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Thermoelectric performance of a driven double quantum dot
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In this paper, we investigate the thermoelectric performance of a double-dot device driven by time-dependently
modulated gate voltages. We show that if the modulation frequency � is sufficiently small, not only quantized
charge pumping can be realized, but also the heat current flowing in the leads is quantized and exhibits plateaux
in units of �

2π
kBT ln 2. The factor ln 2 stems from the degeneracy of the double-dot states involved in transport.

This opens the possibility of using the pumping cycle to transfer heat against a temperature gradient or to extract
work from a hot reservoir with Carnot efficiency. However, the performance of a realistic device is limited by
dissipative effects due to leakage currents and finite-frequency operation, which we take into account rigorously
by means of a generalized master equation approach in the regime where the double dot is weakly coupled to the
leads. We show that despite these effects, the efficiency of a double-dot charge pump performing work against a
dc source can reach of up to 70% of the ideal value.
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I. INTRODUCTION

The tunability of nanoscale systems such as quantum dots
or single-electron boxes allows to exploit their functionalities
in the realization of nanoscale electric and thermoelectric
devices. While the use of quantum dots and metallic islands
as single-electron transistors,1 ultrasensitive detectors,2 or
thermometers3 has already been considered for a long time, it
is only more recently that their applications as thermoelectric
engines,4–6 refrigerators,7–12 and heat rectifiers13–18—to name
some examples—started to attract considerable attention.
Since Coulomb interaction and quantum interference effects
play an important role in these devices, their thermoelectric
properties differ strongly from those of classical macroscopic
systems,19–24 and can even result in a significant increase of
the thermoelectric efficiency.25–28 Moreover, thanks to their
stability and to the possibility of monitoring their state with
integrated charge or temperature detectors, quantum dots
and single-electron boxes represent an ideal playground to
experimentally test the predictions of so-called fluctuation
theorems,29–31 or to investigate possible implementations of
Maxwell’s demons in solid state environment.32,33

Our particular interest concerns the operation of a quantum
dot system driven by time-dependent fields. Since the original
experiment of Pothier et al.,34 it is well known that by
changing slowly the gate voltages applied to a double dot
(or a double metallic island as used in Ref. 34), electrons can
be transferred from one lead to the other in a controlled way,
generating a quantized dc current Ī = ±e�/2π , where � is
the frequency of the ac signal applied to the gates. This result
has a clear interest for metrology35 and stimulated an intense
experimental36–39 and theoretical activity.40,41 Importantly,
single-electron pumping can be achieved both when the two
leads are in the same equilibrium state and when a finite bias
voltage is applied to the device, as well as it is possible to pump
electrons against the preference direction set by the bias.

Beyond the goal of realizing quantized charge pumping,
there has been interest in time-dependently driven double-dot
systems thanks to their complex internal structure, which

results in highly sensitive devices. To name some examples,
time-dependently driven hybrid double-dot devices with
ferromagnetic leads have been shown to allow for pure spin
currents,42–44 the orbital degree of freedom of a double dot
allows to study spin-orbit coupling effects in pumping,45,46

a double-dot pump with superconducting leads has been
proposed as a detector for crossed Andreev reflection,47

and Landau-Zener transitions in transport have been also
studied.38,48,49

Motivated by the possibility of pumping charge against
a bias, we study the performance of a driven double dot as
a nanoscale “battery charger” transferring electrons from a
lower to a higher chemical potential, as well as we investigate
its efficiency as a heat pump (or heat engine) operating
between two reservoirs at different temperatures. To this
end, we consider the charge and heat currents flowing in
the leads in response to the time-dependent driving. Heat
currents in electronic quantum pumps have been so far mostly
investigated in the limit where the electronic interactions can
be neglected.9,10,50–53 The operation of the double-dot pump is,
however, based on charging effects,34 and therefore we adopt a
generalized master equation approach,54 which allows to take
into account arbitrarily strong Coulomb interaction between
electrons in the dots, as well as nonequilibrium conditions
induced by dc voltage and temperature gradients, and the
time-dependent driving.55,56 We solve the dynamics of the
system in terms of an adiabatic expansion for the reduced
density matrix in the limit of weak coupling to the leads and
slow driving. Contributions to the charge and the heat currents
are taken into account up to the second nonadiabatic correction,
which is particularly important in order to account properly for
heating effects due to the ac driving.

We show that in certain regimes not only the pumped charge
current is quantized, but also the heat current shows well
defined plateaux which are directly related to the electronic
temperature in the leads and the degeneracy of the double
dot states involved in transport. Moreover, we show that
in these regimes the pumping cycle can be considered as
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a close analog of the Carnot cycle and that the double-dot
pump can, in principle, be employed to transfer heat against a
temperature gradient, to extract work from a hot reservoir or
to move charges from a lower to a higher chemical potential
with maximal efficiency, if the driving is infinitely slow. The
performance of a realistic pump is, however, limited by leakage
currents and heat production due to finite-frequency operation.
We investigate these limitations in detail and find that, at least
for the case of the charge pump working against a dc bias,
efficiencies up to 70% of the maximal value can be obtained.

The manuscript is structured as follows. We introduce the
model for the double dot and the generalized master equation
approach used for the calculation of the charge and heat
currents in Sec. II. In Sec. III, we discuss first the case of pure
adiabatic pumping of charge and heat, and then present the op-
eration of three ideal double dot based engines. Finally, the lim-
itations to the perfect operation of these engines due to leakage
currents and finite-frequency driving are discussed in Sec. IV.

II. MODEL AND TECHNIQUE

A. Double dot in the molecular regime

We consider a double-dot device formed by two single-level
spin-degenerate quantum dots connected in series and coupled
to external leads, see Fig. 1(a). This system is described by the

FIG. 1. (Color online) (a) Sketch of the potential landscape of
a double-dot setup. (b) Stability diagram of the double dot for the
case V = 0: black full lines indicate the borders of the stability
regions for negligible inter-dot coupling, while the red dashed lines
show the resonance positions of bonding and antibonding states.
The system of coordinates formed by the detuning ε = εL − εR

and the mean energy E = (εL + εR)/2 is also shown. (c) Sketch of
possible pumping trajectories in parameter space. The color-scale plot
represents the dc charge-current through the double dot in the linear
response regime (eV = 0.5kBT ) and (d) dc charge-current at finite
bias (eV = 10kBT ). Other parameters are U = 20kBT , tc = 10kBT ,
�L = �R = �/2, h̄� = kBT/4, and TL = TR = T .

Hamiltonian

Ĥ = Ĥdd +
∑

α=L,R

Ĥα + Ĥtun. (1a)

Here, Hdd is the Hamiltonian of the isolated double dot:

Ĥdd =
∑

α=L,R

εαn̂α + Un̂Ln̂R + U ′

2

∑
α=L,R

n̂α(n̂α − 1)

− tc

2

∑
σ=↑,↓

(d̂†
Lσ d̂Rσ + H.c.). (1b)

The dot operators d̂†
ασ (d̂ασ ) create (annihilate) an electron

with spin σ =↑ , ↓ and energy εα in the dot α = L,R.
The corresponding number operator of electrons in each dot
is given by n̂α = n̂α↑ + n̂α↓ with n̂ασ = d̂†

ασ d̂ασ ; the total
occupation-number operator of the double dot is n̂ = n̂L + n̂R.
The inter and intradot Coulomb interactions are denoted by U

and U ′, respectively. In the following, we will assume the
on-site interaction U ′ to be the largest energy scale in the
system (U ′ → ∞), so that each dot can be at most singly
occupied. Hopping from one dot to the other occurs with the
interdot coupling amplitude −tc/2, where tc is taken to be real
and positive. The single-particle energies εα = εα(t) of the
dots can be tuned by external gates locally applied to the two
dots and are, in general, time dependent.

The leads are described as noninteracting Fermi liquids
with the Hamiltonian

Ĥα =
∑

k,σ=↑,↓
εαkσ ĉ

†
αkσ ĉαkσ , (1c)

where ĉ
†
αkσ (ĉαkσ ) are the creation (annihilation) operators for

an electron with momentum k and spin σ in lead α. Finally,
the coupling between the double dot and the leads is given by

Ĥtun =
∑
α,k,σ

(tαĉ
†
αkσ d̂ασ + H.c.). (1d)

The coupling is quantitatively characterized by the energy-
independent tunnel-coupling strength �α = 2πνα|tα|2/h̄.
Here, tα is the tunneling amplitude between dot α and its
neighboring lead, which we assume to be spin and momentum
independent, and να is the density of states of lead α in the
wide band limit.

The imposed boundary conditions are such that each lead is
in local equilibrium with the electrochemical potential μα and
the temperature Tα . Here we take the mean electrochemical
potential μ = μL+μR

2 as the zero-energy level, i.e., μ = 0. All
single-particle energies in Eq. (1) are expressed with respect
to it. The difference between the electrochemical potentials of
the two leads is fixed by the applied bias voltage V . In the rest
of the paper, we will assume μL = −μR = eV/2 > 0, with
e > 0 the absolute value of the electron charge.

In the following, we will focus on the case of strong inter-
dot coupling, namely, when the interdot dynamics is much
faster than the dot-lead hopping (tc � h̄� with � = �L + �R).
In this limit, it is useful to diagonalize the single-particle
sector of Ĥdd introducing its “molecular” eigenstates, namely,
the bonding and antibonding states |bσ 〉 = d

†
bσ |0〉 and |aσ 〉 =
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d
†
aσ |0〉, which go along with the creation operators

d̂
†
b/a σ=

1√
2

[√
1± ε√

ε2 + t2
c

d̂
†
Rσ ±

√
1∓ ε√

ε2 + t2
c

d̂
†
Lσ

]
.

These states have the energies

εb/a = E ∓ 1

2

√
ε2 + t2

c , (2)

where the upper (lower) sign corresponds to the bonding
(antibonding) state and E = (εL + εR)/2 and ε = εL − εR are
the mean energy and the detuning between the energies of the
two dots, respectively [see Fig. 1(b)]. In this new basis, the
tunnel coupling between the double dot and the two leads is
expressed by effective rates for tunneling via the hybrid states
|bσ 〉 and |aσ 〉:44

�L,b/a = �L

2

(
1 ∓ ε√

ε2 + t2
c

)
, (3a)

�R,b/a = �R

2

(
1 ± ε√

ε2 + t2
c

)
. (3b)

We also define the total broadening of the bonding and
antibonding states as �b/a = ∑

α=L,R �α,b/a. Because of the
dependence on the level detuning ε, these effective rates be-
come a function of time whenever an out-of-phase modulation
is applied to the gates of the two dots.

The stability diagram of the double dot is shown in Fig. 1(b),
and it identifies regions of different equilibrium occupation
numbers for the two dots, as a function of the energies εL and
εR. The points where three charge states are degenerate are
named triple points. For strong interdot coupling tc � h̄�, the
edges of the stability regions are defined by the conditions εb =
0 and εa + U = 0 and an anticrossing behavior is shown at the
triple points. This anticrossing can be clearly distinguished in
the dc current in the linear response regime [see Fig. 1(c)], and
is a hallmark of a tunnel-coupled double-dot system. For finite
bias, the triple points get broadened [see Fig. 1(d)], as there
are now entire regions in parameter space that correspond to
no stable charge configuration.

B. Generalized master equation

We want to describe the dynamics of the double dot
in the presence of a time-dependent driving applied to its
gates in the limit of weak coupling to the leads h̄� � kBT .
The state of the double dot at a given time t is described,
in general, by its reduced density matrix ρ̂dd(t). However,
if the interdot coupling is much stronger than the one to
the leads (tc � h̄�), the bonding and antibonding states are
nondegenerate even for zero detuning and the dynamics of
the diagonal and off-diagonal elements of ρ̂dd(t) decouple in
the lowest order in �.57 In this case, we can restrict ourselves
to study only the diagonal elements of ρ̂dd(t), namely, the
occupation probabilities.44 Their evolution is governed by the
generalized master equation54

d

dt
p(t) =

∫ t

−∞
dt ′W(t,t ′) p(t ′), (4)

with p = (p0,pa↑,pa↓,pb↑,pb↓,p↑↑,p↑↓,p↓↑,p↓↓)T , where
we omitted the time arguments for simplicity. These are

the probabilities that the double dot is empty, p0, that it is
singly occupied with an electron with spin ↑ or ↓ in the
bonding or in the antibonding state pbσ and paσ , or finally
that the double dot is doubly occupied, pσσ ′ , where the two
subscripts indicate the spin of the electrons occupying the
left and right dots, respectively. As mentioned before, double
occupation of a single dot is energetically forbidden due to
strong on-site repulsion. The kernel W(t,t ′) is a transition
matrix that incorporates the tunnel coupling to the leads. It has
a functional dependence on the time-dependent parameters
εα(τ ), with τ ∈ [t,t ′].

We focus here on the case of slow driving, where the lifetime
of the electrons in the system is much shorter than the period of
the driving. In this regime, Eq. (4) can be solved perturbatively
by performing an adiabatic expansion for the occupation
probabilities of the system p(t) → ∑

k�0 p(k)
t . Here, p(0)

t is
the solution of the problem with all parameter values frozen
at time t . It represents the steady state the system would relax
into if it could instantaneously follow the modulation of the
time-dependent parameters. We will therefore refer to it as the
instantaneous solution. Corrections due to retardation effects
are encoded in p(k>0)

t , and are governed by a competition
between the time scales of the driving and the response times
contained in W. They are the solutions of a hierarchy of
equations55 and, in the considered case of periodic driving,
they are associated with different powers of the driving fre-
quency, i.e., p(k)

t ∝ �k .58 Alongside this adiabatic expansion,
we perform a perturbative expansion in the strength of the
coupling to the leads �. Details of such a double expansion
can be found in Refs. 55 and 56. In the limit of weak coupling
to the leads (h̄� � kBT ), retaining only terms to lowest order
in �, this results in the set of equations:55,56

W t p(0)
t = 0, (5a)

W t p(k)
t = d

dt
p(k−1)

t . (5b)

Here, the matrix W t is the zero-frequency Laplace transform
of the kernel in time-space with all time-dependent parameters
frozen at time t , W t = ∫ t

−∞ d(t ′ − t)W(t − t ′), evaluated
to first order in �. It contains the transition rates between
different double-dot states as given by Fermi’s golden rule.
It satisfies the sum rule

∑
i[W t ]ij = 0, which ensures

the conservation of probability, and can be written as a
sum of independent contributions from the two reservoirs
W t = ∑

α=L,R Wα,t . Together with the normalization

conditions
∑

i p
(0)
i,t = 1 and

∑
i p

(k>0)
i,t = 0, Eq. (5) allows

to evaluate iteratively all the nonadiabatic corrections p(k)
t .55

Since the kernel W t depends parametrically on time (as
emphasized by the subscript t), also the solutions of Eq. (5),
p(k)

t , acquire a parametric dependence on t .
We stress that the validity of Eq. (5) is restricted to the

regime of weak coupling to the leads h̄� � kBT and slow
driving. More precisely, the latter condition requires that the
frequency and the amplitude of the modulation satisfy the
relation δX� � �kBT , where δX represents the amplitude of
any of the modulation parameters. In this limit, the expansion
in powers of � for the occupation probability can be truncated
to k = 2, as it will be discussed throughout this paper.
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C. Charge and heat currents

We are interested in the charge and heat currents flowing in
the leads in the presence of an external time-dependent driving.
For definiteness, we take the sign convention that in each lead
the particle (heat) current is positive when flowing towards the
double dot. With this convention, the charge current in lead α

can be written as

Iα(t) = e
d

dt
Tr[N̂αρ̂(t)], (6)

where N̂α = ∑
kσ c

†
αkσ cαkσ is the occupation-number operator

in lead α, and ρ̂(t) is the density matrix of the total system
(double dot and leads) and e > 0 is the absolute value of the
electron charge. Similarly, the heat current in lead α is given
by

Jα(t) = − d

dt
Tr[(Ĥα − μαN̂α)ρ̂(t)], (7)

and it represents the (negative) rate of change of the energy in
lead α measured with respect to the local chemical potential.

Performing an adiabatic expansion similar to the one carried
out for p(t), these currents can be expressed as a series of
contributions of order �k ,

Iα(t) =
∑
k�0

I (k)
α (t), Jα(t) =

∑
k�0

J (k)
α (t). (8)

In the limit of weak coupling to the leads (h̄� � kBT ), to
lowest order in �, these are given by55,56

I (k)
α (t) = e Iα

t p(k)
t , (9a)

J (k)
α (t) = e J α

t p(k)
t , (9b)

where e = (1,1,1,1,1,1,1,1,1) and the kernels Iα
t and J α

t

take, respectively, into account the charge and the heat that
flow from lead α into the double dot:

[Iα
t ]ij = −e(ni − nj )[Wα,t ]ij , (9c)

[J α
t ]ij = {(Ei − Ej ) − μα(ni − nj )}[Wα,t ]ij . (9d)

Here, Ei and ni are the energy and the number of electrons in
the double dot in state |i〉, respectively. The matrix elements
of the kernel, [Wα,t ]ij , represent the probability per unit time
that a tunneling event from/to lead α induces the transition
|j 〉 → |i〉 (i �= j ), to lowest order in �.

The zeroth-order contributions I (0)
α (t) and J (0)

α (t) represent
the steady-state charge and heat currents that would flow in
the leads in a stationary situation with the time-dependent
parameters frozen at time t . They are nonzero only if the system
is brought out of equilibrium by applying a bias voltage or a
temperature gradient. In the following, we will also refer to
them as instantaneous currents.

Vice versa, terms with k > 0 describe the additional
contribution to the currents due to the delayed response of
the system to the time-dependent modulation. From Eq. (9)
and the sum rule

∑
i[W t ]ij = 0, it follows directly that they

satisfy the identities

I
(k)
L (t) + I

(k)
R (t) = −e

d

dt
〈n̂〉(k−1)

t , (10)

J
(k)
L (t) + J

(k)
R (t) =

∑
i

Ei(t)
d

dt
p

(k−1)
i,t − V I (k)(t), (11)

where 〈n̂〉(k)
t = ∑

i nip
(k)
i,t and I (k)(t) = 1

2 [I (k)
R (t) − I

(k)
L (t)] are

the kth nonadiabatic corrections to the occupation of the double
dot and to the current flowing through it.

The first equation represents essentially the charge con-
tinuity equation, and it ensures the conservation of the
charge at every order of the frequency expansion.59 A direct
consequence of Eq. (10) is that the time-averaged electric
current is conserved, Ī

(k)
L = −Ī

(k)
R , where the bar indicates the

average over one driving period:

x = �

2π

∫ 2π/�

0
dt x(t).

The second equation expresses instead the first principle of
thermodynamics, which relates the total heat flowing into a
system to the increase of internal energy of the system itself
and the work done by the external sources. This becomes
more evident by rewriting the first term on the right-hand side
of Eq. (11) in terms of the internal energy of the double dot
〈E〉(k)

t = ∑
i Eip

(k)
i,t and the power delivered by the ac sources

applied to the gates31 P (k)
ac = ∑

α=L,R
dεα

dt
〈n̂α〉(k−1)

t . In this way,
Eq. (11) becomes

J
(k)
L (t) + J

(k)
R (t) = d

dt
〈E〉(k−1)

t − P (k)
ac − P (k)

dc , (12)

where P (k)
dc = V I (k) is the power delivered by the external dc

source according to Joule’s law. Note that P (k)
dc is positive if

the current flows in the direction set by the bias, and negative
otherwise (see discussion in Sec. III C). Integrating such an
expression over one cycle gives

J̄
(k)
L + J̄

(k)
R = −[

P̄ (k)
ac + P̄ (k)

dc

]
, (13)

which allows to express the work per cycle done by the ac
sources in terms of the heat currents flowing in the leads.9,60

III. CHARGE AND HEAT PUMPING

The time-dependent modulation of the voltages applied to
the local gates of the quantum dot allows to pump charge and
heat through the system. In the following, we will discuss the
transport features of such a double-dot pump and how it can
be understood as a nanoscale engine. In all the calculations
presented below, the pumping cycle is parameterized in
terms of the mean energy E(t) = Ē + δE cos(�t + φ) and the
detuning ε(t) = ε̄ + δε cos(�t).

A. Pure adiabatic pumping

To understand the features in the heat and charge currents
due to time-dependent driving, we start by considering the
case of pure adiabatic pumping, meaning that the two leads
are at equilibrium (TL = TR = T and V = 0) and transport is
only due to the slow modulation of the levels of the two dots
(� → 0). In this case, the relevant contributions to the currents
are the ones to first order in the driving frequency, I (1)

α (t) and
J (1)

α (t).
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FIG. 2. (Color online) Contributions to first order in � to the
average charge (a) and heat (b) currents plotted as a function of the
mean energy Ē. The pumping cycle is defined by δε = 2δE , ε̄ =
0, φ = π/2, and � = �/200, and it corresponds to a circular orbit
centered around zero detuning. In both panels, TL = TR = T , V = 0,
U = 20kBT , tc = 10kBT , �L = �R = �/2, and h̄� = kBT/4.

If the leads are in equilibrium, the charge current pumped
through the double dot takes the simple form44

I (1)
α (t) = −e

∑
η=a,b

�α,η

�η

[
d

dt
p(0)

η + d

dt
p

(0)
d

]
, (14)

with p(0)
η = ∑

σ=↑,↓ p(0)
ησ and p

(0)
d = ∑

σ,σ ′=↑,↓ p
(0)
σσ ′ , where

p
(0)
i = e−Ei/kBT /(

∑
i e

−Ei/kBT ). It can be divided in two
contributions: I (1)

α = I
(1)
α,b + I (1)

α,a, each of which contains only
transitions that involve tunneling in or out of the bonding or
the antibonding state, respectively. These two terms always
contribute to the current with opposite signs44 and, while the
first is dominant around the triple point located at (εL,εR) ≈
(0,0), the second one is largest around (εL,εR) ≈ (−U, − U ).
This leads to the sign change of the pumped charge as a
function of the mean energy Ē shown in Fig. 2(a). Here, we plot
the time-averaged charge current flowing into the right lead for
various amplitudes of the ac modulation applied to the gates
that forces the state of the system to follow orbits in parameter
space similar to those of Fig. 1(c). When the amplitude is large
enough so that the pumping cycle fully encircles a triple point,
see, e.g., the red orbit in Fig. 1(c), electrons can be transferred
one by one through the double dot, generating a quantized dc
current Ī = ±e�/2π .

One of the key ingredients of such a quantized pumping
regime is the alternate decoupling from the leads:61 whenever
one of the two dots comes in resonance with its neighboring
lead, the other one is strongly off resonant, so that particle
exchange occurs only with one of the leads at a time.
In Eq. (14), the “alternate decoupling” is encoded in the

time-dependent prefactors �α,η/�η, and it can be achieved
only if the detuning is much larger than the interdot coupling
ε � tc at the time when the level of one dot crosses the Fermi
energy of the neighboring lead, see Eq. (3). This, in turn,
requires the modulation amplitude to be larger than tc. The
second ingredient of quantized charge pumping is the strong
interdot Coulomb interaction U , which separates the two triple
points well apart and which forbids, for example, the double
occupation of the double dot along an orbit that encircles only
the triple point around (εL,εR) ≈ (0,0). This permits to transfer
charges sequentially from one lead to the other through the two
dots according to the direction set by the pumping cycle. Vice
versa, no directional transfer is possible if the orbit encircles
both triple points, so that the maximal width of the plateaux
in the pumped charge current is of the order U + tc, which is
further reduced by temperature smearing.

The heat current in the leads has in general a rather
complicated analytic expression, but in the limit in which the
occupation of the antibonding state can be neglected (i.e.,
tc � kBT ), it is well approximated by

J (1)
α ≈ −εb

�α,b

�b

d

dt
p

(0)
0 + (εa + U )

�α,a

�a

d

dt
p

(0)
d . (15)

This equation indicates that a change in the probability for the
double dot to be empty or doubly occupied results in a heat
current in the leads that is directly proportional to the energy
involved in the transition responsible for the change. These
two contributions are weighted by different time-dependent
prefactors, �α,b/�b and �α,a/�a, which results in the fact that,
as for the charge current, changes in p

(0)
0 and p

(0)
d contribute

with different signs to the heat current.
Interestingly, in the regime where the charge current is

quantized, also the heat current shows well defined plateaux
with height ± �

2π
kBT ln 2, see Fig. 2(b). The emergence of

these plateaux can be well understood. In fact, in the regime of
quantized charge pumping, J̄ (1)

α can be directly related to the
entropy difference �S(0)

α between two charge configurations
that differ only by one electron in dot α:

2π

�
J̄ (1)

α = kBT

∫ 2π/�

0
dt

�α,η

�η

d

dt
S(0) = kBT �S(0)

α . (16)

Here, S(0) = −∑
i p

(0)
i ln p

(0)
i is the Shannon entropy of the

double dot and η = b (a) for an orbit fully encircling the triple
point around (εL,εR) ≈ (0,0) [around (εL,εR) ≈ (−U, − U )].
Along this orbit, the time-dependent prefactor �α,η/�η equals
one close to the resonance with lead α and zero otherwise,
so that the integral results in the difference in entropy of the
double dot before and after an electron has tunneled through
the α barrier, i.e., �S(0)

α = ± ln 2. The plus or minus sign
corresponds to an electron tunneling in or out of the double
dot, according to the direction set by the pumping cycle.

Note that kBT ln 2 is the minimal amount of energy required
to erase one bit of information, according to Landauer’s
principle.62–64 In this case, the bit of information is encoded
in the spin of the electron in the bonding state, the erasing
procedure corresponds to raising the level of one dot and
allowing the electron to tunnel out.65 The energy kBT ln 2
is provided by the external ac fields, and results in heat that
flows into the lead the electron has tunneled to. The situation
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FIG. 3. (Color online) Contributions to first order in � to the
average charge and heat currents for the case of a fully spin-polarized
system. The pumping cycle is defined by δE = 40kBT , δε = 2δE , ε̄ =
0, φ = π/2, and � = �/200. Other parameters are TL = TR = T ,
V = 0, U = 20kBT , tc = 10kBT , �L = �R = �/2, and h̄� = kBT/4.

is specular for the reverse process, so that at the end of the
cycle the energy kBT ln 2 has been transported from one lead
to the other.

While the appearance of plateaux in the charge current
is directly related to the quantization of charge, plateaux in
the heat current reflect specific degeneracies occurring in the
system and are therefore tunable, e.g., by an external magnetic
field. This is shown in Fig. 3, where the plateaux in the heat
current are fully suppressed by a strong magnetic field that
spin polarizes the system, B � kBT . Vice versa, those in the
charge current are unaffected. In this case, charge transport is
not accompanied by heat transfer from one lead to the other.
From the information-theory point of view, one could say that
the regular flow of spinless electrons produced by the double-
dot pump in a high-magnetic field does not carry any useful
information and, therefore, it is not accompanied by the heat
transfer which otherwise would be required by Landauer’s
principle.

Another feature that distinguishes heat from charge pump-
ing is the appearance of peaked shaped features at the borders
of the plateaux. These peaks approach the values ± �

2π
kBT ln 3

and ± �
2π

kBT ln 3
2 and are associated to orbits that touch one

of the triple points, see, e.g., the black orbit in Fig. 1(c). In this
case, particles are also exchanged with the leads in situations
in which two different charge states (e.g., singly and doubly
occupied) are degenerate, and this results in differences of the
entropy between initial and final states of a certain loading and
unloading process that equal ± ln 3 or ± ln 3

2 . This change in
entropy does not translate entirely in the heat exchanged with
one lead because close to a triple point the energy dependence
of the weight factor �α,η/�η in Eq. (16) cannot be neglected
or, equivalently, the “decoupling approximation” breaks down
and each dot exchanges heat with both leads simultaneously.66

Finally, we notice that if the leads are in equilibrium,
Eq. (11) reduces to

J
(1)
L (t) + J

(1)
R (t) = kBT

d

dt
S(0). (17)

This expression is equivalent to the Clausius equality of
equilibrium thermodynamics and it indicates that to first order
in � the dynamics of the system is reversible if the leads are
in equilibrium. A direct consequence of Eq. (17) is that on

average, during a cycle, heat is transported from one lead to
the other, J̄

(1)
L = −J̄

(1)
R .

B. Pumping against a gradient

So far, we consider only the case of pure pumping, in which
the leads are in equilibrium and transport is solely due to
periodic modulation of dots’ levels. However, an important
feature of the double-dot pump is the possibility of achieving
quantized charge pumping even in the presence of a finite bias
voltage V . From the experimental point of view, pumping
against a bias represents a clear proof that the measured
current is set by the chosen pumping cycle.34 Moreover, it
also allows thinking of applications of the double-dot pump,
e.g., as “battery charger” transferring electrons from a lower
to a higher chemical potential. This will be discussed in the
following Sec. III C.

Pumping against a voltage bias requires an orbit in parame-
ter space that minimizes the contributions of the instantaneous
currents Ī (0)

α and J̄ (0)
α , which—flowing in the direction set by

the gradient irrespectively of the orientation of the pumping
cycle—play the role of leakage currents. This can be achieved
by choosing a pumping cycle that fully encircles a single triple
point. However, it has to be taken into account that the triple
points, i.e., the regions in parameter spaces where no charge
configuration is stable, get broadened by the gradient itself and
will eventually merge into a single one for very large V . This
poses an upper limit to the maximal voltage against which it
is possible to pump, see Sec. IV B. Nevertheless, as long as
the triple point regions are well separated from each other and
can be encircled by a controlled modulation of the gates, it
remains possible to pump one electron per cycle through the
double dot.

The situation is similar for what concerns heat pumping
when the leads have different temperatures: as long as it
is possible to choose a pumping cycle that fully encloses a
triple point, the heat currents in each lead exhibit well defined
plateaux of height �

2π
kBTα ln 2, see Fig. 4. In other words,

even if the system is globally brought out of equilibrium,
the heat exchanged singularly with each lead obeys Clausius
relation J̄ (1)

α = kBTα�S(0)
α

�
2π

. This is again a consequence
of the “alternate decoupling” occurring along an orbit fully
encircling a triple point, which ensures that the double dot
is temporarily coupled only to one lead at a time. In the
considered limit of slow driving � → 0, the double dot
has time to equilibrate with the lead it is coupled to. As a
consequence, even in the presence of a temperature gradient,
processes that change the total occupation of the double dot
represent isothermal transitions between equilibrium states.

In the limit of slow driving, a pumping cycle that fully
encloses a triple point can then be regarded as a nanoscale
analog of the Carnot cycle in which two isothermal transitions
are connected by two adiabatic ones (where now adiabatic
means that the entropy of the system remains unchanged). The
isothermal processes are those that change the total occupation
of the double dot, and the adiabatic ones those that accompany
the crossing of the two dots’ levels, which, occurring when
both dots are far away from the Fermi energy of the leads,
represent reversible processes.
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FIG. 4. (Color online) Contributions to first order in � to the
average heat current in the left (dashed lines) and the right (full
lines) leads, with and without a temperature gradient. Here, we
assumed TL = T + �T and TR = T , with �T = 0 (red lines) or
�T = 0.4T (green lines). The thin dot-dashed lines correspond to
kB (T + �T ) ln 2 �/2π . The heat current in each lead shows plateaux
proportional to the local temperature Tα . When J̄

(1)
L < 0 and J̄

(1)
R > 0,

heat is pumped form the cold to the hot reservoir. The pumping cycle is
defined by δE = 40kBT , δε = 2δE , ε̄ = 0, φ = π/2, and � = �/200.
Other parameters are U = 20kBT , tc = 10kBT , �L = �R = �/2, and
h̄� = kBT/4.

Finally, we notice that the total average heat-current flowing
into the system J̄

(1)
L + J̄

(1)
R is directly related to the excess

entropy production due to the time-dependent driving.67 As
emphasized in Ref. 67, this is a geometric quantity that depends
only on the trajectory in parameter space. The geometric nature
of the excess entropy production—and more in general of the
pumped charge and heat to first order in frequency—is a direct
consequence of the relation between Ī (1)

α and J̄ (1)
α and the time

derivative of the instantaneous occupation probability p(0), see
Appendix A.68

C. Operation of a double-dot device

The possibility of pumping charge and/or heat against
a gradient shows that a driven double-dot device can have
different applications as a nanoscale engine. In the following,
we discuss in detail three different operating modes: the charge
pump moving electrons against a bias voltage, the heat pump
transferring heat from a cold to a hot reservoir, and the
thermal engine producing work extracting energy from a hot
reservoir and releasing part of it into a cold one. To quantify
their performance, we introduce efficiencies in analogy to the
classical counterparts. In this section, we concentrate on the
ideal working regime where the main contributions to the
pumped currents are of first order in the driving frequency,
i.e., Īα ≈ Ī (1)

α and J̄α ≈ J̄ (1)
α . Corrections due to finite operation

time and leakage currents will be analyzed in Sec. IV.

1. Charge pump

When the double dot is operated in a way as to transfer
electrons from a lower to a higher chemical potential, it can be
regarded as a “battery charger” doing work on the dc source.
We characterize the performance of such an engine by its

energy conversion efficiency

ηch = −ĪV

P̄ac
, (18)

where −ĪV is the useful work per unit time done by the
pump on the dc-voltage source, and P̄ac is the average power
delivered by the ac-fields applied to the gate electrodes. The
sign convention used here for the current is that Ī is positive
when it flows in the direction set by the dc source, so that
−ĪV > 0 when the driven double dot actually works as a
charge pump moving electrons from a lower to a higher
chemical potential. Only in this case, it makes sense to speak
about useful work done by the pump and to characterize its
efficiency in terms of Eq. (18).

The power delivered by the ac fields P̄ac can be quantified
in terms of the heat currents flowing into the leads according
to Eq. (13), i.e., P̄ac = −P̄dc − ∑

α J̄α , where P̄dc = ĪV is the
work per unit time done by the dc source. The efficiency of
the double-dot pump as a battery charger is then given by

ηch = ĪV

J̄L + J̄R + ĪV
. (19)

If the leads have the same temperature, the total heat current
is zero along an orbit that fully encloses a triple point and the
efficiency takes its maximal value ηch = 1. In this case, the
work done by the source is fully used to transfer charge against
a potential.

2. Heat pump

As discussed in Sec. III B, a double dot operating between
two reservoirs with different temperatures along an orbit that
fully encloses a triple point, represents an analog of the Carnot
engine. Depending on the direction of the cycle, the device acts
either as a refrigerator or as a heat engine. We are interested
here in the situation where no voltage bias is present.

The double dot is operated as a refrigerator when heat is
transferred from a cold to a hot reservoir during the pumping
cycle. The efficiency of a heat pump is in general characterized
by the coefficient of performance

COP = J̄cold

P̄ac
, (20)

where J̄cold is the average heat flow out of the cold reservoir
and P̄ac the power delivered by the ac-field during one cycle. If
no bias is applied, the latter is directly related to the total heat
flowing out of the double dot P̄ac = −∑

α J̄α , see Eq. (13).
Along an orbit that fully encircles a triple point, the heat
current in each lead is directly proportional to the temperature
of that lead. In this case, J̄cold = �

2π
kBTcold ln 2 and P̄ac =

�
2π

kB(Thot − Tcold) ln 2 and the cooling efficiency of the double-
dot pump reaches the Carnot limit COPCarnot = Tcold/(Thot −
Tcold), confirming the analogy between the “ideal” pumping
cycle and the Carnot cycle.

3. Heat engine

The double-dot pump acts as a heat engine producing work
on the external fields, when the pumping cycle is such that
heat is extracted from the hot reservoir and released into the
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cold one. For the case of Fig. 4, this corresponds to the regimes
where J̄

(1)
L > 0 and J̄

(1)
R < 0. The performance of a heat engine

is characterized by the efficiency coefficient

η = −P̄ac

J̄hot
. (21)

where −P̄ac is now the work per unit time done by the system on
the ac fields and J̄hot is the heat current absorbed from the hot
reservoir. Similarly to the case of the refrigerator, along an orbit
that fully encircles a triple point, we find −P̄ac = �

2π
kB(Thot −

Tcold) ln 2 and J̄hot = �
2π

kBThot ln 2, and the efficiency of the
double-dot pump reaches again the Carnot limit ηCarnot = 1 −
Tcold/Thot.

IV. LIMITATIONS OF A REALISTIC PUMP

In the previous section, we have assumed that the charge
and heat currents can be approximated solely by the first nona-
diabatic corrections, Īα ≈ Ī (1)

α and J̄α ≈ J̄ (1)
α . This corresponds

to considering the case of extremely slow driving � → 0 and
to implicitly assuming that the instantaneous currents Ī (0)

α and
J̄ (0)

α can be neglected along an orbit that fully encircles a triple
point. In this ideal case, the efficiencies of the double-dot
based engines discussed in Sec. III C, reach their maximum
theoretical values. In this section, we investigate instead the
limitations to the performance of a realistic double-dot pump
that are due to a small but finite driving frequency and to
leakage currents.

A. Corrections due to finite operation-time

To take into account the effects of a finite driving frequency,
we evaluate the second nonadiabatic corrections to the charge
and the heat currents, i.e., the contributions to second order
in the frequency, I (2)

α , J (2)
α . For simplicity, we start again by

first discussing the case where the leads are at equilibrium and
postpone the case of pumping against a gradient to Sec. IV B.
Moreover, we focus on the regime of large modulation
amplitudes, which is the most interesting for applications. The
opposite case of small amplitudes pumping is described in
detail in Appendix B.

In Fig. 5, we plot the contributions to second order in
� to the average charge and heat currents Ī

(2)
R , J̄

(2)
R , for the

same choice of parameters considered in Fig. 2. Comparing
these figures it is apparent that, even in the case of relatively
slow driving � = �/200 considered here, the contribution to
second order in � to the heat current represents a significant
amount of the total heat exchanged with a lead per cycle. Vice
versa, the contributions to second order in � to the charge
current can be completely neglected.

This behavior is easily understood considering again an
orbit in parameter space that fully encloses a triple point.
As discussed before, along such an orbit the exchange of
particles and heat with the leads involves only one dot and its
neighboring lead at a time, while the other lead is temporarily
decoupled due to the large interdot detuning. Particle exchange
occurs when the level of a dot crosses the Fermi energy of the
neighboring lead. However, if the level moves with a finite
velocity, electrons can tunnel out of (in) the dot not only
in resonance, but also at a somewhat higher (lower) energy,

J̄
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)
R
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T
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FIG. 5. (Color online) Contributions to second order in � to the
average charge (a) and heat (b) currents, plotted as a function of the
mean energy Ē. The pumping cycle is defined by δε = 2δE , ε̄ = 0,
φ = π/2, and � = �/200. The thin lines in panel (b) represent the
approximate expression J̄ (2)

α ≈ − 3
2

vα

�

�

2π
. In both panels, TL = TR =

T , V = 0 and U = 20kBT , tc = 10kBT , �L = �R = �/2, and h̄� =
kBT/4.

resulting in the emission of a hot electron (hole) into the leads.
Both processes contribute to increasing the energy of the lead
and give rise to a negative heat current (meaning that it is
flowing from the dot into the leads). In other words, J̄ (2)

α

represents the irreversible heat production that accompanies
the action of the ac fields applied to the double dot. The
maximal excess energy that can be deposited into the leads is
determined by the amplitude of the modulation δE , while the
probability that strongly off-resonant transition occurs is given
by the ratio �/�, so that the heat current to second order in �

scales as |J̄ (2)
α | ∼ δE�2/�. A more accurate estimate leads to

J̄ (2)
α ≈ −3

2

vα

�

�

2π
, (22)

where vα is the speed with which the level of dot α

crosses the Fermi energy of lead α. For a circular orbit
fully encircling the triple point around (εL,εR) = (0,0), we
have vα = �

√
2δE

√
1 − ε̄2

α/2δ2
E .69 For an orbit around the

other triple point, ε̄α should be replaced by (ε̄α + U ) in the
expression for vα . Deviations from the behavior predicted
by Eq. (22) occur for orbits that cross a triple point and are
associated to an increased heat production close to the turning
points of the ac modulation. The large peak around Ē = −U/2
for large amplitudes corresponds to orbits that enclose both
triple points. In this case, a dot level crosses the Fermi energy
of the neighboring leads twice during each cycle, leading to
(almost) a doubling of the heat current J (2)

α .
It is important to stress that the contributions to second order

in � to the heat current are negative in both leads (with J̄
(2)
L =

J̄
(2)
R in the case of zero average detuning ε̄ = 0),51 meaning

that heat is deposited in the leads in every pumping cycle.
This poses some serious constrains to the possibility of using
a double dot as a heat pump to extract heat from a reservoir,
as it requires to reduce significantly the driving frequency
� � ln 2 �kBT/δE in order to minimize heating effects.
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FIG. 6. (Color online) Average charge current as a function of the
mean dot-level energy Ē for different values of the average detuning
ε̄. The thick lines represent the total charge current ĪR = Ī

(1)
R + Ī

(2)
R ,

while the thin-dashed ones correspond to the contribution to first
order in frequency Ī

(1)
R alone. The pumping cycle is defined by δE =

40kBT , δε = 2δE , φ = π/2, and � = �/200. Other parameters are
TL = TR = T , V = 0, U = 20kBT , tc = 10kBT , �L = �R = �/2,
and h̄� = kBT/4. Curves are offset by 1

2 e�/2π for clarity.

While the emission of a hot hole or a hot electron contribute
with the same sign to the heat current into the leads, the two
processes compensate each other in the average charge current,
so that Ī (2)

α remains in general pretty small as long as � � �. In
particular, it can be shown that Ī (2)

α = 0 for orbits with average
zero detuning, thanks to the symmetry of the pumping cycle,
see Fig. 5(a). Even for orbits with ε̄ �= 0, the corrections due to
Ī (2)
α to the charge current are negligible as long as the pumping

cycle fully encircles a triple point, and become sizable only at
the edges of the current plateaux, see Fig. 6.

Finally, we would like to comment briefly on the consis-
tency of our adiabatic expansion. As explained in Sec. II B, our
calculations are based on the expansion p(t) = ∑

k p(k)
t , where

the contributions p(k)
t scale as (�/�)k giving a convergent

series in the limit � ∼ �.55,56 The scaling of the various
contributions to the average charge and heat currents is less
obvious, as shown by J̄ (2)

α � J̄ (1)
α in certain frequency regimes.

This is because the physical processes responsible for the
heating induced by the ac driving scale as �2 and therefore
start contributing to the heat current only from second order,
in terms of the expansion we use. However, it can be shown
rigorously that all the contributions J̄ (k�2)

α are suppressed
at least by a factor �/� with respect to J̄ (2)

α , so that it is
meaningful to truncate the expansion in Eq. (9b) to the second
order only.

B. Leakage currents and efficiency of a realistic pump

The leakage currents I (0)
α and J (0)

α pose another important
limitation to the operation of the double dot as a heat or charge
pump. In fact, it is possible to transfer electrons against a
bias only as long as the pumped current Ī (1)

α + Ī (2)
α , i.e., the

current resulting from the time-dependent modulation of the
dots’ levels, prevails over the instantaneous one Ī (0)

α . Similarly,
to pump heat from a cold to a hot reservoir, it is necessary that
the magnitude of J̄ (1)

α + J̄ (2)
α is larger than the one of J̄ (0)

α . The
contributions from I (0)

α and J (0)
α can be strongly suppressed

by choosing an orbit along which the levels of the two dots

cross each other only well outside of the bias or temperature
window. However, for a given orbit, the maximal amount of
charge or heat that can be pumped in or out of a reservoir in
one cycle is fixed, while the leakage currents increase with V

and �T . This poses an upper limit to the maximum voltage
or temperature gradient against which it is possible to pump.
Moreover, the contribution of Ī (0)

α and J̄ (0)
α to the total charge

and heat extracted from a lead during a pumping cycle grows as
�−1 when the driving frequency is reduced. As a consequence,
the maximum voltage or temperature gradient that the double-
dot pump can overcome depends both on the chosen pumping
orbit and on the speed at which it is traversed.

The competition between pumped and leakage currents can
be seen, e.g., in Fig. 7(a), for the case of a charge pump working
against a bias voltage. Here, we show the total charge current
Ī = Ī (0) + Ī (1) + Ī (2) flowing through the dot as a function
of the applied bias for different amplitudes of the driving
cycle and different driving frequencies. In each case, we find
Ī (2) ≈ 0. According to our convention on the sign of I , the
pump moves electrons against the direction set by the bias
as long as Ī < 0. The maximal voltage Vmax that the pump
can sustain is then defined by the condition Ī = 0. For larger
voltages, the pumped current is overrun by the one due to the
bias. As expected, Vmax is sensibly reduced if the radius of the
orbit is shrunk, or if the pumping frequency is lowered.
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FIG. 7. (Color online) (a) Average charge current flowing through
the double dot in the presence of a bias voltage and of time-dependent
driving. The current is plotted as a function of the applied bias V

for three different sets of pumping parameters: curves (1) and (2)
correspond to the orbit described by δE = 40kBT , Ē = 30kBT , ε̄ =
0, φ = π/2, traversed with frequency � = �/200 and � = �/400,
respectively. Curve (3) corresponds to a smaller orbit with δE =
20kBT , Ē = 15kBT , ε̄ = 0, φ = π/2, and � = �/200. Charge is
pumped against the bias as long as Ī < 0. (b) Work per unit time
done on the dc source and (c) efficiency of the double-dot pump
for the same pumping cycles considered in (a). The efficiency is
defined according to Eq. (19). In all panels, U = 20kBT , tc = 10kBT ,
�L = �R = �/2, h̄� = kBT/4, and TL = TR = T .
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As long as Ī < 0, the pump performs a positive work per
pumping period, by transferring electrons from a lower to a
higher chemical potential, see Fig. 7(b). The efficiency of such
a pump can be quantified by the energy conversion coefficient
ηch, Eq. (19), where now all contributions up to second order
in � to the charge and heat currents have to be taken into
account, see Fig. 7(c). At large voltages, the major limitations
to the performance of the pump come from the leakage current
Ī (0), which poses an upper limit to the maximal power that can
be delivered by the pump on the dc source. Vice versa, at
low bias, the efficiency ηch is mostly affected by the heat
production term J̄

(2)
L + J̄

(2)
R , which represents the minimal

power that the ac sources have to provide in order to drive
the system along the considered orbit. Since this is finite even
in the limit of no applied bias, the efficiency of the double-dot
charge pump vanishes for V → 0. Interestingly, despite the
detrimental effects due to heat production and leakage currents,
the double-dot charge pump can reach efficiencies up to 70%
of the ideal value, when operated against a finite voltage along
a sufficiently large pumping cycle, see Fig. 7(c).

The limitations due to leakage currents and finite-operation
time are more severe when the double dot is employed as
a refrigerator to pump heat from a cold to a hot reservoir.
In fact, while the second nonadiabatic corrections are mostly
negligible for what concerns the charge current, they represent
a significant amount of the heat flowing into the leads.
Moreover, being always injected from the double dot into the
leads, they reduce the possibility of extracting heat from a
reservoir. Suppressing J̄ (2)

α requires to lower considerably the
driving frequency, but this in turn makes the system more
sensitive to leakage currents. Both effects reduce significantly
the efficiency of the double-dot pump with respect to the
Carnot limit. This can be seen in Fig. 8(a), where we plot
the coefficient of performance of a double-dot heat pump,
plotted as a function of the temperature gradient between the
leads for the same pumping cycles considered in Fig. 7. The
Carnot efficiency is also plotted for comparison. The effects
due to finite-time operation are particularly evident in the limit
�T → 0, where an ideal pump would be “infinitely efficient,”
since it requires no power to transfer adiabatically heat from
one lead to the other when these have the same temperature.
Vice versa, due to the heating of the leads, which accompanies
the modulation of the levels of the double dot, the power
needed to operate a pump at finite speed remains finite, as well
as its efficiency. Moreover, an ideal heat pump would be able to
work against an arbitrary temperature gradient, but this is not
the case of a real double-dot pump, where the pumped current
is overrun by leakage currents as soon as the temperature
gradient �T becomes larger than a critical value.

Heat production limits also the operation of a double-dot
pump as a heat engine, see Fig. 8(b). In fact, while the
maximal amount of work that the pump can perform extracting
energy from a hot reservoir and releasing it into a cold
one is proportional to the temperature difference, the energy
cost of moving along an orbit in parameter space—which is
represented by the heat dissipated into the leads—is roughly
independent of �T . This means that if the leads have similar
temperatures, the work put into the system by the external
ac fields exceeds the one that can be extracted form the heat
reservoirs, leading to a negative energy balance. In this case,
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FIG. 8. (Color online) (a) Coefficient of performance of the
double-dot pump as a heat pump, as defined in Eq. (20). In this
case, we choose TL = TR + �T and a pumping cycle such that heat
is transferred from right to left, i.e., against the temperature gradient.
The curves labeled as (1)–(3) correspond to the pumping cycles
discussed in Fig. 7. The COP of an ideal Carnot refrigerator is also
plotted for comparison. (b) Efficiency of the double-dot pump as a
heat engine, as defined in Eq. (21). Also in this case TL = TR + �T ,
but the pumping cycle is now such that heat is transferred from
left to right, i.e., according to the temperature gradient. The curves
labeled as (1)–(3) correspond again to the orbits discussed in Fig. 7,
but now traversed in the opposite direction, i.e., φ = −π/2. The
efficiency of an ideal Carnot engine is plotted for comparison. In all
panels, U = 20kBT , tc = 10kBT , �L = �R = �/2, h̄� = kBT/4, and
μL = μR.

the pump does no work and it make no sense to speak about
its efficiency in terms of Eq. (19). Dissipation due to heating
can be reduced by driving the system at a lower frequency,
but at the cost of increasing the effects of the leakage currents.
These drag a substantial amount of heat out of the hot reservoir
without contributing to the work performed by the system
(since J̄

(0)
L + J̄

(0)
R = 0), suppressing the efficiency of the pump

for large �T .
Finally, we would like to mention that, apart for leakage

currents and heat production, other effects, such as coupling
to phonons, cotunneling and missed interdot transitions, may
affect the performance of the double-dot pump. However,
the last two mechanisms are suppressed in the limit of weak
coupling to the leads, strong interdot hybridization and slow
driving frequencies considered in this paper, and coupling to
phonons is also expected to be significantly reduced at the
cryogenic temperatures at which pumping experiments are
performed.
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V. CONCLUSIONS

We investigated charge and heat transport in a driven
double-dot device. We showed that in the regime of quantized
charge pumping, i.e., when electrons are transferred one by
one through the system thanks to a controlled modulation of
the energy levels of the two dots, the heat current exhibits
well defined plateaux if the driving frequency � is sufficiently
small. The height of these plateaux is directly proportional to
the temperature of the leads and reflects specific degeneracies
of the double-dot states involved into transport, namely
the spin degeneracy of the bonding state. In the limit of
slow driving � → 0, the heat current through the double
dot can then be controlled by an external magnetic field
and be completely suppressed by fully spin polarizing the
system.

While the quantization of the transported charge is rather
robust with respect to an increase of the pumping frequency
(as long as the latter remains much slower than the relaxation
time of the system � � �), the plateaux in the heat current
are strongly affected by heat production in the leads. This is
described by the second nonadiabatic corrections to the heat
currents J (2)

α , which account for the excess energy deposited
into the leads as a consequence of the finite-time driving of the
dots’ levels.

Heating effects are detrimental for the performance of
double-dot pump as a nanoscale engines. In fact, while the
driven double dot can in principle be operated as a nanoscale
“battery charger” moving electrons from a lower to a higher
chemical potential, or as a heat pump exchanging energy
with two reservoirs with different temperatures, its efficiency
is limited by dissipative effects due to leakage currents and
finite-frequency operation. We show that despite these effects,
the efficiency of a double-dot charge pump performing work
against a dc source can reach of up to 70% of the ideal value.

Our results are based on a generalized master equation
approach in the regime of weak coupling to the leads,
which allows to take systematically into account the effects
of a small but finite driving frequency. It is interesting to
observe how fundamental thermodynamic relations, see, e.g.,
Eq. (12), naturally emerge from transport calculations and
how the adiabatic expansion allows to identify reversible and
irreversible transport processes.

In this work we focused in particular on the semiclassic
regime of strong interdot coupling and large modulation
amplitudes, which is the most interesting for applications of the
double dot as a quantized charge source or, as we discussed
above, as a nanoscale engine. As future perspective, it will
be interesting to extend our formalism to take into account
coherences57 between the double-dot states and cotunneling
effects,55 to address regimes where quantum effects play a
major role for the dynamics of the system.
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APPENDIX A: GEOMETRIC PROPERTIES OF I (1)
α AND J (1)

α

It is well known that adiabatic pumping is of geometric
nature, meaning that, in the limit of slow modulations � → 0,
the charge pumped through a system depends only on the
specific shape of the path sustained by the system’s parameters
but not on its detailed time evolution.70,71 The same holds true
for the heat exchanged with the leads during one pumping
cycle, as we discuss in this appendix.

In terms of the expansion in Eq. (8), the quantities that
possess geometric properties are the terms to first order in
the driving frequency I (1)

α and J (1)
α , which are responsible for

adiabatic pumping. To emphasize this aspect, it is useful to
express the charge and the heat that are exchanges with one
lead during one pumping cycle, Q

(1)
ξ = ∫ 2π/�

0 dt ξ (1)(t) (ξ ∈
{Iα,Jα}), in terms of auxiliary vector fields in the space of
the parameters.72 The key observation is that I (1)

α and J (1)
α

are directly related to the time derivative of the instantaneous
occupation probabilities, i.e.,

I (1)
α (t) = e Iα

t W̃−1
t

d

dt
p(0)

t ≡ ϕ
Iα

t

d

dt
p(0)

t , (A1)

and similarly for the heat current J (1)
α . Here W̃−1

t is a
pseudoinverse of the evolution kernel W t .72 In the second
identity, we introduced the vector-valued response coefficients
ϕ

ξ
t , which describe the rate at which charge (ξ = Iα) or heat

(ξ = Jα) is transferred to lead α due to a change in the
occupation probabilities.

The pumped “charge” Q
(1)
ξ can then be written as a line

integral over a closed contour C in the space of the driving
parameters

Q
(1)
ξ =

∮
C

dε · Aξ (ε), (A2)

with

Aξ (ε) =
∑

i

ϕ
ξ

i (ε)∇p
(0)
i (ε). (A3)

Here, ε = ∑
α εαeα indicates the “position” vector in the

parameter space spanned by eL = (1,0) and eR = (0,1), and
∇ = ∑

α eα∂εα
. The vector field Aξ can be interpreted as a

pseudovector potential defined in the space of the driving
parameters, and its components are directly related to the
concept of emissivity.72,73 The line integral on the right-hand
side of Eq. (A2) is independent of how fast the orbit C is
traversed (provided that the adiabatic approximation holds),
and therefore the pumped charge (or heat) does not depend on
the driving frequency.

Extending the two-dimensional parameter space to a third
dimension and using Stoke’s theorem, Eq. (A2) can be written
as the surface integral

Q
(1)
ξ =

∫∫
�

dS · Bξ (ε), (A4)

where Bξ (ε) = ∇ × Aξ (ε), � is the area encircled by C and
dS the directed surface element in parameter space. Q

(1)
ξ can

then be seen as the flux generated by the pseudomagnetic field
Bξ . The advantage of this representation is that Bξ anticipates
the conditions for finite pumping without referring to the
specific details of the modulation.72
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We stress, however, that the geometric interpretation of
the pumped charge (heat) holds only to first order in the
driving frequency and cannot be generalized to higher-order
contributions, which depend sensitively on the details of how
the pumping orbit is traversed.

APPENDIX B: SMALL-AMPLITUDE PUMPING TO FIRST
AND SECOND ORDER IN �

In order to get a better understanding of the characteristics
of the pumped charge and heat, we present in this appendix
some results in the regime of weak pumping. This means
that the amplitudes of the parameter modulation are chosen
to be small with respect to the extension of the triple points.
We, furthermore, take the amplitudes of the time-dependent
part of both energy levels εL(t) = ε̄L + δεL sin(�t) and εR =
ε̄R + δεR sin(�t + φ) to be equal, δεL = δεR ≡ δεd. Finally,
we are interested in the parameter cycles for which adiabatic
charge and energy pumping is optimal and we therefore choose
the phase difference between the parameters to be π/2. These
conditions result in modulation cycles of circular shape in the
stability diagram. The contributions to the pumped charge in
the small-amplitude regime to first order in the frequency are
proportional to the area of the enclosed cycle:∫ 2π/�

0
εL(t)ε̇R(t)dt = −

∫ 2π/�

0
ε̇L(t)εR(t)dt = πδε2

d .

In order to further simplify our considerations, we assume
symmetric coupling, �L = �R between the dots and their
neighboring leads. Asymmetric couplings lead to qualitatively
similar results as the ones presented here, except for slight
changes in the symmetry of the pumped charge and heat as a
function of the working point (ε̄L,ε̄R).

The results for the pumped charge and energy current to
first order in the frequency are shown in Figs. 9(a) and 9(b).
Both of these currents are pure transport properties, in the
sense that we have Ī

(1)
L = −Ī

(1)
R as well as J̄

(1)
L = −J̄

(1)
R . Both

charge and heat currents have contributions in the vicinity of
the triple points in the stability diagram of the double dot. The
pumped charge changes sign between the two triple points,
which is due to the sign difference in the dependence on the
detuning of the effective coupling of the two hybrid states,
�b/a, see Eq. (3).

The heat current has a different behavior: the contributions
to the heat current have a node in the central regions of the
triple points. This is due to the fact that the transported energy
becomes zero when the quantum dot level through which
transport takes place is exactly at resonance. Furthermore,
we note that there is an asymmetry in the magnitude of the
positive and the negative contribution. This is due to the fact
that the maximum contribution to transport is shifted by a
temperature-dependent factor, kBT ln 2, with respect to the
zero of the transported energy.

Finally, we note that in the regime of small pumping
amplitudes, the average charge and heat currents to first
order in � are directly proportional to the intensity of
the pseudomagnetic fields introduced in Appendix A, i.e.,
Ī (1)
α ∝ BIα

and J̄ (1)
α ∝ BJα

, so that the plots of Figs. 9(a) and
9(b) represent a color-scale map of BIR and BJR for the case
V = 0 and TL = TR.

FIG. 9. (Color online) Density plots of pumped charge and heat
currents to first and second order in the pumping frequency as a
function of the energy level of the left and right dots. (a) Charge

current to first order in �, Ī
(1)
R [e�

πδε2
d

(kBT )2 ]. (b) Heat current to first

order in �, J̄
(1)
R [�

πδε2
d

kBT
]. (c) Charge current to second order in �,

Ī
(2)
R [e�

πδε2
d

(kBT )2 ] and (d) heat current to second order in �, J̄
(2)
R [�

πδε2
d

kBT
].

In all panels, TL = TR = T , V = 0, U = 20kBT , tc = 10kBT , �L =
�R = �/2, and h̄� = kBT/4.

We now consider the second-order in � contribution to
charge and heat transport. The pumped charge current Ī (2)

is—due to charge conservation—again a purely transported
quantity with Ī

(2)
L = −Ī

(2)
R . In contrast to the current, to first

order in �, this contribution is symmetric as a function of the
mean energy Ē around Ē = −U

2 , and it is antisymmetric as
a function of the detuning ε̄ around zero detuning. Another
important difference is that it is due to single-parameter
pumping, indeed, we find

Ī (2) = e
�

2π

∫ 2π/�

0
ε(t)ε̈(t)dt

·
∑
η=b,a

d

dε

(
�Rη

�η

)
d

dε

[
p(0)

η + p
(0)
d

]∣∣∣∣
ε̄

. (B1)

Charge pumping due to a single time-dependent parameter is
not possible in the adiabatic regime. The different behavior of
the second-order in frequency contribution can be understood
by considering in detail a charge transfer process. Let us
concentrate on the situation where the bonding level is close
to resonance. The energy of the bonding level is decreased

whenever the absolute value of the detuning is increased (the
opposite effect is true for the antibonding state). A thereby
induced loading of the bonding state takes place either mostly
through the left or mostly through the right lead depending on
the effective coupling �L/R,b. The fast change of the detuning
has the consequence that the effective coupling “seen” by the
tunneling particles is slightly delayed, leading to a slightly
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increased (decreased) coupling to the left lead with respect
to the equilibrium situation when the detuning is increased
(decreased) and vice versa for the coupling to the right lead
(the opposite effect is true for the antibonding state). This
allows for the appearance of single-parameter pumping, as
reflected in the current formula, Eq. (B1). However, since
this delay in the effective couplings is equal for a detuning
of equal magnitude and opposite sign, charge pumping takes
place only if the average detuning ε̄ is different from zero, see
Fig. 9(c).

Finally, we want to address the heat current in second order
in the frequency, which is due to the finite-frequency operation.
This heat current is generated by the time-dependent fields
and therefore has the same negative sign in both leads. In
other words, due to the time-dependent modulation, heat is
flowing from the double-dot system into the leads. In Fig. 9(d),
the heat current into the right lead is shown. It shows large
contributions whenever the level through which transport takes

place (namely, the bonding level at the transition 0 ↔ 1 and
the antibonding level at the transition 1 ↔ 2) is in resonance
with the right lead. Since the heat current in second order
in the frequency is not a transported quantity in this regime,
contributions also far away from the triple points are visible,
as long as one of the levels is close to resonance. The
analogous situation, with an inverted behavior with respect
to the detuning, is observed for the heat current into the left
lead.

This obviously different behavior of the heat current in
second order in the frequency shows that here the second-order
contribution is often larger than the first-order in frequency
contribution. It is therefore of high relevance to consider
contributions of second order in the frequency when studying
heating effects. We, however, want to emphasize that the
rigorous expansion in the driving frequency remains well
justified, since all higher contributions in frequencies can be
shown to be suppressed in powers of �/�.
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Pekola, Phys. Rev. Lett. 109, 180601 (2012).
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Y. A. Pashkin, and D. V. Averin, arXiv:1208.4030.

36M. W. Keller, J. M. Martinis, N. M. Zimmerman, and A. H.
Steinbach, Appl. Phys. Lett. 69, 1804 (1996).

37S. J. Chorley, J. Frake, C. G. Smith, G. A. C. Jones, and M. R.
Buitelaar, Appl. Phys. Lett. 100, 143104 (2012).

38B. Roche, R.-P. Riwar, B. Voisin, E. Dupont-Ferrier, R. Wacquez,
M. Vinet, M. Sanquer, J. Splettstoesser, and X. Jehl, Nat. Commun.
4, 1581 (2013).

245423-13

http://dx.doi.org/10.1103/RevModPhys.64.849
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/RevModPhys.78.217
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1103/PhysRevE.81.041106
http://dx.doi.org/10.1209/0295-5075/99/27001
http://dx.doi.org/10.1209/0295-5075/99/27001
http://dx.doi.org/10.1103/PhysRevB.87.115404
http://dx.doi.org/10.1063/1.110672
http://dx.doi.org/10.1063/1.110672
http://dx.doi.org/10.1016/S1386-9477(01)00218-1
http://dx.doi.org/10.1016/S1386-9477(01)00218-1
http://dx.doi.org/10.1103/PhysRevB.75.245420
http://dx.doi.org/10.1103/PhysRevB.75.245420
http://dx.doi.org/10.1103/PhysRevB.76.085337
http://dx.doi.org/10.1103/PhysRevB.76.085337
http://dx.doi.org/10.1103/PhysRevLett.102.146602
http://dx.doi.org/10.1103/PhysRevLett.102.146602
http://arXiv.org/abs/1210.3649
http://dx.doi.org/10.1103/PhysRevB.83.085428
http://dx.doi.org/10.1103/PhysRevB.83.085428
http://dx.doi.org/10.1103/PhysRevB.83.241404
http://dx.doi.org/10.1103/PhysRevB.85.205301
http://dx.doi.org/10.1103/PhysRevB.85.205301
http://dx.doi.org/10.1209/0295-5075/100/47008
http://dx.doi.org/10.1209/0295-5075/100/47008
http://dx.doi.org/10.1103/PhysRevB.87.075312
http://dx.doi.org/10.1103/PhysRevB.87.075312
http://dx.doi.org/10.1103/PhysRevLett.110.026804
http://dx.doi.org/10.1103/PhysRevB.33.551
http://dx.doi.org/10.1103/PhysRevB.46.9667
http://dx.doi.org/10.1103/PhysRevB.46.9667
http://dx.doi.org/10.1088/0268-1242/9/5S/136
http://dx.doi.org/10.1088/0268-1242/9/5S/136
http://dx.doi.org/10.1103/PhysRevB.73.195316
http://dx.doi.org/10.1103/PhysRevLett.100.066801
http://dx.doi.org/10.1103/PhysRevB.81.235127
http://arXiv.org/abs/1301.3355
http://dx.doi.org/10.1103/PhysRevB.84.113415
http://dx.doi.org/10.1103/PhysRevB.84.113415
http://dx.doi.org/10.1103/PhysRevB.84.241107
http://dx.doi.org/10.1103/PhysRevB.84.241107
http://dx.doi.org/10.1103/PhysRevB.85.085408
http://dx.doi.org/10.1088/0953-8984/25/8/082201
http://dx.doi.org/10.1088/0953-8984/25/8/082201
http://dx.doi.org/10.1209/0295-5075/96/67004
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1103/PhysRevX.2.011001
http://dx.doi.org/10.1103/PhysRevX.2.011001
http://dx.doi.org/10.1103/PhysRevB.87.060508
http://dx.doi.org/10.1103/PhysRevB.87.060508
http://dx.doi.org/10.1103/PhysRevB.84.245448
http://dx.doi.org/10.1103/PhysRevB.84.245448
http://dx.doi.org/10.1103/PhysRevLett.110.040601
http://dx.doi.org/10.1103/PhysRevLett.110.040601
http://dx.doi.org/10.1209/0295-5075/17/3/011
http://arXiv.org/abs/1208.4030
http://dx.doi.org/10.1063/1.117492
http://dx.doi.org/10.1063/1.3700967
http://dx.doi.org/10.1038/ncomms2544
http://dx.doi.org/10.1038/ncomms2544


JUERGENS, HAUPT, MOSKALETS, AND SPLETTSTOESSER PHYSICAL REVIEW B 87, 245423 (2013)

39M. R. Connolly, K. L. Chiu, S. P. Giblin, M. Kataoka, J. D. Fletcher,
C. Chua, J. P. Griffiths, G. A. C. Jones, V. I. Fal’ko, C. G. Smith,
and T. J. B. M. Janssen, Nat. Nanotechnology 8, 417 (2013).

40H. D. Jensen and J. M. Martinis, Phys. Rev. B 46, 13407 (1992).
41V. Kashcheyevs, Proc. SPIE 7142, 714206 (2008).
42E. Cota, R. Aguado, and G. Platero, Phys. Rev. Lett. 94, 107202

(2005). 94, 229901(E) (2005).
43D. V. Khomitsky and E. Y. Sherman, Phys. Rev. B 79, 245321

(2009).
44R.-P. Riwar and J. Splettstoesser, Phys. Rev. B 82, 205308 (2010).
45F. Romeo and R. Citro, Phys. Rev. B 80, 165311 (2009).
46S. Rojek, J. König, and A. Shnirman, Phys. Rev. B 87, 075305

(2013).
47B. Hiltscher, M. Governale, J. Splettstoesser, and J. König, Phys.

Rev. B 84, 155403 (2011).
48O. Speer, M. E. Garcia, and K. H. Bennemann, Phys. Rev. B 62,

2630 (2000).
49F. Renzoni and T. Brandes, Phys. Rev. B 64, 245301 (2001).
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