of particular values of the couplings Jk ,
k = 1,2,3 and in general we expect them to be system
dependent. Since in hollandite-type structures the angles of
Mn-O-Mn bridges take values between 80◦ and 130◦, simple
symmetry rules to determine the sign of the magnetic couplings
such as the Goodenough-Kanamori rules13,33,34 cannot be
straightforwardly applied. As the undoped compound is known
experimentally to have an AFM ordering,16 we omit the
case of all the FM couplings, since in this case the phase
diagram consists only of paramagnetic and FM phases. We
focus instead on the simplest assumption, namely that the first
nearest neighbor coupling is AFM (J1 > 0), and then study
the phases that appear in the J2/J1 vs J3/J1 plane. The case
J1 < 0 is also mentioned. As we are interested in the study
of the transition to the spin-glass phase at increasing disorder,
we start in the region of the phase space where J2 > 0 and
J3 > 0. Such choice of the couplings is interesting from the
theoretical point of view because it gives the transition from an
AFM ground state to a spin-glass phase in a system containing
only nearest-neighbor AFM couplings.

III. CLEAN SYSTEM

We start by studying the clean limit where the strengths
of all the couplings Jk k = 1,2,3 are constants and do
not fluctuate in space (no disorder). Experiments indicate a
transition to an AFM phase16 at low enough temperatures.
For this reason we take the first-nearest-neighbor coupling J1

positive: J1 > 0. In order to discover all the possible ground
states of the Hamiltonian (1) in this case we proceed by trying
to minimize every term of the Hamiltonian.

As shown in Fig. 2, every Mn atom si interacts with eight
other Mn atoms sik,k = 1, . . . ,8. The total energy (ET ) can
then be written as a sum of local energies of each site (Ei):
ET = ∑

i Ei/2 where

Ei = si[J1(si1 + si2) + J2(si3 + si4)

+ J3(si5 + si6 + si7 + si8)]. (2)

Let us suppose now that J2 > 0 is the strongest interaction
in the lattice, then to minimize the interaction of si with the
second group of nearest neighbors we select si3 = si4 = −si

for all sites i. This selection has two effects: (i) it creates a FM
order along all the chains of Mn atoms in the y direction, and
(ii) it imposes that the chains connected by J2 [see Fig. 2(b)]
are coupled antiferromagnetically, nevertheless it leaves the
J3 connections “free.” Therefore we have si1 = si2 = si and
si5 = si6, si7 = si8 (see Fig. 2). Notice now that this spin
configuration allows us to minimize at the same time the in-
teraction with the third group of nearest neighbors, the precise
configuration depending on the sign of J3. If we have J3 > 0,
then we select si5 = si6 = −si and si7 = si8 = −si , obtaining
that the minimal configuration will have a total energy per
spin given by ET = J1 − J2 − 2J3 and spins ordered in a
C-type AFM (C-AFM) state. The C-AFM order is composed
of FM chains which are coupled antiferromagnetically37,38

as shown in Fig. 3(a). In the case of J3 < 0 we must set
si5 = si6 = si and si7 = si8 = si and the spins will be ordered
in a single configuration that we call A2-AFM state, as shown
in Fig. 3(b). The total energy of this configuration is ET =
J1 − J2 + 2J3. The A-type AFM configuration consists of FM
planes coupled antiferromagnetically,37 in this particular case
we obtain a set of two FM planes. This set is then coupled
antiferromagnetically [see Fig. 3(b)] and this is the reason we
refer to it as A2-AFM.

If we assume J2 < 0 as the strongest interaction in the
lattice, then the interaction is minimized by selecting si3 =
si4 = si for all sites i. Again we create a FM order along
all the chains of Mn atoms in the y direction but now it
imposes that the chains connected by J2 [see Fig. 2(b)] are
coupled ferromagnetically while the J3 connections are still
free. So we can make the same reasoning as in the previous
case. Therefore if J3 < 0 the configuration that minimizes the
energy is a FM configuration with energy ET = J1 + J2 + 2J3

and if J3 > 0 we obtain a unique configuration with energy
ET = J1 + J2 − 2J3 that we have called C2-AFM, because it
is composed of two FM lines coupled antiferromagnetically as
shown in Fig. 3(c). The total energy per spin of the minimal
configuration for each case can be obtained by using the
equation

ET = J1 − |J2 + 2J3|. (3)
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FIG. 3. (Color online) Configuration of three possible AFM
ground states on the hollandite lattice at T = 0, J1 > 0, and 2J1 <

|J2 + 2J3|. (a) C-type antiferromagnetic (C-AFM), for J2 > 0 and
J3 > 0 there is an AFM alignment in the clockwise/counterclockwise
direction. (b) A2-AFM, for J2 > 0 and J3 < 0, composed of sets
of two FM planes, the sets are then coupled antiferromagnetically
between them. (c) C2-AFM, for J2 < 0 and J3 > 0, composed of
two FM lines coupled antiferromagnetically.

Finally let us suppose that J1 is the strongest coupling, then,
to minimize the energy, we must impose that si1 = si2 = −si

for each site i. This selection creates an AFM order along
all the chains of Mn atoms in the y direction (see Fig. 2).
As a consequence we will have that si3 = −si4, si5 = −si6,
si7 = −si8 and the total energy per spin is

ET = −J1. (4)

Notice that in this approximation the strength and signs of J2

and J3 are irrelevant, as the interaction of Si with the second
and third groups of nearest neighbors cancels out exactly. To
summarize this picture, one can think that the configurations
that minimize the J1 interaction are composed by a collection
of one-dimensional Mn-Mn chains, each having AFM order
of spins. However the chains are completely uncorrelated
between them and arranged in such a way as to form the
channels of the hollandite structure [see Fig. 6(a)]; for this
reason we have called this phase a “correlated geometrically
frustrated phase” (corr-GFP). That is, there is a perfect AFM
order in the y direction, but no order in the transverse direction.
If we consider a single unit cell replicated in the y direction
then we will have 28 possible configurations with the same
energy per spin ET = −J1. Since each chain is completely
uncorrelated to the others, for an increasing number of cells
in the x and z directions, Nxz

cell, the number of ground states is

FIG. 4. (Color online) Phase diagram of the Hamiltonian (1) for
J1 > 0; five different phases are observed: three AFM (C-AFM,
A2-AFM, C2-AFM), one FM, and one geometrically frustrated (corr-
GFP) with perfect anticorrelation along the y axes [see Fig. 6(a)]. Also
geometrically frustrated phases with zero area are found at every
boundary between any of the five phases. Filled circles represent
the points in the phases diagram probed via the Monte Carlo
simulations.

growing as 28Nxz
cell , i.e., the ground state is macroscopically

degenerate. This choice of couplings gives the maximum
frustration.

To complete the picture of the phase diagram for J1 > 0
for a given point (J2/J1, J3/J1) we notice from Eqs. (3)
and (4) that only three cases are possible. In the first case
2 > |J2/J1 + 2J3/J1| we have the corr-GFP as the ground
state. In the second case 2 < |J2/J1 + 2J3/J1| we have the
following four possible ground states: (i) C-AFM for J2 > 0
and J3 > 0, (ii) A2-AFM for J2 > 0 and J3 < 0, (iii) C2-AFM
for J2 < 0 and J3 > 0, and (iv) FM for J2 < 0 and J3 < 0
(see Fig. 4). The third case 2 = |J2/J1 + 2J3/J1| defines the
phase boundary and has the form of a rhombus centered at
the origin and with the bigger diagonal along the J2/J1 axis.
At the boundaries the magnetic properties of the model are
different: the ground state is exponentially degenerate since
any two of the ground states discussed above have equal
energies and can be mixed freely. Therefore there is no order
down to zero temperature and the AFM alignment along the
y direction is suppressed. We believe that this lends support
to the view that the system might be in a classical spin liquid
phase.

We have checked the validity of the above arguments
by performing Monte Carlo simulations39 of a clean system
with N = 2048 Ising spins and a simulation cell of volume
V = 256V0 where V0 is the volume of the unit cell composed
by eight spins. We used periodic boundary conditions. The
standard Metropolis39 rule with single spin-flip updates was
used. The points of the phase space where we have checked
our arguments with the Monte Carlo simulations are plotted in
Fig. 4 as red circles. To study and confirm the transitions from
a paramagnetic phase to one of the AFM ground states we
computed the appropriately defined staggered magnetizations
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FIG. 5. (Color online) Staggered magnetizations mX
s , for each

AFM ground state X as defined in Eq. (5), as a function of temperature
for the clean system (D = 0), N = 2048 spins, volume V = 256V0,
where V0 is the volume of the unit cell. The couplings are equal to J1 =
1 for all cases, J2/J1 = 1 and J3/J1 = 0.6 for X = C-AFM, J2/J1 =
1 and J3/J1 = −0.6 for X = A2-AFM, and J2/J1 = −1 and J3/J1 =
0.6 for X = C2-AFM. Inset: the staggered susceptibility χX

s as a
function of temperature. The sharp peak signalizes the transition
from the paramagnetic phase to one of the AFM orders.

mX
s = MX

s /N :

MC-AFM
s =

N∑
i=1

(−1)i si ,

MA2-AFM
s =

N∑
i=1

fA2(i)si, (5)

MC2-AFM
s =

N∑
i=1

fC2(i)si,

where the site index i is selected in the clockwise direction
inside the unit cell as shown in Fig. 3 (i1−8), X refer to each
AFM ground state X =(C-AFM, A2-AFM, C2-AFM),

fA2(i) =
{

1 if i = 1 + 4n or i = 2 + 4n,

−1 if i = 3 + 4n or i = 4 + 4n,
(6)

fC2(i) =
{

1 if i = 1 + 4n or i = 4 + 4n,

−1 if i = 2 + 4n or i = 3 + 4n,
(7)

and n = 0,1,2, . . .. The points (J2/J1,J3/J1) in phase space
selected for the calculations are (1,0.6), (1,−0.6), and (−1,0.6)
with J1 = 1. The temperature dependence of mX

s computed
using Monte Carlo simulation is shown in Fig. 5. In all cases
mX

s = 0 for high temperatures and mX
s → 1 for temperatures

close to zero, indicating an AFM order. We also computed the
staggered susceptibilities,

χX
s = dms

dhs

∣∣∣∣
hs=0

= (〈(
MX

s

)2〉 − 〈
MX

s

〉2)
/kBT ,

where kB is the Boltzmann constant and T the temperature.
As shown in the inset of Fig. 5, the staggered susceptibility
has a sharp peak at the same temperature where mX

s becomes
nonzero. Curiously, the critical temperature T X

c = 0.67J/kB

estimated from the divergence of χX
s (see the inset of Fig. 5)

is the same in all the AFM phases. This fact is related with the
choice of symmetric points in the phase space, for which the
ground-state energy is the same in all three cases (but not the
ground states themselves).

We have also done a calculation inside the corr-GFP at
the point (J2/J1 = 0.3,J3/J1 = 0.6). The Monte Carlo results
confirm the picture for the case 2 > |J2/J1 + 2J3/J1|. The
staggered magnetizations are always zero and the staggered
susceptibilities do not display any sharp features down to T =
0. Such behavior is typical for systems where the combination
of lattice geometry and interactions suppresses the natural
AFM order. At low temperatures, instead, they enter a phase
known as collective paramagnet6 with power-law/exponential
correlations depending on the structural properties of the
lattice (bipartite/nonbipartite). We have computed the spin-
spin correlation functions along different axes of the unit cell
as shown in Fig. 6(b). Unlike other geometrically frustrated
systems, there is a clear AFM alignment of spins along the y

direction and a fast exponential decay as we deviate from
this direction (x,z,xy,xz,yz,xyz). Also the eight spins of
the unit cell are uncorrelated as illustrated in Fig. 6. This
confirms the picture developed above, based on a simple
energy minimization argument.

To conclude, we look at the case J1 < 0. Following the
same minimization argument, it is easy to convince yourself
that one can always minimize simultaneously every term in
the Hamiltonian (1), implying that the system is not frustrated
in this case. Thus the corr-GFP phase disappears and only
the nondegenerate ground states survive. This case is less
interesting than the previous case (J1 > 0) and it does not
display any new physics.

IV. DISORDERED SYSTEM

We now turn to the disordered case and study what effect
the disorder has on the physical properties of the system
described by the Hamiltonian (1). Usually spin-glass behavior
is associated with the presence of disorder and frustration
in the system.40 As discussed above, the clean system has
geometrical frustration (for J1 > 0). We suggest the following
mechanism to explain the appearance of the spin-glass phase
in the experimental results: as the dopant ions penetrate into
the channels of the hollandite structure,24 they locally modify
the compound and therefore also the magnetic interactions
between the spins, i.e., they generate fluctuations in the
AFM couplings Jk , k = 1,2,3. In principle, this could happen
through different mechanisms, such as doping-induced strain
or changes in the local electronic structure through charge
donation. When the dopant penetrates into the channels it could
induce local strains in the lattice. The strains generate random
quenched fluctuations in AFM couplings Jk through the
magnetoelastic coupling. This is a well-known mechanism that
causes spin-glass transition in many geometrically frustrated
systems.7,8 On the other hand, charge donated by the doping
elements modifies the oxidation state of manganese, producing
a local mixture of Mn+3 and Mn+4.10,14,41 This local change
in the electronic properties induces fluctuations in the strength
of magnetic spin-spin interaction, breaking the symmetry of
the system (all Mn atoms are equivalent in the clean case).
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FIG. 6. (Color online) (a) Single unit cell replicated in the y

direction. The spin configuration corresponds to one of the possible
ground states with energy per spin ET = −J1 (J1 > 0 is the strongest
coupling). The spins are always aligned antiferromagnetically in
the y direction for these ground states, while there is no order in
the perpendicular direction. (b) The spin-spin correlations in the
geometrically frustrated phase for the x,y,z,xy,xz,yz,xyz directions
and inside the unit cell. Here the index is defined as the number of
times you have to move in each direction to find sj , e.g., in the
xy direction index = 2 means that sj is located at a distance of√

(2Lx)2 + (2Ly)2 where Lx and Ly are the length of the unit cell in
the x and y direction, respectively. In the case of “cell” the index runs
over the eight atoms of the unit cell.

Estimating the variations in the AFM couplings depends
on which of the previous two mechanisms dominates the
magnetic interaction and therefore on the particular system
in consideration. In our model we mimic these fluctuations by
introducing continuous disorder in the couplings Jk . A discrete
distribution of the couplings would be a more accurate model
for some systems, for example a system where the doping-
induced strain is not present. Nevertheless, the difference
between the continuous and discrete disorder is irrelevant
for the spin-glass transition, since universality of the glass
transition with respect to the continuous vs discrete nature of
the disorder is well established.42 This justifies our usage of the
continuous disorder. In this paper we focus on the case where
all the couplings remain AFM in order to study the possibility
and details of the C-AFM to spin-glass transition. We assume
fluctuations of the couplings Jk around their clean values so
that the couplings remain AFM. The presence of quenched

fluctuations in the couplings Jk is crucial for the appearance
of the spin-glass phase.7–9

Since we want to study the transition between the C-
AFM ground state and the spin-glass phase we start in the
J2/J1 + 2J3/J1 > 2 part of the phase diagram of our model.
We propose the following mechanism for the appearance of
the spin glass in the model: randomness in the AFM couplings
Jk , k = 1 . . . 3, produces local regions of the lattice where the
condition J2/J1 + 2J3/J1 > 2 is violated and that local patch
has the C-AFM ordering locally disfavored. The presence of
such patches frustrates the system, and generates the spin-glass
phase. Such mechanism implies that the spin glass can only
appear for sufficiently strong fluctuations in the strengths
of the couplings, since one has to violate the condition
J2/J1 + 2J3/J1 > 2. Therefore we expect the critical strength
of the disorder to be an increasing function of the distance to
the point J2/J1 + 2J3/J1 = 2. Since the amount of disorder
depends on the doping, we need a sufficiently large doping
to produce the spin glass. This is exactly what is seen in
experiments: Luo and co-workers14,15 have found that a critical
amount of K+ doping in α-KxMnO2 is needed to see the
spin-glass phase.

We have performed numerical simulations of the model
with disorder to confirm our ideas. The AFM couplings Jij =
Jji = Jk + � are different for each link connecting a pair
of atoms i,j = 1 . . . N . The disorder � is drawn from the
box distribution −D < � < D where D sets the scale for
the strength of the quenched fluctuations. Glassy systems are
notoriously difficult to simulate at low temperatures and we
used parallel tempering43–45 to equilibrate the samples at low
temperatures. We used up to Ns = 200 samples to compute the
disorder average. In every case we have tested that convergence
to the average was achieved.

We first show the results for amounts of disorder (D <

J2/J1 + 2J3/J1 − 2) where the C-AFM phase is still present.
In Fig. 7 we show the plot of the staggered magnetization vs
temperature for D = 0.18J1. The parameters of the system
are the same as those of the clean case (D = 0; see Fig. 3):
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C-AFM phase. Inset: staggered susceptibility χC-AFM
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J1 = J2 = 1 and J3 = 0.6J1, N = 2048 spins, V = 256V0

where V0 is the volume of the unit cell. We see that this
amount of disorder is not enough to destroy the C-AFM phase
but the critical temperature Tc = 0.59J/kB extracted from
the position of the sharp peak of the staggered susceptibility
(see Fig. 7) is reduced in comparison with the clean case where
Tc = 0.67J1/kB .

Upon further increase of the strength of the disorder the
C-AFM phase is completely suppressed at D = 0.4J1 and
the spin-glass phase appears instead at low temperatures. To
characterize the paramagnetic to spin-glass transition we have
studied the Binder cumulant46,47 which is defined as

G = 1

2

[
3 − 〈q4〉

〈q2〉2

]
, (8)

where 〈· · ·〉 is the thermal average and · · · is the average over
the disorder; q is the overlap between two independent replicas
of the system (s1

i ,s
2
i ) with the same realization of disorder:

q = 1

N

N∑
i=1

s1
i s

2
i .

The Binder cumulant G is a dimensionless parameter that
goes to zero for high temperatures and it is of order 1 in the
spin-glass phase and has the following finite-size scaling47

close to the transition:

G = g[V 1/3ν(T − Tc)], (9)

where V is the volume of the sample and Tc is the critical
temperature. These properties make the Binder parameter G

a useful tool to study spin-glass phase transitions and it has
been widely used for this purpose,10,48–50 as all curves of G

generated for different system sizes will intersect at Tc. As a
complementary parameter we have also computed the overlap
distribution P (q) that has the finite-size scaling form:47

P (q) = V β/3νp(q)[qV β/3ν,V 1/3ν(T − Tc)], (10)

where ν and β are the critical exponents which are obtained
by fitting the data for different system sizes to a single master
curve.

The parallel tempering simulations were performed for
systems with AFM couplings J1 = J2 = 1, J3 = 0.6J1 and
disorder D = 0.4J1. The system sizes are V = 54V0, V =
96V0, V = 150V0, V = 256V0. In all four cases the C-AFM
phase was suppressed in favor of a spin-glass phase. The
inset of Fig. 8 shows the Binder cumulant as a function
of temperature for the four system sizes. There is a clear
crossing of the Binder cumulant curves indicating the spin-
glass transition near Tc = 1.19J1/kB for D = 0.4J1.

Using this estimate for Tc we collapsed all the data onto a
single master curve according to Eq. (9) as shown in Fig. 8
with the critical exponent ν = 0.86. We have also studied
the overlap distribution P (q) for the four system sizes at the
temperature T = 1.20J1/kB , close to the critical temperature
Tc = 1.19J1/kB (see Fig. 9). Rescaling the P (q) curves for
different system sizes according to Eq. (10), a good collapse on
a master curve is obtained for the ratio of the critical exponents
β/ν = 0.42 from which we get β = 0.36.

The values β = 0.36 and ν = 0.86 are very different
from the conventional values of the critical exponents for
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FIG. 8. (Color online) Scaled Binder cumulant as defined in
Eq. (9) for four system sizes V = 54V0, V = 96V0, V = 150V0,
V = 256V0 where V0 is the volume of the unit cell, the interactions
J1 = J2 = 1 and J3 = 0.6J1 were considered with a disorder of
D = 0.4J1. Inset: Binder cumulant as defined in Eq. (8) as a function
of temperature.

the spin-glass transition in d = 3: β = 0.77(5), ν = 2.45(15)
(see Ref. 42 and references therein). Since these exponents
are known to be hard to evaluate precisely due to large
finite-size effects in spin glasses42 and the absence of any
good reason which could change the exponents from their
conventional values, we attribute the discrepancy to the fact
that the system sizes studied are too small. We found that the
critical amount of disorder for obtaining the spin-glass phase
for this set of parameters is Dc = 0.28 ± 0.02J1, nevertheless
studying the complete phase diagram D vs J3/J1, D vs T

and the dependence of the critical exponents on the system
size requires longer simulation times and larger system sizes.
However, in this paper we are focused on showing the phase
diagram for the clean case and the existence of the spin-glass
phase rather than on studying this transition in detail—that is
the subject of a future work.
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FIG. 9. (Color online) Scaling for the overlap distribution P (q) at
T = 1.20J1/kB near the critical temperature Tc = 1.19J1/kB using
Eq. (10) for the same system of Fig. 8.
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V. CONCLUSIONS

We have introduced a simple classical Ising spin model
with nearest-neighbor antiferromagnetic (AFM) interactions
and continuous disorder on a hollandite lattice. The studied
system is geometrically frustrated due to the existence of
structural triangles [see Fig. 1(c)] in the hollandite lattice.
However, the degree of the frustration depends on the mutual
values of the spin couplings. The parallel tempering Monte
Carlo simulations performed for this system with clean and
disordered AFM coupling strengths and different system sizes
reveal that, despite the simplicity of the Hamiltonian Eq. (1)
(only nearest neighbor interactions and Ising spins), it admits
different phases depending on relative strengths of the AFM
couplings due to the complicated geometry of the hollandite
lattice. We found five different ground states in the clean
case: one ferromagnetic, three AFM (see Fig. 3), and one
exponentially degenerated and disordered ground state (see
Fig. 6). Depending on the strengths of the interactions a
small amount of disorder (D < Dc) in the couplings does
not suppress the C-AFM order, but merely reduces the critical
temperature at which the paramagnet to C-AFM transition
occurs (see Fig. 7). When the disorder becomes greater than
some critical value, the geometry forces different ground
states to compete and there is a direct transition from the
C-AFM state to a spin glass by tuning the disorder (at fixed
temperature), while preserving AFM couplings. This transition
was confirmed numerically by looking at the Binder cumulant
(see Fig. 8). This model presents this kind of transition with
nearest-neighbor AFM interactions.

Despite the fact that this model is a zeroth-order approx-
imation of the manganese oxides, it reproduces magnetic
transitions present in some oxides with hollandite crystal

structure in both the clean and doped cases, i.e., an AFM
ground state in the clean case, a transition to a spin-glass phase
at increasing disorder, and the need of a critical amount of
disorder for this transition to occur. This model shows that bulk
effects (frustration and doping) are sufficient to obtain the spin
glass in compounds with hollandite lattice. It would be useful
to check the convergence of the critical exponents to their
standard d = 3 values, although this requires a considerable
amount of computing time. Finally, the predictive power of
our model can be enhanced by studying the Heisenberg case
which is more suited for the real compounds and/or by using
couplings determined via ab initio calculations.

An interesting possible extension of our results is the study
of the role and importance of frustration and disorder for
emergence of spin-glass phases. The Hamiltonian (1) falls into
a class of Hamiltonians, that, in the simplest case, features two
distinct ordered phases depending on the value of some control
parameter g. At some critical value gc these two phases have
equal energy. Disordering the interactions, i.e., the coupling
g, at the critical point, puts the ordered states in competition,
and it is natural to ask whether a spin-glass phase emerges,
what is the universality class of the transition, and whether
the transition still exists away from gc for disorder strength
above some threshold value. Answering these questions and
understanding universal features of such spin-glass transitions
represents an interesting open problem.
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