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We identify two elemental interatomic couplings that control the collaborative (as opposed to competing)
interaction between the O6 octahedral rotations (usually called antiferrodistortive or AFD modes) and the
antiferroelectric (AFE) displacement patterns of the A-site cations in oxides with the ABO3 perovskite structure.
Straightforward analytical derivations allow us to reproduce and explain the origin of various long-range AFE
orders that have been previously found in different phases of several perovskite compounds, all possessing
simple or even complex long-range AFD patterns. Our analysis also leads to the prediction of original peculiar
combinations of AFD and AFE orders that are awaiting to be observed.

DOI: 10.1103/PhysRevB.88.014104 PACS number(s): 77.80.−e, 61.50.Ah, 61.68.+n

I. INTRODUCTION

Many ABO3 perovskite materials display concerted oxygen
octahedral tiltings usually termed antiferrodistortive (AFD)
modes (see, e.g., Refs. 1–7 and references therein). Typ-
ically, the AFD modes compete with ferroelectric (FE)
distortions,8 and such a competition may have drastic conse-
quences on the macroscopic materials properties. For example,
first-principles-based model theories of PbZr1−xTixO3

2 and
PbTiO3

9 revealed that the AFD-FE competition results in a
drastic reduction of the Curie temperature of these compounds.
Similarly, the fact that the Curie temperature of some epitaxial
ferroelectric and multiferroic thin films (under short-circuit-
like boundary conditions) adopts a counterintuitive behavior,
decreasing for a growing compressive strain,10,11 is also
a manifestation of the competitive nature of the coupling
between the AFD and FE instabilities. Another consequence
is the fact that AFD and FE motions do not spatially coexist in
domains occurring in some FE films under open-circuit-like
boundary conditions: the oxygen octahedral tiltings are found
to be large near the domain walls while the FE distortions are
significant only inside the “up” and “down” domains.12,13

Interestingly, perovskite compounds can also be antiferro-
electric (AFE) rather than ferroelectric,14,15 and AFE materials
are gaining renewed attention due to their prospective appli-
cations in the field of energy.16,17 Remarkably, different AFD
patterns were recently found to coexist with AFE distortions in
several ABO3 perovskites, with a precise correlation existing
between the type of tilting pattern and the kind of antipolar
movements of the A-site cations (see, e.g., Refs. 18–22 and
references therein). Moreover, in some cases, it has been
shown from first principles that the AFE pattern plays a key
role in the stabilization of specific AFD motions.19,22 One
may thus wonder if it is a general behavior that the AFD
and AFE motions, unlike AFD and FE degrees of freedom,
in fact, collaborate rather than compete. Further, we may
ask ourselves whether, intrinsic to the perovskite structures,
there may be universal interatomic couplings that govern
such a collaboration and determine the specific AFD-AFE
combinations that can occur. Note that such hypothetical
interatomic couplings should be allowed by symmetry in any
perovskite (hence their universal character) and automatically

guarantee a collaborative coupling between AFD and AFE
variables.

The aim of this article is to demonstrate the existence, and
provide the analytical forms, of such coupling energy terms.
As we will see, these elemental terms naturally reproduce all
the peculiar AFE patterns that have been recently found to be
associated with specific AFD distortions. From these terms, we
also predict peculiar combinations of AFD and AFE patterns
that, to the best of our knowledge, have yet to be discovered.

The article is organized as follows. Section II provides
the analytical expressions for the atomistic energy terms that
locally couple AFD motions and cation displacements in a
collaborative fashion, and also describes the derivation of some
useful formula. In Sec. III, these formula are applied to the case
of simple and complex AFD patterns to predict the induced
AFE configurations. Finally, Sec. IV summarizes this work
and emphasizes its consequences for both experimentalists
and theorists working on properties of perovskites. Let us note
here that the precise definition of an AFE material, and the
distinction between AFE and antipolar displacement patterns,
is currently generating some debate.17 In this article, we use
the terms antiferroelectric and antipolar indifferently.

II. FORMALISM

Let us start by defining the local AFD mode ωi that
characterizes the tilting of the oxygen octahedron centered at
the B site in unit cell i. (Here, we adopt the convention that the
B cations are at the corners of the reference five-atom cell, and
the A cations are at the cell center.) As sketched in Fig. 1,
the direction of this pseudovector provides the axis about
which the oxygen octahedron rotates and its magnitude yields
the rotation angle.2 Thus, for instance, ωi = 0.1(x + y + z)
corresponds to a rotation by 0.1

√
3 radians about the [111]

axis, with x, y, and z denoting the unit vectors along the
[100], [010], and [001] pseudocubic directions, respectively.
Moreover, ωilmn will represent rotation of the O6 group in
the cell that is reached from i by following the lattice vector
Rlmn = alat(lx + my + nz), where alat is the lattice constant of
the five-atom cubic cell and l, m, and n are integers.

Also sketched in Fig. 1 is the vector ui giving the off-
centering displacement of the A-site cation at cell i. Note that
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FIG. 1. (Color online) Sketch of the elemental five-atom per-
ovskite cell, with the A site (blue circle) at the cell center and the
B sites (red circles) at the corners. Oxygens represented by small
black circles are at the mid points of the cell edges. The atoms
within the unit cell are represented by solid symbols; open symbols
represent periodic images. The A-cation polar distortion (ui) and
B-centered oxygen octahedra rotation (ωi) associated to this ith cell
are pictorially indicated.

these vectors can give rise to both FE and AFE displacement
patterns, depending on how they correlate from cell to cell.

Now, we want to investigate whether an AFD motion can
induce the displacement of (or, equivalently, cause a force
acting on) the A cations. Figure 2 illustrates two simple and
representative situations: (a) shows how the 12 oxygen atoms
neighboring a specific A cation displace according to a simple
AFD pattern. In particular, we present the concerted rotation
of O6 groups that is denoted as a−a−a− in the well-known
notation introduced by Glazer,1 i.e., we have ω0 = ω(1,1,1)
for the O6 group in the cell at the origin and an antiphase
modulation of the rotations as we move to neighboring cells
along any of the principal cubic directions. Interestingly,
these equal-amplitude rotations about the three peudocubic
axes do change the first oxygen-coordination shell of the
A cation in Fig. 2(a), but do not induce any force on it.
To understand this, one can for example look at the three
oxygens that come closer to the A cation upon the condensation
of the a−a−a− distortion, which are marked with asterisks
in the figure; these closest anions form a very symmetric
configuration around the A atom, and induce no net force
on it. On the other hand, panel (b) shows a different AFD
pattern denoted as a−a−c+ in Glazer’s notation (i.e., we have
equal-amplitude rotations modulated in antiphase about the x

and y axes and a third in-phase rotational distortion about z).

FIG. 2. (Color online) Schematic representation of two simple
AFD patterns, indicating with arrows the displacements affecting the
oxygen atoms. The oxygens that get closest to the central A cation are
marked with asterisks; in (b), there are two symmetry-inequivalent
cases, marked with single and double asterisks, respectively.

Here again, there are three oxygens that get the closest to
the A cation and which are marked with asterisks in Fig. 2(b);
however, in this case the closest oxygens form a low-symmetry
first coordination shell, and it is clear that the A cation must
feel some sort of forces along the x and y directions. This will
result in an A-site off-centering accompanying the a−a−c+
pattern.

We thus tried to find energetic terms that are associated
with the forces appearing on the A cations when their 12
neighboring oxygens distort and break symmetry as a result
of O6 rotations. We adopted the effective-Hamiltonian type
of approach to structural transitions in perovskite oxides,21,23

which relies on a Taylor-series expansion of the materials
energy around its natural reference configuration (i.e., the
cubic perovskite prototype phase) as a function of the
relevant degrees of freedom. In our case, such degrees of
freedom are the O6 rotations ωi and the off-centering A-cation
displacements ui . Thus we set up to identify the lowest-order
ω-u couplings satisfying the following conditions: (i) linearity
in ui , as required to generate forces on the A cations and
(ii) nonzero contribution to the energy for simple rotational
patterns that can be expressed in Glazer’s notation (i.e., those
involving concerted O6 rotations modulated exactly in phase
or in antiphase and a small repetition period). Regarding
condition (i), note that the interactions of interest will result
in AFD-induced forces on the A cations irrespective of the
sign of the associated coupling parameter; in other words,
by construction these couplings are always collaborative.
Regarding condition (ii), note that this is sufficient to inves-
tigate the cases sketched in Fig. 2, which are representative
of the rhombohedral (a−a−a−) and orthorhombic (a−a−c+)
structures displayed by most perovskite oxides.

Our analysis led us to identify the following two terms,
which we will denote as �E1 and �E2:

�E1 = K1

∑

i

[ui,z(ωi,yωi,z + ωi100,yωi100,z + ωi001,yωi001,z + ωi101,yωi101,z)

−ui,z(ωi110,yωi110,z + ωi010,yωi010,z + ωi011,yωi011,z + ωi111,yωi111,z)

+ui,z(ωi,xωi,z + ωi010,xωi010,z + ωi001,xωi001,z + ωi011,xωi011,z)

−ui,z(ωi100,xωi100,z + ωi110,xωi110,z + ωi101,xωi101,z + ωi111,xωi111,z)
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+ui,x(ωi,xωi,z + ωi010,xωi010,z + ωi100,xωi100,z + ωi110,xωi110,z)

−ui,x(ωi011,xωi011,z + ωi001,xωi001,z + ωi101,xωi101,z + ωi111,xωi111,z)

+ui,x(ωi,xωi,y + ωi001,xωi001,y + ωi100,xωi100,y + ωi101,xωi101,y)

−ui,x(ωi010,xωi010,y + ωi011,xωi011,y + ωi110,xωi110,y + ωi111,xωi111,y)

+ui,y(ωi,xωi,y + ωi001,xωi001,y + ωi010,xωi010,y + ωi011,xωi011,y)

−ui,y(ωi101,xωi101,y + ωi100,xωi100,y + ωi110,xωi110,y + ωi111,xωi111,y)

+ui,y(ωi,zωi,y + ωi100,zωi100,y + ωi010,zωi010,y + ωi110,zωi110,y)

−ui,y(ωi001,zωi001,y + ωi101,zωi101,y + ωi011,zωi011,y + ωi111,zωi111,y)] (1)

and

�E2 = K2

∑

i

[
ui,z

(
ω2

i100,yωi100,z + ω2
i001,yωi001,z + ω2

i010,yωi010,z + ω2
i111,yωi111,z

)

−ui,z

(
ω2

i,yωi,z + ω2
i101,yωi101,z + ω2

i110,yωi110,z + ω2
i011,yωi011,z

)

+ui,z

(
ω2

i,xωi,z + ω2
i011,xωi011,z + ω2

i110,xωi110,z + ω2
i101,xωi101,z

)

−ui,z

(
ω2

i010,xωi010,z + ω2
i001,xωi001,z + ω2

i100,xωi100,z + ω2
i111,xωi111,z

)

+ui,x

(
ωi010,xω

2
i010,z + ωi100,xω

2
i100,z + ωi001,xω

2
i001,z + ωi111,xω

2
i111,z

)

−ui,x

(
ωi,xω

2
i,z + ωi110,xω

2
i110,z + ωi011,xω

2
i011,z + ωi101,xω

2
i101,z

)

+ui,x

(
ωi,xω

2
i,y + ωi101,xω

2
i101,y + ωi011,xω

2
i011,y + ωi110,xω

2
i110,y

)

−ui,x

(
ωi001,xω

2
i001,y + ωi100,xω

2
i100,y + ωi010,xω

2
i010,y + ωi111,xω

2
i111,y

)

+ui,y

(
ω2

i001,xωi001,y + ω2
i010,xωi010,y + ω2

i100,xωi100,y + ω2
i111,xωi111,y

)

−ui,y

(
ω2

i,xωi,y + ω2
i011,xωi011,y + ω2

i101,xωi101,y + ω2
i110,xωi110,y

)

+ui,y

(
ω2

i,zωi,y + ω2
i110,zωi110,y + ω2

i101,zωi101,y + ω2
i011,zωi011,y

)

−ui,y

(
ω2

i100,zωi100,y + ω2
i010,zωi010,y + ω2

i001,zωi001,y + ω2
i111,zωi111,y

)]
, (2)

where the sum over i runs over all the cells of the perovskite
structure; the x, y, and z subscripts denote the Cartesian
components of the ui vectors and ωi pseudovectors. Figure 3
gives a graphical, more intuitive representation of these
coupling terms.

FIG. 3. (Color online) Sketch of representative coupling terms
in (a) �E1 [see Eq. (1)] and (b) �E2 [see Eq. (2)]. In both cases,
we sketch the first eight couplings appearing in the corresponding
equation in the text. The blue arrow on the central A cation stands for
the ui,z displacement; the red arrows on the corner B cations represent
components of the ω pseudovectors, with double arrows standing for
squared components. The rest of terms in Eqs. (1) and (2) can be
derived from the ones shown by application of the operations of the
cubic Pm3̄m space group of the perovskite structure.

Let us now consider distortions of the form

ωi,x = 1
2A [exp(ikx · Ri) + c.c.],

ωi,y = 1
2B [exp(iky · Ri)] + c.c.],

ωi,z = 1
2C [exp(ikz · Ri) + c.c.],

(3)
ui,x = 1

2A′ [exp(ik′
x · Ri) + c.c.],

ui,y = 1
2B ′ [exp(ik′

y · Ri) + c.c.],

ui,z = 1
2C ′ [exp(ik′

z · Ri) + c.c.] .

Here, A, B, and C (respectively, A′, B ′, and C ′) are scalars
quantifying the magnitude of the Cartesian components of
ωi (respectively, ui); Ri is the lattice vector associated with
cell i and c.c. stands for “complex conjugate.” Additionally,
kx , ky , and kz are k vectors defining, respectively, the
modulation of the x, y, and z components of a general AFD
distortion; for instance, we have kx = ky = π

alat
(x + y + z)

and kz = π
alat

(x + y) in a material displaying a a−b−c+ tilting
pattern. Similarly, k′

x , k′
y , and k′

z characterize the long-range
polar or antipolar distortions associated with the ui,α vector
components. For example, a pure tetragonal P 4mm state for
which the polarization is lying along z has k′

z = 0, while the
AFE displacements inherent to the prototypical orthorhombic
a−a−c+ phase are associated with k′

x = k′
y = π

alat
z (see, e.g.,

Ref. 19).
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It is straightforward to show that inserting Eq. (3) into Eqs. (1) and (2) gives

�E1/(K1N ) = a1

∑

G

δ(G − k′
z − ky − kz) + a2

∑

G

δ(G − k′
z − kx − kz) + a3

∑

G

δ(G − k′
x − kz − kx)

+ a4

∑

G

δ(G − k′
x − ky − kx) + a5

∑

G

δ(G − k′
y − kx − ky) + a6

∑

G

δ(G − k′
y − kz − ky)

+ [kx → −kx] + · · · + [kx → −kx ; k′
x → −k′

x] + · · · (4)

and

�E2/(K2N ) = b1

∑

G

δ(G − k′
z − 2ky − kz) + b2

∑

G

δ(G − k′
z − 2kx − kz) + b3

∑

G

δ(G − k′
x − 2kz − kx)

+ b4

∑

G

δ(G − k′
x − 2ky − kx) + b5

∑

G

δ(G − k′
y − 2kx − ky) + b6

∑

G

δ(G − k′
y − 2kz − ky)

+ [kx → −kx] + · · · + [kx → −kx ; k′
x → −k′

x] + · · · , (5)

where N is the number of cells in the crystal and G labels the reciprocal lattice vectors corresponding to the five-atom cubic
perovskite structure. The terms that we have written explicitly are obtained from products of the first summands in Eq. (3) [e.g.,
the summand proportional to exp(ikx · Ri) in the case of ωi,x , etc.] plus the corresponding complex conjugates. Additional terms
are indicated symbolically in Eqs. (4) and (5); thus, for example, [kx → −kx] denotes all the terms that can be derived from
those explicitly written and involving ωi,x by making the kx → −kx substitution. The a and b coefficients depend on the wave
vectors as well, and are given by

a1 = 1
8BCC ′{1 + exp[i(ky + kz) · alatx] + exp[i(ky + kz) · alatz] + exp[i(ky + kz) · alat(x + z)] − exp[i(ky + kz) · alat(x + y)]

− exp[i(ky + kz) · alaty] − exp[i(ky + kz) · alat(y + z)] − exp[i(ky + kz) · alat(x + y + z)]} + c.c., (6)

a2 = 1
8ACC ′{1 + exp[i(kx + kz) · alaty] + exp[i(kx + kz) · alatz] + exp[i(kx + kz) · alat(y + z)] − exp[i(kx + kz) · alat(x + y)]

− exp[i(kx + kz) · alatx] − exp[i(kx + kz) · alat(x + z)] − exp[i(kx + kz) · alat(x + y + z)]} + c.c., (7)

a3 = 1
8ACA′{1 + exp[i(kx + kz) · alaty] + exp[i(kx + kz) · alatx] + exp[i(kx + kz) · alat(x + y)] − exp[i(kx + kz) · alat(y + z)]

− exp[i(kx + kz) · alatz] − exp[i(kx + kz) · alat(x + z)] − exp[i(kx + kz) · alat(x + y + z)]} + c.c., (8)

a4 = 1
8ABA′{1 + exp[i(kx + ky) · alatz] + exp[i(kx + ky) · alatx] + exp[i(kx + ky) · alat(x + z)] − exp[i(kx + ky) · alat(y + z)]

− exp[i(kx + ky) · alaty] − exp[i(kx + ky) · alat(x + y)] − exp[i(kx + ky) · alat(x + y + z)]} + c.c., (9)

a5 = 1
8ABB ′{1 + exp[i(kx + ky) · alatz] + exp[i(kx + ky) · alaty] + exp[i(kx + ky) · alat(y + z)] − exp[i(kx + ky) · alat(x + z)]

− exp[i(kx + ky) · alatx] − exp[i(kx + ky) · alat(x + y)] − exp[i(kx + ky) · alat(x + y + z)]} + c.c., (10)

a6 = 1
8BCB ′{1 + exp[i(ky + kz) · alatx] + exp[i(ky + kz) · alaty] + exp[i(ky + kz) · alat(x + y)] − exp[i(ky + kz) · alat(x + z)]

− exp[i(ky + kz) · alatz] − exp[i(ky + kz) · alat(y + z)] − exp[i(ky + kz) · alat(x + y + z)]} + c.c., (11)

b1 = 1
16B2CC ′{exp[i(2ky + kz) · alatx] + exp[i(2ky + kz) · alatz] + exp[i(2ky + kz) · alaty] + exp[i(2ky + kz) · alat(x + y + z)]

− 1 − exp[i(2ky + kz) · alat(x + z)] + exp[i(2ky + kz) · alat(x + y)] + exp[i(2ky + kz) · alat(y + z)]} + c.c., (12)

b2 = 1
16A2CC ′{1 + exp[i(2kx + kz) · alat(y + z)] + exp[i(2kx + kz) · alat(x + y)] + exp[i(2kx + kz) · alat(x + z)]

− exp[i(2kx + kz) · alaty] − exp[i(2kx + kz) · alatz] − exp[i(2kx + kz) · alatx] − exp[i(2kx + kz) · alat(x + y + z)]} + c.c.,

(13)

b3 = 1
16AC2A′{exp[i(kx + 2kz) · alaty] + exp[i(kx + 2kz) · alatx] + exp[i(kx + 2kz) · alatz] + exp[i(kx + 2kz) · alat(x + y + z)]

− 1 − exp[i(kx + 2kz) · alat(x + y)] − exp[i(kx + 2kz) · alat(y + z)] − exp[i(kx + 2kz) · alat(x + z)]} + c.c., (14)

b4 = 1
16AB2A′{1 + exp[i(kx + 2ky) · alat(x + z)] + exp[i(kx + 2ky) · alat(y + z)] + exp[i(kx + 2ky) · alat(x + y)]

− exp[i(kx + 2ky) · alatz] − exp[i(kx + 2ky) · alatx] − exp[i(kx + 2ky) · alaty] − exp[i(kx + 2ky) · alat(x + y + z)]} + c.c.,

(15)

b5 = 1
16A2BB ′{exp[i(2kx + ky) · alatz] + exp[i(2kx + ky) · alaty] + exp[i(2kx + ky) · alatx] + exp[i(2kx + ky) · alat(x + y + z)]

− 1 − exp[i(2kx + ky) · alat(y + z)] − exp[i(2kx + ky) · alat(x + z)] − exp[i(2kx + ky) · alat(x + y)]} + c.c., (16)

and

b6 = 1
16BC2B ′{1 + exp[i(ky + 2kz) · alat(x + y)] + exp[i(ky + 2kz) · alat(x + z)] + exp[i(ky + 2kz) · alat(y + z)]

− exp[i(ky + 2kz) · alatx] − exp[i(ky + 2kz) · alaty] − exp[i(ky + 2kz) · alatz] − exp[i(ky + 2kz) · alat(x + y + z)]} + c.c.

(17)
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TABLE I. k vectors associated with AFE motions induced by simple AFD patterns. The AFE displacements are further characterized by
the a and b parameters of Eqs. (6)–(17) and the direction along which the A cations displace. All given k vectors must be multiplied by the
factor π/alat, which has been omitted for clarity.

AFD pattern AFD k vectors AFE k vectors AFE coefficients AFE displacements

a0a0c− kz = x + y + z None N/A N/A

a0a0c+ kz = x + y None N/A N/A

a+b+c0 kx = y + z None N/A N/A
ky = x + z

a−b−c0 kx = x + y + z k′
x = x + y + z b4 = AB2A′ [vv̄′0]

ky = x + y + z k′
y = x + y + z b5 = −A2BB ′

a−a−c0 kx = x + y + z k′
x = x + y + z b4 = A3A′ [11̄0]

ky = x + y + z k′
y = x + y + z b5 = −A3A′

a−b+c0 kx = x + y + z k′
x = y a4 = 2ABA′ [100]

ky = x + z k′
x = x + y + z a4 = 2ABA′

a+b+c+ kx = y + z None N/A N/A
ky = x + z
kz = x + y

a−b−c− kx = x + y + z k′
x = x + y + z b4 + b3 = AA′(B2 − C2) [vv′v′′]

ky = x + y + z k′
y = x + y + z b6 + b5 = BB ′(C2 − A2)

kz = x + y + z k′
z = x + y + z b2 + b1 = CC ′(A2 − B2)

a−a−a− kx = x + y + z None N/A N/A
ky = x + y + z
kz = x + y + z

a−a−c− kx = x + y + z k′
x = x + y + z b4 + b3 = AA′(B2 − C2) [11̄0]

ky = x + y + z k′
y = x + y + z b6 + b5 = −AA′(B2 − C2)

kz = x + y + z

a−b−c+ kx = x + y + z k′
x = z a3 = 2ACA′ [vv′0]

ky = x + y + z k′
y = z a6 = 2BCB ′ and

kz = x + y k′
x = x + y + z b4 + b3 = AA′(B2 − C2) [v′′v′′′0]

k′
y = x + y + z b6 + b5 = BB ′(C2 − A2)

a−a−c+ kx = x + y + z k′
x = z a3 = 2ACA′ [110]

ky = x + y + z k′
y = z a6 = 2ACA′ and

kz = x + y k′
x = x + y + z b4 + b3 = AA′(B2 − C2) [11̄0]

k′
y = x + y + z b6 + b5 = −AA′(B2 − C2)

a+b+c− kx = y + z k′
z = y a1 = 2BCC ′ [001]

ky = x + z k′
z = x a2 = 2ACC ′

kz = x + y + z k′
z = x + y + z b2 + b1 = CC ′(A2 − B2)

a+a+c− kx = y + z k′
z = y a1 = 2BCC ′ [001]

ky = x + z k′
z = x a2 = 2BCC ′

kz = x + y + z

III. EXAMPLES OF APPLICATION

A. Simple tilting patterns

Let us now apply the above equations to “simple” AFD
patterns and thus check whether (and what kind of) AFE
displacements are automatically induced. The results are
summarized in Table I, while we further discuss and explain
them in details below. Note that, for all the simple AFD
patterns, the components of the corresponding k vectors are
either 0 or π/alat. As a result, it can be seen that all the extra
terms indicated in Eqs. (4) and (5), which are obtained by
making substitutions of the type k → −k, reduce to those
explicitly written. Hence, in order to determine which AFE

patterns are induced by simple AFD tilts, it is not necessary to
consider such extra terms, and we do not discuss them in the
following. Nevertheless, note that the contribution of the extra
terms would need to be considered in a quantitative calculation
of the AFD-induced AFE distortions.

1. a0a0c− and a0a0c+ patterns

Our expressions for �E1 [see Eq. (1)] and �E2 [see Eq. (2)]
indicate that no AFE motions appear as a consequence of the
a0a0c− and a0a0c+ patterns, since one needs to have rotations
about at least two pseudocubic axes to induce nonzero ui

values.
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2. a+b+c0, a−b−c0, and a−b+c0 patterns

Let us now consider the general case in which we have
rotations about two pseudocubic axes. This possibility includes
the a+b+c0, a−b−c0, and a−b+c0 patterns. In all such cases,
the coefficients a1, a2, a3, a6, b1, b2, b3, and b6 vanish; this is
a result of having C = 0 [see Eq. (3)], i.e., no rotation about
the third pseudocubic axis.

Then, for the a+b+c0 pattern, we have kx = π
alat

(y + z) and
ky = π

alat
(x + z), which renders a4, a5, b4 and b5 null according

to the equations above. In other words, there are no AFE
motions associated with the a+b+c0 pattern.

On the other hand, for a−b−c0, we have kx = ky = π
alat

(x +
y + z), which makes a4 and a5 vanish, but leads to b4 and
b5 equal to AB2A′ and −A2BB ′, respectively. Moreover, we
obtain such a nonzero result for k′

x = k′
y = π

alat
(x + y + z). In

other words, we predict that the a−b−c0 pattern will induce
AFE displacements along the ±[vv̄′0] pseudocubic direction,
and these displacements will be modulated in antiphase when
going from one A site to any of its six nearest-neighboring A
sites. Interestingly, v can be different from v′ in the general
case. Yet, according to Eq. (3) the [vv̄′0] direction becomes
exactly [11̄0] when A′ = B ′ and A = B, that is, when b4 = b5.
This only occurs when the oxygen octahedral tilting about
[100] is equal in magnitude to that about [010], i.e., when
a−b−c0 is, in fact, the a−a−c0 pattern. This kind of AFE
displacements is exactly the one found by first-principles
calculations for the Ima2 phase of BiFeO3,18 which adopts
the a−a−c0 rotational order.

Similarly, in the case of a−b+c0, one can see that the
only nonzero coefficients are a4 = 2ABA′ and b4 = AB2A′;
the associated Dirac functions in Eqs. (4) and (5) yield two
solutions for k′

x , namely, k′
x = π

alat
y and k′

x = π
alat

(x + y + z).

As a result, the a−b+c0 pattern will induce AFE motions with
the A atoms moving along the pseudocubic ±[100] direction
and having two differently modulated components, i.e., one
that changes sign when moving between (010) AO planes and
a second one changing sign when going from one A site to any
of its six first nearest neighbors in the A sublattice.

3. a+b+c+, a−b−c−, a−b−c+, and a+b+c− patterns

Let us now concentrate on the patterns that involve rotations
about all three pseudocubic axes, which include a+b+c+,
a−b−c−, a−b−c+, and a+b+c−. These cases can, in fact, be
resolved by realizing that the terms in Eqs. (1) and (2) involve
only two components of the ω vectors; hence, we can treat the
cases involving three different components as the addition of
pairs.

For instance, we can think of a+b+c+ as being a combi-
nation of a+b+c0, a0b+c+, and a+b0c+. It is then trivial to
understand why there is no tilting-driven AFE motions in any
a+b+c+ system, since the a+b+c0 pattern has been previously
found to present no AFE displacements (see Table I) and we
note that the a0b+c+ and a+b0c+ cases can be deduced from
the a+b+c0 result by circular permutation.

Similarly, by treating the a−b−c− pattern as being the
addition of a−b−c0, a0b−c−, and a−b0c−, and recall-
ing the result for a−b−c0 summarized in Table I (from
which the other cases can be derived by appropriate

permutations), we obtain AFE distortions associated to
k′

x = k′
y = k′

z = π
alat

(x + y + z), with the corresponding pa-

rameters being b4 + b3 = A(B2 − C2)A′, b6 + b5 = B(C2 −
A2)B ′, and b2 + b1 = C(A2 − B2)C ′, respectively. In other
words, the a−b−c− pattern induces AFE displacements along
±[vv′v′′], and such displacements are modulated in antiphase
along the three pseudocubic directions. Interestingly, for
the particular case of a−a−a− (i.e., when all the antiphase
tiltings have the same magnitude), we have A = B = C and,
as a result, the coefficients b4 + b3, b6 + b5, and b2 + b1

are all annihilated; hence the a−a−a− pattern has no AFE
displacements associated to it. This is, for example, the case
of the rhombohedral R3c phase of BiFeO3, which is stable at
ambient conditions. On the other hand, the a−a−c− pattern
should exhibit AFE displacements along the ±[11̄0] direction.
Indeed, in that case A = B �= C and, therefore, b4 + b3 =
A(B2 − C2)A′ and b6 + b5 = B(C2 − A2)B ′ do not vanish;
further, it can be seen that in this case the energy minimum
satisfies A′ = B ′, which renders b4 + b3 = −b6 − b5. This
kind of AFE displacements has indeed been reported in the
Cc phase of BiFeO3, which displays a a−a−c− pattern.18

Similar arguments can be used to prove that, for the
a−b−c+ pattern: (i) the �E1 term leads to k′

x = π
alat

z and
k′

y = π
alat

z, with the corresponding nonzero parameters being
a3 = 2ACA′ and a6 = 2BCB ′, respectively, and (ii) �E2

results in k′
x = π

alat
(x + y + z) and k′

y = π
alat

(x + y + z) with

the associated coefficients being b4 + b3 = A(B2 − C2)A′
and b6 + b5 = B(C2 − A2)B ′. The a−b−c+ pattern therefore
adopts AFE displacements of two types: one type is along
the ±[vv′0] direction and has an antiphase modulation when
going from one (001) AO plane to an adjacent (001) AO plane,
while the second one involves A-atom displacements along the
±[v′′v′′′0] direction and is modulated in antiphase along the
three pseudocubic directions of the perovskite lattice. (Here, v,
v′, v′′, and v′′′ can all be different from each other.) Moreover,
for the a−a−c+ pattern, we have A = B, and one can easily
prove that the [vv′0] and [v′′v′′′0] directions become [110] and
[11̄0], respectively. This is precisely what is known to occur
in the orthorhombic Pnma phase that is ubiquitous among
perovskite oxides (see, e.g., Ref. 19).

Regarding the a+b+c− pattern, splitting it into a+b+c0,
a0b+c−, and a+b0c− results in (i) k′

z = π
alat

y and k′
z = π

alat
x,

with a1 = 2BCC ′ and a2 = 2ACC ′, respectively, for the
AFE motions arising from �E1 and (ii) k′

z = π
alat

(x + y + z),

associated with b2 + b1 = C(A2 − B2)C ′, for the AFE distor-
tions coming from �E2. The AFE motions therefore lie along
the ±[001] pseudocubic direction and include three different
contributions: the first one changes sign as we move from
one (010) AO plane to the next one, the second AFE pattern
reverses its direction every other (100) AO plane, and the third
one is modulated in antiphase along all three pseudocubic
directions. Interestingly, in the a+a+c− pattern (A = B �= C),
the third distortion vanishes and the first and second ones have
the same magnitude. Consequently, one can easily prove that
only half of the A cations move, along either [001] or [001̄], in
the a+a+c− case.

We tested the correctness of all the aforementioned pre-
dictions in the following way. (For this analysis, we made
use of the web-based open-access tool ISODISTORT.24) In each
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case, we considered the symmetry reduction resulting from
the condensation of the specific AFD pattern in the ideal cubic
perovskite phase; then, we derived the list of all the atomic
displacements that are allowed in such a low-symmetry phase,
and identified those involving the A cations. It was found that
all the predictions summarized in Table I are indeed correct,
and that the AFE displacements arising from the �E1 and �E2

energies of Eqs. (1) and (2) correspond, in fact, to the AFE
modes labeled X+

5 and R+
5 , respectively. Thus, remarkably, our

simple model energy predicts all the AFE displacements that
can be induced by the occurrence of simple AFD patterns
in perovskites, providing us with a intuitive and practical
scheme for the analysis and straightforward prediction of
such distortions. Further, Eqs. (1) and (2) also provide an
atomistic picture of the physical couplings that actually induce
the displacements.

B. Complex tilting patterns

Let us now use our formalism to check whether AFE dis-
placements can also occur in association with complex tilting
patterns. For that, let us focus on the �E1 term [see Eq. (1)] and
begin by considering the case of a rotational pattern denoted
by a−b−ck , where ck stands for a complex long-range AFD
tilting about the [001] axis that is associated with neither
the M point [ π

alat
(x + y)] nor the R point [ π

alat
(x + y + z)] of

the first Brillouin zone corresponding to the five-atom cubic
cell; rather, this complex pattern will be associated to a k

point in between. Hence we have kx = ky = π
alat

(x + y + z),
while kz = α π

alat
(x + y + z) + β π

alat
(x + y) with α + β = 1.

Note that the resulting overall periodicity along the z axis
is 2/α in terms of the number of five-atom unit cells.
Figure 4 shows an example for α = 1/2, with the ωi,z rotation

FIG. 4. (Color online) Sketch of complex AFD pattern a−a−ck

with kz = π

alat
(0,0,1/2). The peculiar pattern of O6 rotations about

the vertical axes gives rise to unusual AFE displacements of the A
cations in the xy plane.

amplitudes modulated as “+ + −−” as we move along the z

direction.
It is straightforward to prove that, for such a complex

rotational pattern, and restricting ourselves to the terms
explicitly written in Eq. (4), we have zero values for a1,
a2, a4, and a5; additionally, we get a3 = ACA′[1 + cos(απ )]
and a6 = BCB ′[1 + cos(απ )]. Moreover, from the a3 and
a6 terms in Eq. (4), we get AFE displacements associated
with k′

x = k′
y = (1 − α) π

alat
z. In other words, our energy term

�E1 implies that an a−b−ck pattern will induce exotic AFE
displacements with the A atoms moving along the ±[vv′0]
pseudocubic direction and a modulation given by a k vector
between � and π

alat
z. This is exactly what is known to happen for

the so-called nanoscale-twinned phases recently discovered in
various perovskite systems, such as (Ca,Sr)TiO3,20 BiFeO3,21

and EuTiO3.22 As readily appreciated in Fig. 4, in that case the
AFE distortion of the A cations is associated to the π

2alat
z wave

vector.
Our proposed energies also lead to the prediction of other

AFE configurations, driven by AFD patterns, that have not
been yet reported in the literature. For example, consider
the case of a−b+ck for which each axis possesses different
kinds of oxygen octahedra tilting, i.e., antiphase, in-phase,
and complex, respectively. More precisely, we have kx =
π
alat

(x + y + z), ky = π
alat

(x + z), and kz = α π
alat

(x + y + z) +
β π

alat
(x + y) with α + β = 1. It is easy to demonstrate that, for

this particular case, the �E1 term leads to k′
z = π

alat
y + (1 −

α) π
alat

z, k′
x = π

alat
y, and k′

x = (1 − α) π
alat

z, with the correspond-
ing coefficients a1 = BCC ′[1 − cos(απ )], a4 = 2ABB ′, and
a3 = ACA′[1 + cos(απ )]. [Here again, we have restricted our
analysis to the terms explicitly given in Eq. (4).] The a−b+ck

pattern can therefore exhibit unusual AFE displacements with
the A cations moving even along the direction of the complex
octahedral rotations, in contrast with the previous a−b−ck

case. In addition, this AFD pattern would induce AFE motions
along the ±[100] direction and modulated according to two
different k vectors, namely, one that involves a period of two
lattice constants along y, and a second contribution involving
a longer period along z. We hope that this prediction will be
experimentally confirmed.

IV. CONCLUSIONS

In summary, we have introduced two simple energy terms
that couple, in a collaborative fashion and at an atomistic scale,
the AFD motions and AFE distortions of the A-site cations of
any ABO3 perovskite. We have shown that these energy terms
allow to reproduce and explain many A-site AFE patterns that
have been seen to coexist with AFD distortions, may they be
simple ones (i.e., expressible in Glazer’s notation) or complex
ones involving a large repeated unit. As a result of our analysis,
we have also obtained novel combinations of AFD and AFE
patterns that are awaiting to be experimentally seen.

The initial motivation and focus of this work was the
investigation of situations in which the AFE distortions appear
as a consequence of the symmetry breaking caused by the
condensation of an AFD instability. Hence, in this sense, we are
dealing with improper antiferroelectrics. On the other hand,
we can imagine situations in which the A-site AFE distortion
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L. BELLAICHE AND JORGE ÍÑIGUEZ PHYSICAL REVIEW B 88, 014104 (2013)

constitutes an instability of the cubic perovskite structure by
itself. (In fact, first-principles simulations show that this is
the case in Bi-based perovskites like BiFeO3.) In such proper
antiferroelectric cases, the couplings here discussed would
favor the occurrence of certain AFD patterns. In particular,
�E1 could lead to a triggered-type phase transition involving
specific O6-octahedra rotations.25–28

It is also important to realize that our energy terms �E1

and �E2 can be incorporated in atomistic approaches, such
as effective Hamiltonians,21,23 in order to (i) investigate how
the associated AFD and AFE patterns evolve with, e.g.,
temperature, applied electric fields, epitaxial strain, etc., and
(ii) determine the results of the competition of the energies of
Eqs. (1) and (2) with other (known) energies associated with
polar, AFD, and strain degrees of freedom. For instance, it is
worthwhile to realize that a previous effective Hamiltonian
approach neglecting Eqs. (1) and (2) wrongly predicted a
transition from R3c to a simple tetragonal AFD phase in
BiFeO3 at around 1100 K and did not find the high-temperature
Pnma that this compound is known to present.29 As shown in
Ref. 21, such shortcomings were resolved when incorporating
Eq. (1) into a revised effective Hamiltonian scheme.

Moreover, our coupling terms could also be used to capture
the above-discussed effects in phenomenological Landau-like
theories. A particularly relevant case is the investigation of
orthorhombic Pnma phases with the a−a−c+ pattern, which
constitute the ground state of many perovskite oxides.30 Our
work indicates that, in such a case, Eqs. (1) and (2) lead to
(more compact) Landau potentials of the form AxωR,xωM,z,
AyωR,yωM,z, RxωR,xω

2
M,z, and RyωR,yω

2
M,z; here, Ax (re-

spectively Ay) represents the long-range AFE order involv-
ing A-cation displacements along the ±[100] (respectively
±[010]) direction and displaying an X-like modulation given
by the π

alat
z k point; ωR,x (respectively ωR,y) is the long-

range antiphase tilting pattern about the [100] (respectively
[010]) axis and modulated in antiphase corresponding to
the R-point of the first Brillouin zone; ωM,z is the in-phase
tilting about the z axis associated with the zone-boundary M

point π
alat

(x + y). Finally, Rx (respectively Ry) are the AFE
vectors describing motions of the A atoms along the ±[100]

(respectively ±[010]) direction and associated with the R point
of the first Brillouin zone.

Finally, let us note that, while our analysis corresponds to
bulk ABO3 compounds, it can be readily applied to the case
of superlattices involving two or more types of cations. In
particular, much attention is now being paid to ABO3-A’BO3

heterostructures, particularly after the discovery of unconven-
tional forms of ferroelectricity in the PbTiO3-SrTiO3 system.31

In such cases, because of the symmetry breaking imposed by
the chemical modulation along the growth direction, the AFE-
like modes involving the A and A′ cations can actually have
a ferroelectric character,32 as the antiphase displacements of
different cationic species do not need to perfectly compensate.
Interestingly, since the local environment of the A and A′
cations in an ABO3-A’BO3 superlattice is very similar to that
of a simple ABO3 structure, we can expect that the terms
discussed in this paper will also dominate the AFD-induced
A-cation displacements in that case. Hence our results can be
easily applied to the discussion of AFD-induced AFE and FE
distortions in superlattices.

The key role played by the AFD motions in determining
the properties of perovskite materials, ranging from their
conductivity to the emergence of novel polar orders, has been
recently emphasized and is generating renewed interest in the
community.33 Our work is thus especially timely, as it explains
important structural effects driven by the oxygen-octahedral
rotations. We thus hope that our results will be of broad
interest to both experimentalists and theorists working on
perovskites.
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