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Effect of the short-range interaction on critical phenomena in elastic interaction systems
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The elastic interaction, induced by the lattice distortion due to the difference of the molecular size, causes
an effective long-range interaction. In spin-crossover (SC) compounds, local bistable states, i.e., high-spin and
low-spin states, have different molecular sizes, and the elastic interaction is important. In bipartite lattices, e.g., the
square lattice, the ground state can be two types of phases: ferromagneticlike and antiferromagneticlike phases.
In systems like SC compounds, the former phase consists of all small or large molecules, and the latter phase
has the configuration of alternating small and large molecules. In fact, both cases are observed in SC systems.
In this paper we have studied the effect of the short-range interaction in the elastic system on the properties of
those order-disorder phase transitions. We have obtained a phase diagram in the coordinates of the temperature
and the strength of the short-range interaction, including the metastable structures. We show that effects of the
short-range interaction are essentially different for ferromagneticlike and antiferromagneticlike phase transitions.
In the ferromagneticlike transition, the long-range interaction of elasticity is relevant, and the system exhibits a
phase transition in the mean-filed universality class. In this case, the long-range interaction strongly enhances the
ferromagneticlike order, and it works cooperatively with the short-range interaction. In contrast, in the antiferro-
magneticlike transition, the elastic interaction slightly enhances the antiferromagneticlike order, but essentially it
does not contribute to the ordering, and the system shows a transition in the Ising universality class. We have found
that in the border region between ferromagneticlike and antiferromagneticlike phases, the antiferromagneticlike
phase has an advantage at finite temperatures. We discuss the critical properties of two-step SC transitions with
comparison between the elastic interaction model and conventional SC models (Ising-like models).
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I. INTRODUCTION

Spin-crossover (SC) compounds have attracted much at-
tention in a wide variety of phase transitions as well as
their potential applications.1–15 The spin-crossover system has
bistable states, i.e., a low-spin (LS) state and a high-spin
(HS) state, with an entropy difference between the two
states. Entropy-induced phase transition and other cooperative
phenomena have frequently been studied by the Ising model
with the different degeneracies between the LS and HS states
(called Ising-like model), although the Ising interaction was
only introduced as the simplest description of the cooperative
interaction.16 From the microscopic viewpoint, the size of each
molecule in SC solids changes depending on the spin state, LS
or HS, and the importance of the elastic interaction has been
suggested for the cooperative interaction.17–21

By treating the change of the molecular size explicitly, it
was shown that the elastic interaction, caused by the lattice
distortion due to the difference of the molecular sizes between
the LS and HS states, leads to the cooperative interaction
for the SC phase transition,22 where the effective long-range
interaction of elastic origin induces a phase transition. In this
limiting case without any short-range interaction, the nature
of the phase transition has been studied from the viewpoint
of the pure long-range interacting model, and it was clarified
that the phase transition belongs to the mean-field universality
class.23 Other important features of the transition have also
been clarified with the use of this kind of modeling.22–30

In realistic compounds the short-range interaction also
plays a role in phase transitions. The potential energy function
between molecules is considered to depend on the spin states

of the molecules.31–33 Then, this dependence is expressed by
using a kind of short-range interaction of the spin states. In
this case, the interaction between molecules consists of both
short-range and long-range components.

The importance of the short-range antiferromagneticlike
interaction has also been suggested in SC phenomena in the
context of explaining two-step transitions.34–39 An antifer-
romagneticlike phase, in which the LS and HS molecules
align alternately, is realized as a thermodynamic phase in the
middle temperature regions between the LS phase at lower
temperatures and the HS phase at higher temperatures.

In binuclear systems, i.e., two sites in a unit molecule, the
alternate structure may be easily understood. However, the
alternate structure appears also in mononuclear compounds,
although the crystal has no sublattice symmetry. In theoretical
studies of two-step SC transitions, a short-range antiferromag-
neticlike interaction was adopted into conventional models
such as Ising-like models.40–42 (In Sec. V an outline of two-step
SC transitions and a related discussion are given.)

Competition and interplay between the short-range and
long-range interactions are interesting topics in phase
transitions.43–50 In the pure short-range model, clustering of
the ordered phase takes place near the critical temperature,
leading to the divergence of the correlation length of the order
parameter. However, the long-range interaction suppresses the
generation of domains, and the configuration is uniform even at
the critical temperature.23 The crossover from the short-range
Ising universality class to the mean-field universality class
was studied for the case of a ferromagnetic short-range
interaction.49,50 In those works it was found that the long-range
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interaction is always relevant, and the system exhibits a phase
transition in the mean-field universality class.

Elastic interactions with a size difference between atoms
have also been studied for alloy systems,51–53 where elastic
potential energies with empirical parameters were adopted
for neighboring atomic species (Si-Si, Si-Ge, Ge-Ge), and a
bond angle potential was introduced to maintain the diamond
structure. In those models different elastic constants for differ-
ent atomic species lead to a kind of short-range interactions.
The critical properties were found to be mean-field-like for
ferromagneticlike order, while they were suggested to be of
rigid Ising type for antiferromagneticlike order, although the
transition temperature is significantly different from that of
the Ising model. However, for the ferromagneticlike order, the
elastic interaction of these models causes asymmetry of the
entropy effect between Si-Si and Ge-Ge phases due to different
elastic constants for different atomic species. Asymmetry of
the entropy effect between two phases is also induced by the
bond angle potential as we discuss in the Appendix. Indeed,
in those studies an artificial field was applied to avoid the
asymmetry and to constrain the systems to the coexistence line.

In the present work we use the same elastic constant for
different species. To maintain the lattice structure (square
lattice), we adopt next-nearest-neighbor interactions, in which
the asymmetry of the entropy effect is negligible as we see
in the Appendix. We focus on the dependence of the critical
phenomena on the parameters of the short-range interaction.
Our modeling enables us to study systematically the effect of
the short-range interaction on the critical phenomena without
applying an additional field to constrain the systems to the
coexistence line. Here we can avoid not only the ambiguity
and complexity of the asymmetry of the entropy effect but also
contamination of the short-range interactions due to different
elastic constants for different molecular species.

In this paper we systematically investigate the effects of
both ferromagneticlike and antiferromagneticlike short-range
interactions on the ordering process in a unified model and
present a phase diagram in the coordinates of the temperature
and the strength of the short-range interaction, including the
metastable structures. We find that the nature of the critical
phenomena is different in the cases of ferromagneticlike
and antiferromagneticlike transitions. We clarify that the
contributions of the short-range interaction and the elastic
interaction to enhancement of the ordering are essentially

different in the ferromagneticlike and antiferromagneticlike
transitions. We investigate in detail the border region between
ferromagneticlike and antiferromagneticlike phases and find
that the antiferromagneticlike phase has an advantage at
nonzero temperatures. To also expand discussion of the critical
properties of two-step SC transitions, we briefly summarize the
characteristic features of the types of SC transitions from the
viewpoint of the phase diagrams of the Ising-like models and
examine the difference of the properties between the Ising-like
models and the elastic interaction model. We also analyze
several kinds of interactions to maintain the lattice structure
(symmetry), focusing on asymmetric entropy effects for bro-
ken symmetry phases due to the difference of molecular sizes.

The rest of the paper is organized as follows. In Sec. II the
model and method are presented. In Sec. III we discuss the
critical properties of ferromagneticlike and antiferromagneti-
clike order parameters. In Sec. IV we show the phase diagram
of the present model in the coordinates of temperature T vs
the short-range interaction parameter J . In Sec. V we show an
outline of two-step SC transitions. In Sec. VI we discuss the
critical properties of two-step SC transitions and give summary
and discussion. In the Appendix we give a discussion about
types of interactions to maintain the square lattice and about
the symmetry between HS and LS.

II. MODEL AND METHOD

We consider a system which consists of molecules on a
square lattice. The positions of the molecules {r i} and also their
radii can be changed, and then the lattice can be distorted. We
assume that the square-lattice topology is not broken. We adopt
the following elastic interactions between the nearest-neighbor
molecules:

Hnn = k1

2

∑

〈i,j〉
{ri,j − [Ri(σi) + Rj (σj )]}2, (1)

where ri,j is the distance between the centers of the ith and
j th molecules. Each molecule takes the low-spin (LS) state
(σi = −1) or the high-spin (HS) state (σi = 1) and its radius
R depends on the state. The LS molecule has a smaller radius
than the HS molecule; RL < RH where RL (RH) is the radius of
the LS (HS) molecule. When the molecules contact each other,
the energy of Hnn is minimum. In Fig. 1 the configurations of
the minimum energy are depicted.

FIG. 1. (Color online) (a) Configuration of the ferromagneticlike phase (low-spin phase), (b) configuration of the ferromagneticlike phase
(high-spin phase), and (c) configuration of the antiferromagneticlike phase. Blue and red denote low-spin and high-spin states, respectively.
High-spin molecules are larger than low-spin molecules.
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To avoid a global deformation to rhombic shape and also
to maintain the square lattice, a small perturbation, such as the
following next-nearest-neighbor interaction, is necessary:

Hnnn = k2

2

∑

〈〈i,k〉〉
{ri,k −

√
2[Ri(σi) + Rk(σk)]}2. (2)

Then, the system of the elastic interaction has the form

HElastic = Hnn + Hnnn. (3)

We set k2 = k1/10 in this study.
Now, as the short-range interaction, we introduce the

following nearest-neighbor Ising interaction

HIS = −J
∑

〈i,j〉
σiσj . (4)

Taking into account the energy difference D and the ratio
g of the degeneracies between the HS and LS states,40,54 we
also add the following term (see also Sec. V):

Heff = 1

2
(D − kBT ln g)

∑

i

σi . (5)

Thus, the Hamiltonian of the system is given by

Htot = HElastic + HIS + Heff . (6)

In the present study we focus on the critical phenomena.
Thus, we need to investigate the system along the coexistence
line of the model. It is approximately realized if we set
D − kBT ln g = 0, i.e., Heff = 0 (equivalent to D = 0 and
g = 1). We give an analysis about the coexistence in the
Appendix. We set the parameter values as RH = 1.1, RL = 1,
k1 = 40, and k2 = 4.

Here we apply a Monte Carlo (MC) method with NPT

ensemble,24 where the pressure is set to P = 0 for the square
lattice (2D) with periodic boundary conditions. In the MC
method we choose a molecule at site i, and update the spin
state σi and the position of the molecule (xi,yi). Then we
update the volume of the total system under P = 0. One Monte
Carlo step (MCS) is defined as L × L times these procedures,
where L denotes the linear dimension (number of sites) of the
system.

As mentioned above, some additional interaction is neces-
sary to maintain the square lattice. Here we adopted the form
Eq. (2). Other types of interactions can also be used to maintain
the shape (see the Appendix).

Within Hnn, the ferromagneticlike configuration [Figs. 1(a)
and 1(b)] and the antiferromagneticlike configuration
[Fig. 1(c)] are degenerate. However, Hnnn resolves this
degeneracy. The total energy of the ferromagneticlike state
per molecule is EF

tot/L
2 = −Jz/2, and that of the antiferro-

magneticlike state is

EAF
tot

L2
= Jz

2
+ k2

2
[
√

2(RH − RL)]2 z

2
, (7)

where z is the coordination number (z = 4). The energy
difference between the two states is

�E

L2
= EAF

tot − EF
tot

L2
= Jz + k2(RH − RL)2z

2
. (8)

Therefore, for J = 0, �E > 0 and the ferromagneticlike
state is favored. Substituting RH = 1.1, RL = 1.0, z = 4, and

k2 = 4, �E/L2 = 4(J + 0.02). Thus, at J = J0 = −0.02, the
ground state changes between the ferromagneticlike (J > J0)
and antiferromagneticlike (J < J0) states. Hereafter, we define
J0 as the origin of J .

III. CRITICAL PROPERTIES OF TWO ORDER
PARAMETERS

We study the dependence of the critical properties of the
model on the short-range interaction J . In the present model,
the magnetization (m) and staggered magnetization (msg) are
the essential order parameters. The definitions of m and msg

are given by

m =
∑

i σi

L2
(9)

and

msg =
∑

i(−1)ix+iy σi

L2
, (10)

where (ix , iy) is the integer coordinate of the ith molecule
which numbers the 2D lattice. It should be noted that m

(msg) is not real (staggered) magnetization but a kind of
pseudo (staggered) magnetization to show ferromagneticlike
(antiferromagneticlike) order.

In order to study the critical phenomena, we analyze
Binder cumulants for both order parameters. Binder cumulants
for ferromagneticlike and antiferromagneticlike orders are,
respectively, defined as

UF
4 (L) ≡ 1 − 〈m4〉L

3〈m2〉2
L

and UAF
4 (L) ≡ 1 −

〈
m4

sg

〉
L

3
〈
m2

sg

〉2
L

. (11)

At the critical temperature the Binder cumulants for different
values of L cross, and the value at the point depends on the
type of phase transition.

We also investigate the correlation function of the spin state
in the vicinity of the critical point to catch the difference of the
ordering between ferromagneticlike and antiferromagneticlike
phases. The definition of the correlation function is given by

C(i,j ) = 〈
σ(lx ,ly )σ(lx+i,ly+j )

〉
. (12)

Here (lx,ly) denote the position of the lth spin, and i and j are
taken in the range 0 � i,j � L/2 − 1.

A. Ferromagneticlike phase transition

First we study the case of the ferromagneticlike phase
transition. Here we consumed 1 000 000–2 000 000 MCS for
the initial equilibration and the following 1 000 000–6 000 000
MCS at each temperature to obtain physical quantities.

Figure 2(a) shows a typical configuration near the critical
temperature Tc when J = 0.01. The red (blue) solid circles
denote HS (LS) molecules. The characteristic features are the
same as we studied for J = 0,23 and no clustering occurs.
In Fig. 2(b) the Binder plot UF

4 (L) [Eq. (11)] is given for
several system sizes L. We estimate the critical temperature of
the ferromagneticlike phase transition from the crossing point
Tc = 0.238. The value of UF

4 (L) at the point agrees well with
that of the mean-field model UF

4 (L) = 1 − �4(1/4)/24π2 =
0.27 . . ..55,56 Thus we conclude that the elastic model with
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FIG. 2. (Color online) (a) A snapshot of the configuration at T = 0.24 (near Tc = 0.238) for J = 0.01 and L = 50. A uniform configuration
is seen. (b) Temperature dependence of UF

4 for various system sizes L when J = 0.01. The horizontal dotted line (UF
4 = 0.27) denotes the

fixed-point value of the Binder cumulant for the mean-field universality class.

J > J0, which shows the ferromagneticlike transition, belongs
to the mean-field universality class. This is consistent with a
previous study.50 (In Sec. IV we discuss in detail the situation
when J is closer to J0.)

B. Antiferromagneticlike phase transition

Next we study the case of the antiferromagneticlike phase
transition. For J < −0.02 we expect that an antiferromag-
neticlike transition takes place. Here we study the case of
J = −0.1. Snapshots of the configuration for L = 50 are given
in Fig. 3(a). In contrast to the case of ferromagneticlike order,
the clusters consist of alternating LS and HS configurations. To
find the clusters more easily, we also plot masked configura-
tions of Fig. 3(a) in Fig. 3(b). Here the masked configuration is
given by σ ′

i = (−1)ix+iy × σi and black (green) circles denote
σ ′

i = 1 (−1). There, small antiferromagneticlike domains are
observed at T = 0.29 (left) and large antiferromagneticlike
domains at the middle (T = 0.25 which is close to the critical
temperature Tc = 0.243). An ordered antiferromagneticlike
phase is observed at T = 0.2 (right).

The Binder plot is given in Fig. 3(c) for several system
sizes L. We find Tc = 0.243 from the crossing point, and the
value of UAF

4 (L) at the point agrees well with that of the short-
range Ising model: UF

4 (L) = 0.61 . . ..57 Unlike the case of the
ferromagneticlike transition, the elastic model with J < J0

showing the antiferromagneticlike transition belongs to the
short-range Ising universality class.

C. Correlation function

We investigate the correlation function C(i,j )/C(1,1), in
which the value C(1,1) is chosen as the reference value, and
study the temperature dependence of the ordering patterns near
Tc in both cases of the ferromagneticlike and antiferromagnet-
iclike transitions.

Figures 4 and 5 illustrate profiles of the correlation function
when J = 0.01 and J = −0.1, respectively. The former shows
the change of the correlation function in ferromagneticlike
transition, while the latter shows it in antiferromagneticlike

transition. In both transitions, (a) depicts a configuration
below Tc, (b) a configuration close to Tc, and (c) and (d)
configurations above Tc.

The configurations (c) and (d) in Fig. 4 demonstrate
that the correlation is still large at long distances in the
ferromagneticlike case, which is a characteristic of long-range
interaction systems.23 In contrast to this feature, the correlation
decreases rapidly at long distances in the antiferromagneticlike
case as shown in Figs 5(c) and 5(d). This is characteristic
of short-range interaction models like the Ising model. This
analysis of the correlation functions is consistent with the
analysis of the Binder cumulants, i.e., the universality class
is different in the two cases. The difference between the
mean-field and Ising universality classes is confirmed by the
correlation function.

What causes the difference of the universality class between
ferromagneticlike and antiferromagneticlike ordering? If we
consider a configuration in which the LS phase and HS phase
coexist with a domain wall, the interface between the two
phases causes an energy cost of the order of O(L2), which is
the same mechanism as L2 dependence of the activation energy
in the macroscopic nucleation of elastic interaction systems in
2D.28 [In the case of 3D, the energy cost is of order O(L3).] In
this case, distortions of the lattice are proportional to the size
of the cluster. Therefore, ferromagneticlike large clustering
is impossible because of the huge energy cost. As a result,
the uniform configuration during the transition is universal in
ferromagneticlike ordering.

The situation is different in the antiferromagneticlike
case. In appearance of the antiferromagneticlike phase, the
symmetry is broken between one configuration of LS, HS,
LS, HS,... and the other configuration HS, LS, HS, LS,.... If
we consider a joint system of these two antiferromagneticlike
phases, the interface energy is of the order of O(L) because
these two antiferromagneticlike phases have the same unit
area in 2D [in the case of 3D, the energy cost is of O(L2)
because of the same unit volume]. Thus, the size difference
of the LS and HS molecules essentially does not cause energy
cost. Therefore, antiferromagneticlike ordering accompanied
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FIG. 3. (Color online) (a) Snapshots of the configuration for J = −0.1 and L = 50. Small clusters of the antiferromagneticlike phase
appear at the left (T = 0.29), large clusters appear at the middle (T = 0.25) near the critical point Tc = 0.243, and antiferromagneticlike
ordered phase is realized at the right (T = 0.2). (b) Snapshots of the masked configuration of (a). (c) Temperature dependence of UAF

4 for
various system sizes L when J = −0.1. The horizontal dotted line (UAF

4 = 0.61) denotes the fixed-point value of the Binder cumulant for the
Ising universality class.

by clustering is possible as is the case of usual phase transitions
in short-range interaction models.

IV. PHASE DIAGRAM

We depict the phase diagram J vs T in Fig. 6. Solid circles
and solid squares denote critical temperatures (Tc) of antifer-
romagneticlike and ferromagneticlike phases, respectively. As
pointed out in Sec. II, the original point between the antiferro-
magneticlike and ferromagneticlike phases in the ground state
is J = −0.02. It is worth noting that the antiferromagneticlike
phase transition occurs at the point J = J0(= −0.02), al-
though the ferromagneticlike and antiferromagneticlike phases

are degenerate at T = 0 for J0. We find that the antiferromag-
neticlike phase transition occurs even for J � −0.017, larger
than J = J0. It is considered as one of the reasons that the
average density of the disordered phase is closer to that of the
antiferromagneticlike phase than that of the ferromagneticlike
phase, and thus the generation of antiferromagneticlike clus-
ters is easier to realize than the generation of the ferromagnet-
iclike phase which is accompanied by global volume change.

Considering that the critical temperature of the pure Ising
model58 [Eq. (4)] (for both ferro and antiferromagnetic cases)
is given by

Tc = 2

ln(1 + √
2)

|J | � 2.27|J |, (13)
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FIG. 4. (Color online) Profiles of the correlation function of the system with J = 0.01 and L = 20 around Tc = 0.238. (a) T = 0.200, (b)
T = 0.240, (c) T = 0.260, and (d) T = 0.270. The diameter of each disk corresponds to the value of C(i,j )/C(1,1). Yellow (magenta) means
the plus (minus) sign of the correlation function.

it is found that the critical temperatures of the antiferro-
magneticlike transition, shown by solid circles in Fig. 6,
are a little bit larger than the temperatures T = 2.27|J |
which is shown by the dashed lines in Fig. 6. The critical
temperature of the antiferromagneticlike transition can be
approximated by

Tc � 2.27(|J | + C), (14)

where C � 0.01. Here it should be noted that J0 is just the
dividing point between the ferromagneticlike and antiferro-
magneticlike phases at T = 0, and the critical temperature Tc

is a function of J (not J − J0) because the interface energy is
a function of J .

We consider the origin of the shift C of the critical
temperature. We may attribute it to the cost of the elastic
interaction at the interface. At the interface in the x or y

direction between two phases (LS, HS, LS, HS,...and HS,
LS, HS, LS,...), the LS-LS molecular pair of the nearest
neighbors (call LS-LS bond) and the HS-HS molecular pair
of the nearest neighbors (HS-HS bond) align alternately.

The ideal intermolecular distance ri,j , which gives the
minimum energy, is different for LS-LS and HS-HS
pairs. The surface energy due to the elastic interaction
is calculated in a simple approximation as follows. The
HS-HS pair favors the distance ri,j = 2RH but the LS-LS
pair favors ri,j = 2RL. Assuming that ri,j = RL + RH is
realized as a result of compromise, the energy costs per pair
is �E � k1

2 {ri,j − [Ri(σi) + Rj (σj )]}2 � k1
2 [(RL + RH) −

2RL]2 = k1
2 [(RL + RH) − 2RH]2 = k1

2 [RH − RL]2 = 0.2, which
leads to C � 0.1. However, the true value of C is much
smaller and the relaxation of the configuration would be
necessary.

Then we estimate the elastic interface energy as follows.
We calculated the difference of the elastic energies [Eq. (3)]
between the system with no interface (complete antiferromag-
neticlike phase) and that with an interface. For L = 20 and
L = 40 we obtained relaxed configurations for both systems
at T = 0 and estimated the elastic energies. Dividing the
difference of the elastic energies by the number of LS-LS
and HS-HS bonds on the interface, we have δE � 0.023 (per
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FIG. 5. (Color online) Profiles of the correlation function C(i,j )/C(1,1) of the system with J = −0.1 and L = 20 around Tc = 0.243. (a)
T = 0.205, (b) T = 0.245, (c) T = 0.265, and (d) T = 0.275. The diameter of each disk corresponds to the value of C(i,j )/C(1,1). Yellow
(magenta) means the plus (minus) sign of the correlation function.

interface bond) in the case of the interface in the x (or y)
direction for both L = 20 and L = 40. We also estimated δE

in the case of the interface in the diagonal direction, where
the interface line consists of LS-LS bonds or HS-HS bonds,
and found δE much smaller. Thus C is considered the order
of 0.01. The energy cost due to interfaces is released to elastic
interactions around the interfaces. The elastic interactions
enhance antiferromagneticlike ordering weakly.

In contrast, in the ferromagneticlike transition, the effective
long-range interaction significantly enhances the transition
temperature and the values of Tc are much larger than those
of the antiferromagneticlike transition. Unlike the antifer-
romagneticlike transition, the critical temperature increases
much more steeply than 2.27J with the increase of the
value of J . This indicates that the elastic interaction and the
short-range interaction J enhance ferromagneticlike ordering
synergetically with nonlinear dependence.

It is expected that around J0 the ferromagneticlike and
antiferromagneticlike orders are nearly degenerate, which
causes a metastable structure of the ordered states. We study

the metastable regions by the analysis of the dynamics of the
order parameters under a sweep of J [Figs. 7(a) and 7(b)].

In Fig. 7(a) we set the ferromagneticlike phase as the initial
state at temperatures (T = 0.01,0.03), gradually decreased the
value of J from −0.01 to −0.07, and observed the relaxation
of 〈m2〉. We identified the point where 〈m2〉 decreased as the
endpoint of the ferromagneticlike metastable region. Here, in
the process of decreasing the value of J , we changed J in
steps of 0.001 and used 1 000 000 MCS to equilibrate and the
following 1 000 000 MCS to measure 〈m2〉 for each J . We
determined the boundary of the metastable region where 〈m2〉
becomes smaller than 0.9. We show the average data over five
trials with the use of different random number sequences for
L = 20 and L = 40. We do not find a strong dependence on
L for the metastability and conclude that the border of the
metastable state is well defined. These points are plotted by
open squares in Fig. 6.

In Fig. 7(b) we set the antiferromagneticlike phase as
the initial state at temperatures (T = 0.01,0.03), gradually
increased the value of J from −0.03 to 0.03, and observed the
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FIG. 6. Phase diagram in terms of the short-range interaction
J vs temperature T . F denotes the region of the ferromagneticlike
phase, AF is the region of the antiferromagneticlike phase, and D
is the region of the disordered phase. The point J = J0 = −0.02
at T = 0 (downward-triangle) is the critical point between the
ferromagneticlike and antiferromagneticlike phases at T = 0. Solid
circles and squares denote the critical points for the antiferromagneti-
clike and ferromagneticlike transitions, respectively. The dashed line
shows the critical temperature given by only the Ising interaction J .
Open squares and circles denote the endpoints of the metastable
ferromagneticlike and antiferromagneticlike phases (see Fig. 7),
respectively.

relaxation of 〈m2
sg〉. We identified the metastable antiferromag-

neticlike phase in the same way for the ferromagneticlike case.
The estimated boundary points are plotted by open circles in
Fig. 6. We find that metastability is realized and the region
expands at lower temperatures.

V. OUTLINE OF SPIN-CROSSOVER TRANSITIONS

To study the characteristics of two-step (HS ↔ AF ↔ LS)
SC transitions on the basis of the analyses in the previous
sections, we briefly summarize in this section the essential
features of the types of SC transitions making use of the phase

diagrams for the conventional (Ising-like) models. We will
discuss the difference of the critical properties between the
elastic model and Ising-like models in Sec. VI.

Ising-like models have been developed to describe various
SC phenomena. The Ising model with multifold degeneracy
was studied for single-step (LS ↔ HS) spin-crossover transi-
tions to catch the entropy induced transitions.16 The model is
given by

H = −JF

∑

〈i,j〉
σiσj + D

2

∑

i

σi,

(15)
σi = −1, . . . , − 1,︸ ︷︷ ︸

u

1, . . . ,1︸ ︷︷ ︸
r

.

Here JF > 0 denotes the interaction (not magnetic) between
the nearest-neighbor molecules and D > 0 denotes the energy
difference between the LS state (σi = −1) and the HS
state (σi = 1). The numbers of degenerate states u and r

are associated with the LS and HS molecular states. The
Hamiltonian (15) is equivalent to the following one in the
partition function54:

H = −JF

∑

〈i,j〉
σiσj + 1

2
(D − kBT ln g)

∑

i

σi,

(16)
σi = −1, 1,

where T is temperature and g ≡ r
u

> 0. The second term is
Heff in Eq. (5). This is the Ising model with an effective field
h(T ) = − 1

2 (D − kBT ln g).
Using a phase diagram (T , h) for the Ising model shown

in the upper panel of Fig. 8(a), we can obtain a better outlook
to discuss the feature of the single-step SC transition. Raising
the temperature in the model (15) causes a change of the
order parameter 〈m〉 = 1

N

∑
i〈σi〉 along a line h(T ) in the

phase diagram of the Ising model. The high spin fraction is
fHS = 〈m〉+1

2 .
We define Tc as the critical temperature of the Ising model

without the field. In the mean-field theory Tc = zFJF, where
zF is the coordination number. We also define Tcross(= D

kB ln g
)

0 2
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FIG. 7. (Color online) (a) Metastability of the ferromagneticlike phase for the values of J and (b) metastability of the antiferromagneticlike
phase for the values of J . + and × denote the order parameters at T = 0.03 and T = 0.01, respectively, for L = 20. 	 and © denote the order
parameters at T = 0.03 and T = 0.01, respectively, for L = 40.
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FIG. 8. (Color online) (a) Phase diagram of the Ising model for single-step SC transitions (upper panel) by the mean-field theory and three
typical cases of temperature dependence of 〈m〉 (lower panel). Spinodal curves are shown by blue lines and coexistence line by a green line. The
critical temperature Tc is given by Tc = zFJF in the mean-field theory. Three cases of first-order transition, second-order transition, and gradual
change of 〈m〉 are shown in the lower panel. The corresponding path of h(T ) for each case is also shown in the phase diagram (upper panel).
(b) Phase diagram of the antiferromagnetic Ising model for two-step SC transitions and typical temperature dependencies of 〈m〉 (lower panel).
The red line denotes the critical line for the antiferromagnetic order 〈mAF〉, in which second-order transitions occur except T = 0. The dotted
line gives 〈mA〉 = 0 and 〈mB〉 �= 0 (〈mB〉 = 0 and 〈mA〉 �= 0). The critical temperature Tc at h = 0 is given by Tc = zAF|JAF| in the mean-field
theory. Temperature dependencies of 〈m〉 for a two-step continuous transition (HS to AF to LS) and a one-step continuous transition (HS to
AF) are drawn in the lower panel and the corresponding paths of h(T ) are given in the upper panel.

as the temperature at which the effective field vanishes, i.e.,
h(T ) = 0. Depending on the relation between Tc and Tcross, the
transition between the LS and HS phases is classified into three
cases.59 The typical three cases of temperature dependence
of 〈m〉 are shown in the lower panel and corresponding paths
(oblique lines) of h(T ) are given in the upper panel. We find (I)
gradual change when Tc < Tcross and (II) discontinuous (first-
order) transition when Tc > Tcross. The second-order transition
(case III) is realized only when Tc = Tcross, which corresponds
to the middle case in the lower panel. Considering the relation
between h(T ) and the spinodal lines (blue lines in the upper
panel), we can classify the types of transitions in more detail.60

Ising-like models have been also extended to study two-step
SC transitions and several important aspects were successfully
clarified.40–42 The Ising-like model for two-step SC in bipartite
lattices is given by

H = −JF

∑

〈i∈A,j∈A〉
σ A

i σ A
j − JF

∑

〈i∈B,j∈B〉
σ B

i σ B
j

− JAF

∑

〈i∈A,j∈B〉
σA

i σB
j − h(T )

∑

i

(
σA

i + σB
i

)
, (17)

where h(T ) = − 1
2 (D − kBT ln g). Here A and B denote equiv-

alent sublattices and JF is the ferromagneticlike intrasublattice
interaction and JAF is the antiferromagneticlike (JAF < 0)
intersublattice interaction.

First we review the case of pure antiferromagnetic inter-
action (JF = 0). We depict a phase diagram (T , h) of the
antiferromagnetic Ising model by the mean-field theory in the
upper panel of Fig. 8(b).61 Two intrinsic order parameters
〈mA〉 and 〈mB〉, associated with the two sublattices A and B,
exist, i.e., 〈mA〉 = 1

NA

∑
i∈A〈σ A

i 〉 and 〈mB〉 = 1
NB

∑
i∈B〈σ B

i 〉
correspond, respectively, to the net magnetization per site in
the sublattices A and B, respectively. NA (NB) is the number
of the sites in A (B) sublattice and NA = NB. We define two
order parameters as 〈m〉 = 〈mA〉+〈mB〉

2 and 〈mAF〉 = 〈mA〉−〈mB〉
2 .

The former and latter correspond to ferromagneticlike and
antiferromagneticlike orders.

The red line denotes the critical line in which the antifer-
romagneticlike (AF) order 〈mAF〉 appears and it is the border
between the regions of 〈mA〉 = 〈mB〉 and 〈mA〉 �= 〈mB〉, which
causes second-order phase transitions. Only at T = 0, the
transition is discontinuous. The dotted line gives 〈mA〉 = 0 and
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FIG. 9. (Color online) (a) Phase diagram of the Ising model with antiferromagnetic and ferromagnetic interactions for two-step SC
transitions (upper panel) and typical temperature dependence of 〈m〉 (lower panel) of a two-step SC transition with first-order (lower T ) and
second-order (higher T ) transitions. The critical temperature Tc at h = 0 is given by Tc = zAF|JAF| + zFJF in the mean-field theory. Tricritical
points are shown by Pt(Tt,ht) and Qt(Tt, − ht). The blue lines denote the limit of the metastability of the antiferromagneticlike phase and the
upper (lower) red line for 0 � T < Tt denotes the limit of the metastability of the HS (LS) phase. The red line for Tt � T � Tc is the critical
line for antiferromagneticlike order 〈mAF〉. (b) A two-step SC transition with double first-order transitions. (c) Another type of two-step SC
transition with double first-order transitions. Unlike case (b), when JF is relatively large, the decay temperature of the metastable HS phase can
be lower than that of the metastable LS phase.

〈mB〉 �= 0 (〈mB〉 = 0 and 〈mA〉 �= 0). Thus, only continuous
(second-order) SC transitions are realized. The lower panel
of Fig. 8(b) shows examples of a two-step (HS to AF to LS)
continuous transition and a one-step (HS to AF) continuous
transition, and corresponding paths (oblique lines) of h(T ) are
also drawn in the upper panel.

If JF �= 0, the metastable region of the antiferromagneti-
clike phase and that of the ferromagneticlike phase appear at
low temperatures and they exist in the region 0 � T < Tt,
where Tt is the temperature of tricritical points Pt(Tt,ht)
and Qt(Tt, − ht) [see the upper panel of Fig. 9(a)]. For
0 � T < Tt, the upper and lower blue lines denote the limit
of the metastability of AF phase (i.e., AF spinodal line),
while the upper (lower) red line corresponds to the limit of
the metastable HS (LS) phase [i.e., HS (LS) spinodal line].
The limit of the field for the metastable AF phase at T = 0
is h = zAF|JAF| + zFJF ≡ hc and h = −hc, and the limit of
the field for the metastable HS (LS) phase at T = 0 is h =
zAF|JAF| − zFJF ≡ h0 (h = −h0). The critical temperature
(Néel point) Tc at h = 0 is given by Tc = zAF|JAF| + zFJF

in the mean-field theory. Here zAF (zF) is the coordination
number for the inter(intra)-sublattice nearest-neighbor sites.
In the region Tt � T � Tc, the red line denotes the critical line
of the antiferromagneticlike order mAF for second-order phase
transitions as the same as the case JF = 0.

The lower panel of Fig. 9(a) illustrates an example of a
two-step transition with first-order (lower T ) and second-order
(higher T ) phase transitions. In Fig. 9(b) an example of a two-
step transition with double first-order transitions is depicted.
Depending on the relation between two tricritical points (Pt

and Qt) and the line h(T ), the two-step transitions are classified
into three cases: (I) first order and second order, (II) double
first order, and (III) double second order. When the line h(T )
locates above the two tricritical points, type (II) is realized,
while h(T ) locates below the two tricritical points, type (III) is
realized. When h(T ) locates between the two tricritical points,
type (I) occurs. Figures 9(a) and 9(b) correspond to types (I)
and (II), respectively.

When JF is so large as zFJF > zAF|JAF|, another pattern
of two-step transitions of double first-order transitions can
be realized as depicted in Fig. 9(c). Here the limit of the
metastability of the HS (LS) phase (red line) appears at the
lower (h < 0) [upper (h > 0)] half plane, and thus the decay
temperature of the metastable HS phase can be lower than
the decay temperature of the metastable LS phase. In SC
compounds, this case of double first-order transitions has not
yet reported in experiments but it may be found in the future.
The three patterns of two-step transitions were also studied
by Monte Carlo methods.41 In the elastic interaction model
[Eq. (6)] the elastic interactions (k1 and k2) and the short-range
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interaction J take the roles of the interactions JF and JAF of
the Ising-like models.

VI. SUMMARY AND DISCUSSION

We obtained a phase diagram as a function of the short-
range interaction J , where we found that both the ferromag-
neticlike and antiferromagneticlike transition temperatures are
enlarged by the elastic interaction. However, we found that
the natures of ferromagneticlike and antiferromagneticlike
phase transitions are qualitatively different. In the case of
the ferromagneticlike phase transition, the elastic interaction
acts as an effective long-range interaction and it significantly
enhances the ferromagneticlike ordering, where the system
belongs to the mean-field universality class. The increase of the
critical temperature is much larger than that expected from the
Ising interaction. The synergetic effect of the elastic interaction
and the short-range interaction amplifies the ferromagneticlike
ordering and causes high critical temperatures.

In sharp contrast to this case, in the case of the antiferro-
magneticlike phase transition, the system belongs to the Ising
universality class. In this case the long-rang interaction due
to the elastic interaction is irrelevant, and clustering of the
ordered phases is observed. The elastic interaction raises the
critical temperature of antiferromagneticlike order, as well.
This is because the staggered structure is stable for the elastic
interaction, but the contribution to enhancement is small. The
antiferromagnetic order is mainly enhanced by the short-range
interaction.

We also confirmed different natures in the configurations of
the correlation function near the critical point in the cases of
ferromagneticlike and antiferromagneticlike phase transitions.
Besides, we found that metastable ferromagneticlike and
antiferromagneticlike phases exist near the region in which
both orders are nearly degenerate.

The present study was performed for the two-dimensional
model, but the conclusion can be extended to cases of three

dimensions because the physical mechanisms studied in this
paper are the same as in three dimensions.

In the present study we focused on the critical properties
of the model along the coexistence line, i.e., Heff = 0. In the
SC system, Heff changes with the temperature, and reflecting
the structure around the coexistence line, the system can
exhibit a two-step SC transition with temperature change.
We depict two types of two-step transitions in Figs. 10(a)
and 10(b). The former shows double continuous transitions
and the latter shows first-order (lower T ) and continuous
(higher T ) transitions. In this Monte Carlo simulation, we
used 1 000 000 MCS to equilibrate and the following 1 000 000
MCS to measure 〈m〉. From the results of this study, it is
found that the SC phase transition between the HS phase
and the intermediate phase (antiferromagneticlike phase) can
be a second-order phase transition of the short-range Ising
interaction type, while the SC phase transition between the HS
and LS phases is of the mean-field type when it is of second
order. The approach of the present study enables us to capture
new aspects of two-step SC transitions from the viewpoint of
the elastic interaction and the short-range interaction.

The phase diagrams of HS, LS, and AF phases for the elastic
interaction model with the short-range interaction may have
similar features to those obtained by Ising-like models in the
mean-field theory in Sec. V (see Figs. 8 and 9). However, the
nature of the phase transition of the model is not the same as
that of the Ising-like models. The universality classes of the
transitions are different from those of the Ising-like models.
The regions of the metastability for the HS, LS, and AF phases
are determined by local interactions in the Ising-like models,
while those are determined by both local and global stability
in the elastic model. Thus the quantitative features of the phase
diagrams in the elastic model are different from those in the
Ising-like models, which is nontrivial. The details of the phase
diagrams and correspondence to SC compounds will be studied
in the future.62

When J = J0, the antiferromagneticlike phase appears
although the ground states (T = 0) of the two phases are
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FIG. 10. (a) Two-step SC transition with double continuous (LS ↔ AF and AF ↔ HS) transitions. D = 1.6 and g = 1000. The symbols
© and  denote 〈m〉 for L = 20 and L = 40, respectively. (b) Two-step SC transition with first-order (LS ↔ AF) and continuous (AF ↔ HS)
transitions. D = 1.02 and g = 1000.
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degenerate at this value of J . This fact indicates that the anti-
ferromagneticlike phase is favorable at finite temperatures. In
the text we considered a reason why the antiferromagneticlike
phase is realized easier than the ferromagneticlike phase. We
may attribute it to a dynamical effect. The average fraction of
HS and LS molecules of this ordered phase is almost the same
as in the disordered phase and the antiferromagneticlike phase
can be realized without modification of the density. We may
also consider this fact from the view point of entropy, i.e., a
kind of mechanism of order by disorder. A detailed study will
be done in the future.
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APPENDIX: INTERACTIONS TO MAINTAIN THE SQUARE
SYMMETRY AND THE COEXISTENCE OF HIGH-SPIN

AND LOW-SPIN PHASES

If only the nearest-neighbor interaction [Eq. (1)] is used,
the lattice may distort into a rhombic shape. To prohibit such
deformation, we need some additional interaction. In the text
we applied the next-nearest interaction Hnnn [Eq. (2)]. We
may consider other interactions instead of the choice of Hnnn.
A kind of interactions to maintain the angle between bonds
for desired lattices has been frequently used.51–53 Thus in the
same way we focus on the angle (θjil) between the bonds i − j

and i − l (Fig. 11), which is defined by the relation

cos θjil = �ri,j · �ri,l

ri,j ri,l

. (A1)

k

i j

l

jil
θ

FIG. 11. (Color online) The definition of θjil .

To maintain a square lattice, i.e., θjil equal to π/2, the
following interaction can be adopted:

Hθ = C
∑

cos2 θjil, (A2)

where C is a positive constant, and the summation is taken
over all pairs of bonds.

For the configuration of the ferromagneticlike phase or
antiferromagneticlike phase in Fig. 1, Hθ takes the minimum
value Hθ = 0, and this term plays a role in maintaining the
square symmetry. In this interaction, the ferromagneticlike and
antiferromagneticlike phases have the same energies at T = 0
and both phases are the ground state. The origin of J is zero
(J0 = 0) in this case.

Unlike the case of Eq. (2), in this choice [Eq. (A2)] the
configuration entropy is different for HS molecules and LS
molecules, as analyzed below. We consider the motion of
molecules around the position in the complete LS (HS) phase
[as in Figs. 1(a) and 1(b)]. Let the fluctuation of a molecule in
the x direction (y direction) be defined as dx (dy). The poten-
tial term for the molecule U , given by cos2 θjil , has the form

U ∝ (dx + dy)2

R2
(A3)

in the leading term of dx and dy, where R is the molecular
radius. Because R is larger in the HS state and the entropy gain
is larger in the HS state, the HS state is more favorable than the
LS state. Indeed we observed that only the HS state is realized
in the simulation. LS and HS states are not symmetric anymore.
This situation is similar to the Ising model with nonzero mag-
netic field. Thus critical phenomena do not occur in this case. A
field for cancellation of this difference was artificially applied
when critical properties were studied.51–53 Thus we adopt the
present choice to avoid this complication, where Hnnn has no
R dependence as dx2 + dy2 in the leading term and the system
has a critical point. Rigorously speaking, the HS state is more
favorable than the LS state even in this case. However, Hnnn

has R dependence at higher order and the difference is small
and can be ignored in the practical calculation (no influence on
simulations). This analysis holds in three dimensions. Namely,
Eq. (A3) has the dependence of (dx+dy)2

R2 , (dy+dz)2

R2 , or (dz+dx)2

R2 for
the fluctuation (dx, dy, dz), while Eq. (2) has no R dependence
as dx2 + dy2, dy2 + dz2, or dz2 + dx2.

In order to confirm the above mentioned effects, we
performed Monte Carlo simulations with the interaction (A2)
with C = 4. For J < 0 we found that antiferromagneticlike
transition occurs and it has the same critical properties as in
the case of the text. Namely, curves of T dependence of UAF

4
cross for different system sizes L and the value of UAF

4 at
the crossing point is UAF

4 = 0.61 (not shown). For example,
Tc is estimated as Tc = 0.138 when J = −0.04. It is clear
that the interaction (A2) has the same contribution to the two
coexistent anitiferromagneticlike phases and has no effect on
the critical properties.

In contrast, for the ferromagneticlike region, it has a big
effect on the critical property. In Fig. 12(a) the temperature
dependence of 〈m2〉 is given for J = 0.04. Here we find a sharp
change of magnetization 〈m2〉 which indicates ferromagneti-
clike phase transitions, and the magnetization seems to have
a critical point. However, if we plot the Binder cumulant for
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FIG. 12. Temperature dependence of 〈m2〉 (a) and temperature dependence of UF
4 (b) for various system sizes L when J = 0.04.

the ferromagneticlike transition, a strange dependence on the
size was found. In contrast to the antiferromagneticlike case,
curves of T vs UAF

4 for different system sizes do not cross
in this ferromagneticlike case, shown in Fig. 12(b). Thus we
conclude that the critical point does not exist in this case. When
J = 0.001, an antiferromagneticlike transition takes place, and
for J � 0.01 the system shows a ferromagneticlike transition.
There is a critical value of J (Jc) between the ferromagneticlike
and antiferromagneticlike phases. This critical value locates in
the region of 0.001 < Jc < 0.01. This is considered a similar
finite temperature effect which is discussed in the text.

As another choice, we may adopt a next-nearest-neighbor
interaction to realize J0 = 0:

Hnnn = k2

2

∑

〈〈i,k〉〉
[ri,k − 2

√
2R̄ijkl]

2. (A4)

Here the next-nearest-neighbor interaction i − k depends on
the bonds i − j , j − k, k − l, and l − i, and we define

2R̄ijkl = {[Ri(σi) + Rj (σj )] + [Rj (σj ) + Rk(σk)]

+ [Rk(σk) + Rl(σl)] + [Rl(σl) + Ri(σi)]}/4

= [Ri(σi) + Rj (σj ) + Rk(σk) + Rl(σl)]/2. (A5)

In this case the states of Fig. 1 (ferromagneticlike and
antiferromagneticlike configurations) are the ground state and
J0 = 0. However, this model gives a similar situation of
noncrossing of UF

4 -T curves although some cases of L show
crossing. This reason is not the same as the case (A2). The
reason is not so clear but four-body interactions may cause such
complex dependencies. Thus, although J0 �= 0, we adopted
Eq. (2) for the purpose of maintaining the square lattice in the
present work.
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