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Spin-polarized ν = 0 state of graphene: A spin superconductor
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We study the spin-polarized ν = 0 Landau-level state of graphene. Due to the electron-hole attractive
interaction, electrons and holes can bound into pairs. These pairs can then condense into a spin-triplet superfluid
ground state: a spin superconductor state. In this state, a gap opens up in the edge bands as well as in the bulk
bands, thus it is a charge insulator, but it can carry the spin current without dissipation. These results can well
explain the insulating behavior of the spin-polarized ν = 0 state in the recent experiments.
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I. INTRODUCTION

In a magnetic field, monolayer and bilayer graphenes
display unconventional Landau-level (LL) spectrum, where
the zeroth LL locates the charge neutrality point and has
equal electron and hole compositions.1–3 The zeroth LL is
fourfold degenerate in monolayer graphene owing to the spin
and valley degeneracies, and it is eightfold degenerate in
bilayer one due to the additional orbit (or layer) degeneracy.
While under a high magnetic field, electron-electron (e-e)
interaction can lift the LL degeneracy,2–13 leading to broken
symmetry quantum Hall states and manifesting further integer
Hall plateaus outside the normal sequence, which have been
experimentally observed.14–28

Recently, the splitting of the zeroth LL has attracted
considerable theoretical and experimental interest.4–34 A bulk
gap opening around the energy E = 0 is found and a zero
Hall conductance plateau at the filling factor ν = 0 has been
observed. Both the spin-polarized and valley-polarized ν = 0
states are suggested. At ν = 0, although the Hall conductance
shows a plateau, the longitudinal resistance experimentally
exhibits an insulating behavior,14–28 which is very different
with the zero longitudinal resistance in the conventional
quantum Hall effect.

In the valley-polarized ν = 0 state, the valley splitting is
larger than the spin splitting and it is a spin singlet state. Now
not only ν = 0, but also the spin-up and spin-down filling
factors ν↑ = ν↓ = 0.34 In this case, the system is without an
edge state as shown in Fig. 1(a), so it is insulating for both
bulk and edge states, which is consistent with the experiment
results.

On the other hand, when the spin splitting is larger than
the valley splitting, the system is in the spin-polarized ν = 0
state.5,29 Now, however, ν↑ and ν↓ are not equal to zero
although ν = ν↑ + ν↓ = 0. A + valley spin-up (+↑)LL is
occupied by electron and a − valley spin-down (−↓)LL is
occupied by hole, leading to a pair of counter-propagating
edge states [see Fig. 1(b)] that can carry both spin and
charge currents.29–34 Some theoretical works have predicted
the spin Hall effect in this case.32,33 Particularly due to the
presence of the edge states, the longitudinal resistance is
(|ν↑| + |ν↓|)e2/h and the system should not show an insulating
behavior, although a bulk gap exists. However, experimental
works have clearly exhibited an insulating behavior, and

the longitudinal resistance increases quickly with decreasing
temperature regardless of whether it is a monolayer or
bilayer graphene.15,18,19,25,26,28 This is very different from the
theoretical prediction and seems to indicate the disappearance
of the edge states. Some studies mention that the possible
reason for this discrepancy is that the counter-propagating
edge states are destroyed by disorders.25,30,31,33,34 But the sizes
of the experimental samples are only a few micrometers, too
short to destroy the edge states by localizing the edge electrons.
Furthermore, the disorder effect can not explain the strong
increase of the longitudinal resistance at low temperature. In
short, this discrepancy still lacks a reasonable explanation.

In this paper, the spin-polarized ν = 0 state in graphene
under a strong magnetic field is investigated. By considering
the unavoidable electron-hole (e-h) attractive interaction, we
find that electrons at +↑LL and holes at −↓LL can form
spin-triplet e-h pairs. This e-h pair gas can condense at low
temperature, leading to the transition to a spin superconductor
phase (spin-triplet exciton condensation state)35 associated
with the opening of an energy gap for the edge states. Thus,
the system exhibits an insulating behavior, consistent with
experimental observations.15,18,19,25,26,28

The remainder of this paper is organized as follows. In
Sec. II, we introduce the Hamiltonian in the tight-binding rep-
resentation and derive the formula of the spin-superconductor
order parameter. The results are discussed in Sec. III. Finally,
the conclusion is presented in Sec. IV.

II. MODEL AND FORMULATION

Let us consider a graphene nanoribbon in a magnetic field.
In the tight-binding representation, its Hamiltonian is H =
H0 + HI , where

H0 =
∑
i,σ

(εi − σM)a†
iσ aiσ +

∑
i,i′,σ

tii′e
iφii′ a†

iσ ai′σ + H.c.,

(1)
HI =

∑
i,i′,σ,σ ′(iσ �=i′σ ′)

Uii′a
†
iσ aiσ a

†
i′σ ′ai′σ ′

represent the free part and the e-e Coulomb interaction part of
the Hamiltonians, respectively. Here a

†
iσ (aiσ ) is the electron

creation (annihilation) operator at sites i with spin σ . εi
is the on-site energy, and M is the spin splitting energy
which originates from both the Zeeman effect and the spin

245427-11098-0121/2013/87(24)/245427(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.245427


QING-FENG SUN AND X. C. XIE PHYSICAL REVIEW B 87, 245427 (2013)

FIG. 1. (Color online) (a) and (b) are the schematic diagrams
of the energy spectrum structures for the valley-polarized and spin-
polarized ν = 0 states, respectively. (c) and (d) show �k (the blue
dashed curves), and the energy spectra for the normal state (the black
solid curves) and for the spin superconductor state (the red dotted
curves). (c) is for the zigzag edge graphene ribbon with the parameters
N = 200, Uc = 15t , M = 0.03t , and φ = 0.004, and (d) is for the
armchair edge graphene ribbon with the parameters N = 282, Uc =
25t , M = 0.05t , and φ = 0.007.

polarization induced by the e-e interaction. The second term in
H0 represents the hopping between the site i and i′. Because of
the presence of a magnetic field B, a phase φii′ = ∫ i′

i A • dl/φ0

(φ0 = h̄/e) is attached in the hopping element tii′ .36 HI is
the e-e interaction and Uii′ is the interaction strength. This
Hamiltonian H can describe both monolayer and bilayer
graphene ribbons with arbitrary edge chirality. Considering
the ribbon periodicity, the site indices i can be represented as
i = (n,j ) with the slice cell indices n and the atomic indices j

in a cell (j = 1,2, . . . ,N , and N is the total atom number in a
cell). Then the Hamiltonian can be rewritten as

H0 =
∑
n,σ

�a†
nσ (H0 − σM)�anσ +

∑
n,σ

�a†
nσ H1�an−1σ + H.c.

(2)
HI =

∑
n,n′,σ,σ ′

�n†
nσ Un−n′ �nn′σ ′,

where �anσ = (an1σ ,an2σ , . . . ,anNσ )T and �nnσ = (a†
n1σ an1σ ,

a
†
n2σ an2σ , . . . ,a

†
nNσ anNσ )T . H0, H1, and Un−n′ are the

intracell Hamiltonian, hopping term between two nearest-
neighbor cells, and the e-e interaction. By taking the Fourier

transformation �anσ = 1√
L

∑
k einak �akσ with the nanoribbon

length La and the cell length a, the Hamiltonian H can
be written as H0 = ∑

k,σ �a†
kσ (Hk − σM)�akσ with Hk = H0 +

H†
1e

iak + H1e
−iak , and

HI =
∑

σ,σ ′,k,k′,q

�a†
k−qσ �akσ Uk−k′ �a†

k′+qσ ′ �ak′σ (3)

with Uk = 1
L

∑
n einakUn. In fact, Hk is the momentum-

space Hamiltonian of the free system. Assuming that the
eigen-wave functions and eigenvalues of Hk are ��(j )

k and
ε

(j )
k : Hk

��(j )
k = ε

(j )
k

��(j )
k , we have U†

k HkUk = εk with Uk =
( ��(1)

k , ��(2)
k , . . . , ��(N)

k ) and εk = diag(ε(1)
k ,ε

(2)
k , . . . ,ε

(N)
k ). By

taking a unitary transformation �akσ = Uk
�bkσ , H0 changes into

H0 = ∑
kσ

�b†kσ (εk − σM)�bkσ .
Let us assume that the eigenvalues ε

(j )
k have been arranged

according of their values from small to large and Fermi level
EF is set at zero. The two nearest bands to EF are the spin-up
1 + N/2-th band and spin-down N/2-th band. Due to the
presence of a magnetic field and the spin splitting energy
M , the system consists of LLs and is spin-polarized. The
spin-up 1 + N/2-th (spin-down N/2-th) band is denoted as
+↑ (−↓) LL with its energy ε

(1+N/2)
k − M below (ε(N/2)

k + M

above) EF , its carrier being electronlike (holelike), and its
band bending upward (downward) as shown in Fig. 1(b). Now
the system is at the spin-polarized ν = 0 state, in which a
bulk gap 2M appears but two edge states cross at EF . In the
following, we focus on these two low-energy bands, and show
that the e-e interaction HI will create an energy gap for the
edge states. Let us introduce the electron and hole annihilation
operators: bk↑e = bk↑,1+N/2 and bk↑h = b

†
k↓,N/2. Then the free

Hamiltonian H0 reduces to:

H0 =
∑

k

[b†k↑e(εke − M)bk↑e + b
†
k↑h(εkh − M)bk↑h],

with εke = ε
(1+N/2)
k and εkh = −ε

(N/2)
k .

As for HI , we take the following steps: (i) only the terms
whose momenta satisfy k = k′ + q in Eq. (3) are kept since
the zero momentum e-h pairs are energetically more favorable;
(ii) we take the aforementioned unitary transformation and the
e-h transformation; (iii) we focus on the two low-energy bands;
and (iv) we assume that Uii′ = Uc while i = i′ and Uii′ = 0
otherwise, since the on-site e-e interaction is the dominant
one. Then the interaction part HI reduces to

HI = −
∑
k,k′

Ukk′b
†
k′↑eb

†
k′↑hbk↑hbk↑e, (4)

where

Ukk′ = 1

L

∑
j

U∗
k′,jN/2Uk,jN/2UcU∗

k,j1+N/2Uk′,j1+N/2.

While at equilibrium, the spin-up electrons (holes) occupy
the +↑ (−↓) LL and its edge state up to the energy E = EF =
0. This is a spin-polarized ν = 0 state that has U (1) symmetry
around the σz axis. Notice that the interaction HI in Eq. (4)
between an electron and a hole is attractive. This attractive
interaction will not cause the e-h recombination, due to both
the spin splitting and the hole band (−↓LL) being above the
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electron band (+↑LL).35 However, it can lead to a different
instability of the spin-polarized ν = 0 state at low temperature,
namely the electrons and holes can form e-h pairs which can
then condense to a spin-triplet superfluid state.35,37 Notice here
the spin splitting (or spin polarization) is a key factor for stable
e-h pairs. Under the mean-field approximation, HI changes
into

HI =
∑

k

[�kb
†
k↑eb

†
k↑h + �∗

kbk↑hbk↑e], (5)

where �k ≡ −∑
k′ Ukk′ 〈bk′↑hbk′↑e〉 is the e-h pair conden-

sation order parameter. So we have the total Hamiltonian
H = H0 + HI :

H =
∑

k

(b†k↑e,bk↑h)

(
εke − M �k

�∗
k M − εkh

) (
bk↑e

b
†
k↑h

)
. (6)

Now a gap |�k| opens up in the edge bands [e.g., see
Figs. 1(c) and 1(d)], and it needs an energy 2|�k| to break
up an e-h pair. So the e-h pair condensed state is more stable
than the spin-polarized ν = 0 state, and it is the ground state
of the system at low temperature. Since the spins of the
electrons and the holes are both up, the e-h pair is spin triplet
but charge neutral. The condensed superfluid state is a spin
superconductor while it is a charge insulator.35,38 It carries spin
current dissipationlessly, thus its spin resistance is zero. The
spin superconductor also possesses its own unique “Meissner
effect”.35 Now the system has two possible phases. One is the
spin-polarized ν = 0 state (hereafter we named it as normal
state for short) at high temperature. It has a bulk gap but two
gapless edge bands crossover at the Fermi level, leading to the
current flow through the edge states.29–34 In the normal phase,
the system consists of U (1) symmetry. The other is the spin
superconductor state at low temperature, in which both bulk
bands and edge bands consist of energy gaps at EF . Notice
that this phase is still a spin polarized one and its filling factor
ν = 0 with ν↑ = −ν↓ = 1. We name it as spin-superconductor
spin-polarized ν = 0 state, or spin superconductor state for
short. This phase does not contain U (1) symmetry in any
direction. In other words, the system breaks U (1) symmetry
with the phase transition from the normal phase to the spin
superconductor phase.

III. RESULTS AND DISCUSSIONS

From the definition of �k and Hamiltonian (6),
we obtain the self-consistent equation of �k: �k =
−i

∑
k′ Uk′k

∫
dε
2π

f (ε)(�k′
A

− �k′
A∗ ), where f (ε) is the Fermi dis-

tribution function and A = (ε − εk′e + M + i0+)(ε + εk′h −
M + i0+) − |�k′ |2. While at zero temperature, the above
equation reduces to

�k =
∑
k′

Uk′k
�k′√

(εk′e + εk′h − 2M)2 + 4|�k′ |2
. (7)

From this equation, �k can be self-consistently calculated.
In the numerical calculations, we first consider the monolayer
zigzag graphene ribbon with the ribbon transverse width W =
(3N/4 − 1)a0 and periodic cell length a = √

3a0. Here a0 =
0.142 nm is the distance between two nearest-neighbor carbon
atoms. We only consider the nearest-neighbor hopping with its

strength tii′ = t = 2.75 eV, which is set as the energy unit. The
on-site e-e interaction Uc = e2

4πε0r
≈ 3.69

r/a0
t with the distance r

between two electrons. Uc ≈ 14.75t if r = a0/4.
Fig. 1(c) shows �k and the energy spectrum. For the normal

state, although it has a bulk gap due to the spin splitting energy
M , two gapless edge states cross at the Fermi level and they
can carry both charge and spin currents, causing the sample
edge to have a metallic behavior.29–34 On the other hand, for the
spin superconductor state at low temperature, Fig. 1(c) clearly
exhibits a gap opening for the edge bands. Now both edge and
bulk bands have the gaps, so it is a charge insulator, consistent
with the experimental results.14–28 In this state, the spin current
can dissipationlessly flow in it, because the condensed e-h pairs
with spin 1 can carry the spin supercurrent. Except for the edge
states, other parts of the bands are almost the same for both
normal and spin superconductor states and their LLs overlap,
because the carriers far away from the Fermi level are not
energetically favorable to form e-h pairs. �k is large for the
edge bands but is vanishingly small for the bulk bands. This
means that the condensed e-p pairs mainly distribute near the
sample edge, and the spin supercurrent flows along the edges.

Up to now, we only consider the monolayer zigzag edge
graphene. In fact, it is similar for graphene with other edge chi-
rality as well as for a bilayer graphene. For example, Fig. 1(d)
shows �k and the energy spectrum for the armchair edge
graphene nanoribbon with the ribbon width W = N−2

4

√
3a0

and cell length a = 3a0. The free Hamiltonian exhibits two
gapless edge states. The e-h attractive interaction induces a
gap in the edge states at low temperature. The order parameter
�k is large for the edge bands but is very small for the bulk
bands.

Next, we study the zigzag edge graphene nanoribbon in
detail. Figures 2(a) and 2(b) show the energy spectrum of
the spin superconductor state and �k for different magnetic
fields φ (here 2φ = (3

√
3/2)a2

0B/φ0 is the magnetic flux in
the honeycomb lattice). For all φ, �k exhibits peaks when
the original bands cross at EF and �k is small otherwise.
With increasing φ, �k increases because a larger magnetic

FIG. 2. (Color online) (a) and (b) show the energy spectra of the
spin superconductor and the order parameter �k , respectively. The
parameters are the same as in Fig. 1(c).
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FIG. 3. (Color online) The energy spectra for the spin supercon-
ductor state for the different width of nanoribbon. The parameters are
the same as in Fig. 1(c).

field leads to a smaller cyclotron radius of carriers, thus a
stronger e-h attractive interaction Uk′k . Particularly, for a large
φ, the edge-band gap can exceed the bulk-band gap (i.e.,
2M). In this case, the edge states disappear in the whole
spin-polarized ν = 0 regime, as has been observed in the
experiments.15,18,19,25,26,28

Figure 3 shows the energy spectrum of the spin super-
conductor state for different widths of nanoribbon. The results
show that both the edge-band gap and bulk-band gap are almost
independent with the width N , because while under the high
magnetic field, the edge states and LLs in the spin-polarized
state are independent with the width of nanoribbons.

Let us study the effect of the system parameters on the
energy gap. Here the gap is defined as the one of the whole
energy spectrum, equal to the smaller one of the bulk and
the edge gaps. The gap is independent of the width N of
nanoribbon. Figures 4(a), 4(b), and 4(c) show the gap versus
the spin splitting energy M , the e-e interaction strength Uc, and
the magnetic flux φ, respectively. With the increase of M , the
gap first increases due to the rising of the bulk gap, and then
decreases. As for the gap versus Uc, there exists a threshold
Ut

c [see Fig. 4(b)]. While Uc < Ut
c , the gap is almost zero,

but while Uc > Ut
c , the gap increases quickly. When the gap

reaches the bulk gap 2M , it hardly increases further. In this
case, although the edge gap can further increase, the gap of the
whole energy spectrum is decided by the bulk gap. The results
of the gap versus φ are similar to those of the gap versus Uc

since the increase of φ strengthens the effective e-h interaction
Ukk′ . In an experiment, normally the spin splitting energy M

linearly rises with a magnetic field B. So in Fig. 4(d), we
show the gap versus φ while M = 2 μBB and 4 μBB. The
results clearly show that the gap linearly rises and the edge
gap is always larger than the bulk gap. Now the edge states
disappear in all φ value, which is well consistent with the
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FIG. 4. (Color online) The gap versus M (a), Uc (b), and φ (c)
and (d). The unmentioned parameters are the same as Fig. 1(c).

experiment results.14–28 While φ = 0.001, B is about 25 T,
and the gaps are about 3 meV and 6 meV for M = 2 μBB and
4 μBB, respectively, to give rise to the corresponding critical
temperatures of the phase transition to be about 30 K and 60 K.

Finally, we notice that a recent experiment has simultane-
ously measured the resistance and the nonlocal resistance in
graphene under a magnetic field.19 They find that the device
is an insulator at the neutrality point with ν = 0, but they
also see that the nonlocal resistance increases rapidly at low
temperature and shows clearly that a spin current is flowing
through the device. These findings can be well explained by
the presence of a spin superconducting ν = 0 state.

IV. CONCLUSIONS

In summary, the spin-polarized ν = 0 state of graphene
under a magnetic field is investigated. We find that it has two
phases: one is the normal phase at high temperature and the
other is the spin superconductor phase at low temperature.
The U (1) symmetry is destroyed under the phase transition
from the normal phase to a spin superconductor. For the spin
superconductor phase, both edge and bulk bands contain gaps,
so it is a charge insulator, but the spin current can flow without
dissipation. With the picture of the spin superconductor, many
results from recent experiments can be well understood.
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