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Spin-orbit-mediated spin relaxation in monolayer MoS2
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We study the intravalley spin-orbit-mediated spin relaxation in monolayers of MoS2 within a two bands
effective Hamiltonian. The intrinsic spin splitting of the valence band as well as a Rashba-like coupling due to
the breaking of the out-of-plane inversion symmetry are considered. We show that, in the hole doped regime, the
out-of-plane spin relaxation is not very efficient since the spin splitting of the valence band tends to stabilize the
spin polarization in this direction. We obtain spin lifetimes larger than nanoseconds, in agreement with recent
valley polarization experiments.
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I. INTRODUCTION

Among all the quasi-two-dimensional crystals that have
become popular since the appearance of graphene,1 monolayer
unit cells of molybdenum disulfide2,3 (MoS2) and other
dichalcogenides are particularly attractive because the exis-
tence of an electronic gap which makes those systems an
excellent candidate for nanoelectronics devices.4–7 Whereas
multilayer samples presents an indirect band gap, monolayer
MoS2 has a direct gap across the inequivalent K and K ′ points
of the hexagonal Brilloin zone (BZ), which makes this material
of particular interest for optoelectronic applications. Of special
interest is the promising applications of MoS2 for spintronics
and valleytronics devices.8–10 In fact, the strong spin-orbit (SO)
interaction, together with the absence of inversion symmetry in
monolayer samples, splits the valence bands by ∼150 meV in
two spin flavors. This splitting is essential for spintronics and
optoelectronics applications and, importantly, it has different
signs at each valley due to time-reversal symmetry. This fact
allows us to control the valley population by optically exciting
the monolayer samples with circularly polarized light, as it
has been demonstrated experimentally;8–10 this is generically
called spin-valley coupling.11

A crucial role for the efficiency of the valley polarization
is played by the spin lifetime τs of the system, which must be
longer than ∼10 ns for realistic applications. Interestingly,
coherence times of this order have been experimentally
measured for single layers of MoS2.9 Therefore, understanding
the spin-relaxation mechanisms of this material is essential.
Four mechanisms are usually discussed for spin relaxation in
semiconductors:12 the Elliot-Yafet,13,14 D’yakonov-Perel’,15,16

Bir-Aronov-Pikus,17 and hyperfine-interaction mechanisms.18

The latter, which accounts for the interaction between the
magnetic moments of electrons and nuclei, is negligible in the
diffusive regime due to the itinerant nature of the electrons.
The hyperfine interaction with the nuclei spins is dynamically
narrowed since the electrons move fast through nuclei with
random spins, averaging to zero their action. The Bir-Aronov-
Pikus mechanism accounts for electron spin-flip processes
mediated by the electron-hole exchange interaction, and it is
typically relevant in heavily p-doped semiconductors.17,19 The
Elliot-Yafet and D’yakonov-Perel’ mechanisms are mediated
by the SO coupling. The former consists of the spin relaxation
during a momentum scattering event by phonons or impurities,
whereas the latter accounts for the spin precession in between

scattering events induced by the SO coupling when inversion
symmetry is broken.

Due to the strong SO coupling and the presence of
disorder, both Elliot-Yafet and D’yakonov-Perel’ mechanisms
are expected to play a role, and they will be the main focus of
the present work. Here we perform a systematic calculation
of the intravalley SO mediated spin-relaxation rates by means
of the Mori-Kawasaki formula,20,21 which is the appropriate
framework to treat both mechanisms on the same footing.22

Our results show that the intrinsic reflection symmetry of
the system with respect to the out-of-plane direction in
combination with the large spin splitting of the valence band
allows spin lifetimes for the out-of-plane polarization larger
than nanoseconds, in agreement with the experiments.9

The paper is organized as follows. First, we present the two
bands effective model that we employ to perform the calcu-
lation, including an exhaustive discussion on the microscopic
origin of the intrinsic and Rashba-like SO couplings. In Sec. III
we compute both the in-plane and out-of-plane spin-relaxation
rates associated to these couplings. Our results for SO mediated
spin relaxation, as well as other alternative mechanisms that
may compete with them, are discussed in Sec. IV. Finally, in
Sec. V we summarize our main conclusions.

II. MODEL

A. Two bands effective model

The transition metal dichalcogenide MoS2 is composed,
in its bulk configuration, of two-dimensional S-Mo-S layers
stacked on top of each other, coupled by weak van der Waals
forces. The Mo atoms are ordered in a triangular lattice, each
of them bonded to six S atoms located in the top and bottom
layers, forming a sandwiched material. A top view of the lattice
is shown in Fig. 1(a). Like in graphene, the weak interlayer
coupling makes it possible to exfoliate this material down to a
single layer.23 The electronic band structure of MoS2 changes
from an indirect band gap for multilayer samples to a direct gap
semiconductor for single layers, located at the two inequivalent
±K points of the BZ [see Fig. 1(b)].3

Being interested on single-layer samples, we compute here
the spin-relaxation rates within the two bands effective k · p
Hamiltonian at the two inequivalent corners of the BZ. The
hexagonal D3h symmetry of the monolayer crystal determines
the explicit form of the Hamiltonian. Note that the D3h point
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FIG. 1. (Color online) (a) Top view of the lattice in real space. Red
and blue dots represent the Mo and S atoms, respectively. (b) Brillouin
zone, with the corresponding reciprocal-lattice wave vectors. The
inequivalent +K and −K points are shown. (c) Conduction and
valence bands at ±K points within the effective model discussed
in the text. The SO splitting is not considered in this figure. The
numbers inside the kets which label the bands express the phases
picked up the Bloch wave function under symmetry operations of the
crystal structure; see Tables I and II.

group can be expressed as the direct product of D3, which
contains the identity, the two counterclockwise rotations by
2π/3 and 4π/3, and the reflections across the three in-plane
axis which connect Mo and S atoms in a top view of the
lattice [see Fig. 1(a)], and σh, which contains the identity and
the inversion across the out-of-plane axis. The group of the
wavevector at ±K is C3h = C3 × σh (the reflections across
the in-plane axis swap the two inequivalent K points). The
character table of this group can be found in Table I. Note
that there is no two-dimensional irreducible representations
of C3h, so band touching at Dirac points are not protected
by symmetry. Each band at ±K can be labeled by two
quantum numbers which express the phase picked up by the
corresponding Bloch wave function at these points under a
rotation by 2π/3 and a reflection across the out-of-plane axis
respectively, or equivalently, the irreducible representation of
C3h associated to the Bloch wave function. These phases
depend, of course, on the orbital character of these states. In
Table II a classification of the Bloch wave functions at the BZ
corners for Mo orbitals (s, p, d) and S orbitals (s, p) is given.

Around ±K points the conduction and valence bands are
mostly made of d orbitals coming from Mo. In particular, the
orbital weight of the conduction band is essentially d3z2−r2 ,

TABLE I. Character table of C3h. We denote w = ei2π/3. Notation
from Ref. 24.

C3h = C3 × σh E C3 C2
3 σh S3 σhC

2
3

A′ 1 1 1 1 1 1
A′′ 1 1 1 −1 −1 −1

E′ 1
1

w

w2
w2

w

1
1

w

w2
w2

w

E′′ 1
1

w

w2
w2

w

−1
−1

−w

−w2
−w2

−w

TABLE II. Classification of the Bloch wave functions at BZ
corners according to the six irreducible representations of C3h. The
sign ± corresponds to ±K points. In the case of S atoms, both
symmetric (s) and antisymmetric (as) combinations with respect to
σh of the orbitals of the top and the bottom atoms are considered. The
second and third columns contain the phases picked up by the wave
function when a 2π/3 rotation or a mirror reflection is performed.

Irreps C3 σh Mo S

A′ 1 1
1√
2
(dx2−y2 ± idxy),
1√
2
(px ∓ ipy)

1√
2
(px ± ipy) (s)

A′′ 1 −1 1√
2
(dxz ∓ idyz) 1√

2
(px ± ipy) (as)

E′ w±1 1 d3z2−r2 , s 1√
2
(px ∓ ipy) (s)

E′ w∓1 1
1√
2
(dx2−y2 ∓ idxy),
1√
2
(px ± ipy)

pz (as), s (as)

E′′ w±1 −1 pz
1√
2
(px ∓ ipy) (as)

E′′ w∓1 −1 1√
2
(dxz ± idyz) pz (s), s (s)

which belongs to the E′ irreducible representation of C3h,
whereas in the case of the valence band it is mostly the real
combination of dx2−y2 and dxy which belongs to A′. We restrict
our analysis to a minimal low-energy model that accounts for
the above configuration. Up to first order in k, the effective
Hamiltonian reads11

H0 = at(τσxkx + σyky) + �

2
σz, (1)

where t is the effective hopping amplitude, a is the lattice
constant, and the Pauli matrices σi operate in a space
of two-component Bloch functions �τ = (ψ|wτ ,+1〉,ψ|1,+1〉)T .
Here |wτ (1), + 1(+1)〉 labels the symmetry properties of the
conduction (valence)-band state, and τ = ±1 corresponds to
valley ±K.25

In order to discuss the effective SO coupling within this
model we must introduce Pauli matrices associated to the spin
degree of freedom. Importantly, we are now introducing a
pseudovector in the three-dimensional space, meaning that the
operators which contain sz are even under σh whereas the
operators which contain the in-plane component of the spin
are odd. Unless the σh symmetry is expressly broken, our
effective model may only contain terms with sz. Therefore, the
σh symmetry of the crystal structure protects the out-of-plane
spin component. Then, the intrinsic SO coupling terms read in
general

HSO
int = λcτ

I + σz

2
sz + λvτ

I − σz

2
sz, (2)

where I is the identity matrix acting in the space of two-
component Bloch functions. The absence of a center of
inversion in the crystal implies the spin splitting of the bands.
Here λc and λv are the splittings of the conduction and valence
bands respectively. Although both splittings are allowed by
symmetry, it is important to notice their different microscopic
origins due to the different orbital character of the bands.
We consider an intra-atomic SO Hamiltonian of the form
�SOL · s for the d orbitals of Mo, where L is the angular
momentum operator. As we show schematically in Fig. 2,
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FIG. 2. Sketch of the microscopic processes which lead to the
effective SO coupling terms discussed in the text. (a) First-order
processes which lead to the splitting of the valence band. (b) Second-
order processes associated to the splitting of the conduction band.
(c) Second-order processes which lead to a Bychkov-Rashba coupling
when σh symmetry is broken.

the spin splitting of the valence band is the result of a
first-order process. However, the splitting of the conduction
band is associated to second-order processes which involve
virtual transitions into states which belong to the A′′ and E′′
irreducible representations. Therefore,

λint ≡ λv � λc, (3)

and we neglect from here on the SO splitting of the conduction
band.

The values of the model parameters can be extracted from
experiments as well as from first-principle calculations.27–31

Here we take at = 3.51 eV Å, � = 1.66 eV and 2λint =
0.15 eV, with the lattice constant a = 3.193 Å.

B. Rashba effect

If the σh symmetry is broken then sz is no longer a good
quantum number. In that situation a coupling with the in-
plane components is possible. A Bychkov-Rashba coupling32

appears, which in the context of the two bands effective model
reads

HSO
ext = λext(τσxsy − σysx). (4)

This coupling is the result of second-order processes as in the
case of the spin splitting of the conduction band, although first
order in the SO interaction as it is shown in Fig. 2(c).

The Rashba effect in 2D systems is usually attributed to
dipolar transitions induced by the application of an electric
field in the out-of-plane direction. In our case, such field
would induce dipolar transitions between the Mo d3z2−r2

orbitals of the conduction band and Mo pz orbitals of bands at

much higher energies. Then, the SO interaction would induce
transitions between these states and the valence band flipping
the spin. However, the orbital weight of the valence band in
Mo p orbitals is very small, so this coupling is expected to be
very weak. Nevertheless, this picture changes if orbitals from S
atoms are also taken into account. For instance, if we consider
the application of a gate voltage Vgate, which is necessary in
order to induce charge carriers in this system, then we would
have different on-site energies for the p orbitals of the top
and bottom S atoms. This turns into a nonzero hybridization
between valence-band states |1, + 1〉 and states |1, − 1〉 of
higher bands proportional to Vgate. Then, the SO interaction
induces transitions between dxz, dyz orbitals of these bands
and d3z2−r2 of the conduction band, flipping the spin. This
kind of process is the one depicted in Fig. 2(c). Since the
orbital weight of S p orbitals in these bands is less than
the 20%, we can estimate an upper limit for this coupling of
the form

λext � 0.2Vgate�SO

ε|1,−1〉
, (5)

where ε|1,−1〉 represents the energy of the |1, − 1〉 (A′′) band
involved in the calculation.

C. Disorder and Mori-Kawasaki formula

We compute the spin-relaxation rates by using the Mori-
Kawasaki formula.20,21 Originally, the Mori-Kawasaki for-
mula was deduced in order to compute the broadening of the
signal peak in an electron spin resonance experiment due to
the breaking of the SU(2) spin symmetry of the system. As it
has been shown recently,22 it can be related with the inverse
of the spin lifetime 
s = h̄/τs . The Mori-Kawasaki formula
treats the SO coupling terms as perturbations to the electronic
Hamiltonian, something that in principle is valid since in our
model λint, λext are at least one order of magnitude smaller
than the other energy parameters of the model, namely the gap
� and the bandwidth 2t . The spin lifetime is computed as 
s


s = − 1

χ
lim
ω→0

Im
χAA†(ω)

ω
, (6)

where χ is the spin susceptibility and χAA†(ω) is the Fourier
transform of the response function:

χAA†(t) = −iθ (t)〈[A(t),A†(0)]〉 (7)

with A = [HSO, s+] and s± = (sx ± isy)/2. The spin suscep-
tibility is defined as

χ = 1

gμB

(
∂〈sz〉
∂H

)
H=0

, (8)

where H is the field strength associated to a Zeeman term in
the Hamiltonian HZ = −gμBHsz.33 The expectation values
in Eqs. (7) and (8) refer to the Hamiltonian without the SO
coupling terms.

For SO mediated spin-relaxation mechanisms, par-
ticularly the Elliot-Yafet13,14 and the D’yakonov-Perel’
mechanisms,15,16 a relevant parameter of the theory is the
amount of disorder 
 = h̄/τp, where τp is the lifetime of the
quasiparticles with momentum p. Disorder is introduced in our
model in a phenomenological manner, by adding the imaginary
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self-energy i
/2 to the Matsubara Green’s operator associated
to the free Hamiltonian (1):

Ĝ(k,iω) = 1

2

∑
α=±1

Gα(k,iω)

[
I + α

(
atk · �σ + �

2
σz

)/
εk

]

(9)

where we define

Gα(k,iω) = 1

iω − αεk + μ + i
/2
. (10)

Here εk =
√

a2t2|k|2 + �2/4 is the dispersion relation of
conduction (α = +1) and valence (α = −1) bands of our
effective model and μ is the chemical potential. Note that
the valley index τ is omitted since we do not consider
short-range scatterers which could connect both valleys.
Therefore, intervalley relaxation processes are beyond the
scope of this work. We note that the inclusion of intervalley
disorder in combination with the SO interaction and a possible
σh symmetry breaking can lead to interesting localization
phenomena.34,35 We also neglect the momentum dependence
of 
, so it enters just as a parameter which in principle can be
determined from transport experiments.5

The expectation value of the z component of spin is

〈sz〉 = 1

N

∑
k

(nk↑ − nk↓), (11)

where N is the number of unit cells and nks is the occupation
number of quasiparticles with momentum k and spin s in
the presence of the Zeeman term HZ . This can be calculated
in terms of the spectral functions Aα(k,ω), defined from the
retarded version of the Green’s functions of Eq. (10) as

Aα(k,ω) ≡ −2ImGR
α (ω,k) = 


(ω − αεk + μ)2 + 
2

4

. (12)

Then, we can write

nks = 2
∑
α=±1

∫ ∞

−∞

dω

2π
nF (ω)Aα(k,ω + sgμBH ), (13)

where nF (ω) is the Fermi-Dirac distribution function and the
factor 2 accounts for the valley degeneracy. From the definition
of Eq. (8) we get

χ = 4
∑
α=±1

1

N

∑
k

∫ ∞

−∞

dω

2π
Aα(k,ω)

(
− ∂nF (ω)

∂ω

)
. (14)

In the zero-temperature limit (T � TF , where TF is the Fermi
temperature) we can approximate − ∂nF (ω)

∂ω
≈ δ(ω). The sum in

k can be written as an integral through the standard procedure
1
N

∑
k → Ac

(2π)2

∫
d2k, where Ac is the area of the unit cell.

The isotropy of the dispersion relation allows us to integrate
in angles straightforwardly and to write down the remaining
integral in |k| as an integral in energies. At this point, it is
necessary to introduce an energy cutoff D for the effective
model, which can be related with the area of the unit cell as
D = at

√
π/Ac. After some algebra the spin susceptibility can

be written as

χ = 
Ac

π2a2t2

∑
α=±1

∫ 1

�
2D

dx
x(

x − α
μ

D

)2 + 
2

4D2

. (15)
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FIG. 3. (Color online) Spin susceptibility χ as a function of
the chemical potential μ, for different values of 
, calculated from
Eq. (15). Solid black line corresponds to 
 = 0.001 eV, blue dashed
line to 
 = 0.01 eV, and red dotted line to 
 = 0.1 eV.

The spin susceptibilty as a function of the chemical potential
is shown, for different values of 
, in Fig. 3. If we drop
logarithmically small terms that appear in Eq. (15) after
integration in x, we obtain a simple analytical formula for
χ which is valid for μ � D:

χ ≈ 2μAc

π2a2t2

∑
α=±1

arctan

(
2μ − α�




)
. (16)

We compute now the numerator of Eq. (6). The calculation
is easily performed in the Matsubara frequency domain. We
can write

χAA†(iω) = 1

βN

∑
k

∑
iν

∑
α,α′

fαα′ (k)

×Gα(k,iω + iν)Gα′ (k,iν), (17)

where β is the usual thermal factor and fαα′ (k) is defined as

fαα′ (k) = 1

2
Tr

[
A ·

(
I + α

atk · �σ + �
2 σz

εk

)

·A† ·
(
I + α′ atk · �σ + �

2 σz

εk

)]
. (18)

The trace is performed in the space of two-component Bloch
functions, and the valley degeneracy has already been taken
into account in this definition. The sum in frequencies can
be performed easily by using the Lehmann representation in
terms of the spectral functions introduced before. After the
summation and the analytical continuation we have for the
imaginary part of χAA†(ω)

−ImχAA†(ω)

= 1

N

∑
k

∑
α,α′

fαα′ (k)
∫ ∞

−∞

dε

4π
Aα(k,ε + ω)Aα′ (k,ε)

× [nF (ε) − nF (ε + ω)]. (19)
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Hence, in the ω → 0 limit we obtain

lim
ω→0

−Im
χAA†(ω)

ω
= 1

N

∑
k

∑
α,α′

fαα′ (k)

×
∫ ∞

−∞

dε

4π
Aα(k,ε)Aα′ (k,ε)

×
(

− ∂nF (ε)

∂ε

)
. (20)

After the same approximations as before we can write, in the
zero-temperature limit,


s = 1

4πχ

Ac

(2π )2

∑
α,α′

∫
d2kfαα′ (k)Aα(k,0)Aα′ (k,0). (21)

The remaining part of the paper will be devoted to the
estimation, using Eq. (21), of the spin relaxation in the different
scenarios which are relevant for MoS2.

III. SPIN RELAXATION

A. In-plane spin relaxation

We start by computing the in-plane spin-relaxation rate due
to the intrinsic SO coupling. For this, we use Eq. (21) with
A = λint(I − σz)s+, which leads to

fαα′ (k) = 2λ2
int

(
1 − (α + α′)

�

2εk
+ αα′ �

2

4ε2
k

)
. (22)

Then, one sees that the in-plane relaxation rate can be written
as the sum of two contributions, one coming from intraband
transitions and the other from interband transitions:


in = λ2
int


2Ac

2π2χa2t2D2
[Iintra + Iinter], (23)

where

Iintra = 1

2

∑
α=±1

∫ 1

�
2D

dx
x − α �

D
+ �2

4xD2[
(x − αμ)2 + 
2

4

][
(x − αμ)2 + 
2

4

]
Iinter =

∫ 1

�
2D

dx
x − �2

4xD2[
(x − μ)2 + 
2

4

][
(x + μ)2 + 
2

4

] . (24)

The intraband transitions account for the D’yakonov-Perel’
processes, whereas the interband term leads to the Elliot-Yafet
contribution. This is more clear in the doped regime |μ| >

�/2. If we drop logarithmic corrections in the above integrals,
as we did in order to get Eq. (16), we arrive at


intra
in ≈ λ2

int

2


[
1 − �

μ
+ �2

(
μ2 + 3
2

4

)
4
(
μ2 + 
2

4

)2

]
,

(25)


inter
in ≈ λ2

int


8μ2

[
1 − �2

(
μ2 − 
2

4

)
4
(
μ2 + 
2

4

)2

]
.

The interband transitions lead to an Elliot-Yafet contribution
characterized by the linear scaling between the spin lifetime
and momentum scattering time 
inter

in ∝ 
. The intraband
transitions, however, lead to the D’yakonov-Perel’ mechanism,
characterized by 
intra

in ∝ 
−1. This mechanism is clearly the
dominant one, as expected from symmetry considerations, due
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FIG. 4. (Color online) In-plane spin lifetimes as a function of
the carrier concentration. Top: electron doping. Bottom: hole doping.
Dashed black line corresponds to 
 = 0.001 eV, dotted blue to 
 =
0.01 eV, and solid red line to 
 = 0.1 eV. Inset: In-plane spin lifetimes
for electron concentrations in double logarithmic scale. Notice the
different time scale in the top and bottom panels.

to the absence of a center of inversion in the crystal structure.
Assuming that 
 � μ,� we have


intra
in


inter
in

≈
1 − �

2μ

1 + �
2μ

·
(

μ


/2

)2

(26)

and therefore 
intra
in /
inter

in � 1 unless the chemical potential
lies at the bottom of the conduction band. It is important to
note that the D’yakonov-Perel’ mechanism is clearly electron-
hole asymmetric due to the different spin splittings of the
conduction and valence bands.

These features are clearly shown in Fig. 4, where the
in-plane spin lifetime is computed numerically. We see that
the D’yakonov-Perel’ mechanism is clearly dominant for hole
dopings. From mobilities reported in transport experiments5

we deduce 
 ≈ 0.02 eV, and therefore τin ∼ 2h̄
/λ2
int ≈ 5

fs. For electron concentrations, it is interesting to note the
crossover from D’yakonov-Perel’ to Elliot-Yafet dominated
regimes when the concentration is decreased, as it can be seen
in the inset of the top panel of Fig. 4. Such crossover is possible
when the strength of disorder is comparable with the chemical
potential measured with respect to the bottom of the band. In
this case the spin lifetimes are three orders of magnitude larger
than in the case of hole doping. Note that in the electron doped
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FIG. 5. (Color online) Out-of-plane spin lifetimes as a function
of the carrier concentration. In black (dashed) 
 = 0.001 eV, in
blue (dotted) 
 = 0.01 eV, in red 
 = 0.1 eV. In all the cases
λext = 10−2λint. Inset: Spin lifetime for hole concentrations with the
correction given by Eq. (29).

regime a more realistic calculation should take into account
also the spin splitting of the conduction band.

B. Out-of-plane spin relaxation

We compute now the out-of-plane spin-relaxation rate due
to an extrinsic or Rashba-like coupling. In this case we have
A = −2iλextσ+sz, which leads to

fαα′ (k) = 4λ2
ext

(
1 − (α − α′)

�

2εk
− αα′ �

2

4ε2
k

)
. (27)

The calculation is formally identical to the previous one. In
the doped regime we have the approximate results:


intra
out ≈ λ2

ext




[
1 − �2

(
μ2 + 3
2

4

)
4
(
μ2 + 
2

4

)2

]
,

(28)


inter
out ≈ λ2

ext


4μ2

[
1 + �2

(
μ2 − 
2

4

)
4
(
μ2 + 
2

4

)2

]
.

In Fig. 5 the numerical computation of the spin lifetime
as a function of the carrier concentration is shown. We take
λext = 10−2λint, which is the correct order of magnitude given
that this coupling is the result of second-order processes as we
explained in the previous section. The spin lifetimes are in this
case electron-hole symmetric and clearly dominated by the
D’yakonov-Perel’ mechanism. The 1/n behavior is expected
from the first expression in Eq. (28). For μ � �/2 we have
τout ∼ h̄
�2/(4πλ2

exta
2t2n), so for 
 = 0.02 eV and n = 1012

cm−2 we obtain τout ≈ 1 − 2 ns.
Note that the spin splitting of the valence band is not taken

into account in this calculation, but its effect is relevant since it
tends to stabilize the out-of-plane spin polarization, in a similar
way as an applied magnetic field in the out-of-plane direction
does. We can take into account this effect by correcting the
spin-relaxation rate for hole concentrations as16,22



(holes)
out ≈ 
out × 1

1 + ( 2λint



)2 , (29)

where 2λint can be interpreted as the Zeeman splitting created
by an effective magnetic field whose origin is the intrinsic SO
coupling. Therefore, for 
 = 0.02 eV and n = 1012 cm−2 we
expect

τ
(holes)
out ≈ 60 × τout ≈ 50–100 ns. (30)

This correction is taken into account in the calculation shown
in the inset of Fig. 5. It is interesting to notice that our results
quantitatively agree with the experimental measurements of
Mak et al., who have reported spin lifetimes exceeding 1 ns in
single layers of MoS2.9

IV. DISCUSSION

The σh symmetry preserves the out-of-plane spin polar-
ization. However, in real systems this symmetry is broken
by the presence of a substrate, electric fields, ripples, etc.
Our calculation shows that, for a realistic value of the
extrinsic or Rashba-like coupling generated by this symmetry
breaking, the spin lifetimes are of the order of nanoseconds.
Moreover, the large splitting of the valence band due to the
spin-obit coupling contributes to stabilize the out-of-plane
spin polarization, as a magnetic field in that direction does,
and therefore the spin lifetimes in the hole doped regime
are expected to be at least one order of magnitude larger,
in agreement with recent experiments.8–10

Although our previous results suggest that the SO mediated
D’yakonov-Perel’ mechanism can account for the spin relax-
ation in single layers of MoS2, another (non-SO mediated)
mechanism could be operative in this material. As proposed in
Ref. 9, the Bir-Aronov-Pikus mechanism17 can be efficient in
n-doped samples of MoS2, where the spin of a conduction elec-
tron may be flipped by the exchange interaction with a hole.
The hole intervening in such a process was identified in Ref. 9
with a negative trion. In fact, the two-dimensionality of this
system leads to an enhancement of the Coulomb interaction,
due to the reduced dielectric screening, which can favor the for-
mation of tightly bounded trions. Such quasiparticles, which
have been recently measured experimentally,36 are formed
by an exciton (electron-hole pair) bounded with an extra
electron, therefore carrying a negative charge. In this situation,
a mechanism for spin relaxation analog to the conventional Bir-
Aronov-Pikus for heavily p-doped semiconductors would be
possible but with a trion playing here the role of the exchanged
hole.9

An estimation of the efficiency of such a relaxation process
would require the knowledge of some parameters, as the trion
effective mass, the exchange splitting of the excitonic ground
state, the electron density induced by unintentional n doping,
or the band velocities and the Sommerfeld’s factor, which
determines the electron-hole overlap amplitude and which
depends on the strength of the Coulomb interaction.17 In the
absence of an accurate determination of the above quantities,
the approximations used in Ref. 9 suggest that this mechanism
might be relevant, leading to relaxation times of the order of
nanoseconds.

Furthermore, it is worth mentioning that the σh symmetry
is intrinsically broken by the out-of-plane (flexural) phonon
modes of the MoS2 monolayer, which constitutes an additional
source of out-of-plane spin relaxation,37 as it happens in
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graphene.38,39 In the free-standing system the dispersion
of the flexural acoustic branch is quadratic,40 as expected
from symmetry considerations. The bending rigidity of the
system, which determines the energy of these modes, can be
estimated assuming a simplified model where the MoS2 sheet
is described as a plate of certain thickness δ. The bending
rigidity reads41

κ = Yδ3

24(1 − σ 2)
, (31)

where Y = 0.33 TPa is the Young modulus42 and σ = 0.125
is the Poisson ratio.43 If we take as δ the interlayer distance,
δ ≈ 6.75 Å,44 then we obtain κ ≈ 27 eV. Although it is
difficult to judge the accuracy of this estimation due to the
δ3 dependence, it is reasonable to take a bending rigidity
bigger than in graphene, even an order of magnitude.45

Therefore, one expects that the higher stiffness of MoS2 and
the spin splitting of the bands will protect the out-of-plane spin
polarization.

Regarding the in-plane spin relaxation, it is clear that
our results for electron doping are limited by the fact that
the splitting of the conduction band is not included in our
calculations (λc ∼ 3 meV according to recent estimations46).
Nevertheless, the splitting of the valence band provides a
remarkable source of relaxation. This is so because the
conduction- and valence-band states are strongly hybridized
away from ±K points (note that t ∼ 1 eV, similar to the gap
�), which actually justifies the use of the two bands model. As
a consequence, it turns out that the use of the two bands model
is essential in order to take into account both the Elliot-Yafet
and the D’yakonov-Perel’ mechanisms in the conduction band.
Very recently, a single band model has been proposed in order
to explain in-plane spin relaxation in MoS2 monolayer.47 In
that case, the splitting of the band together with the intervalley
electron-phonon scattering opens an intervalley spin relaxation
channel which may compete with the intravalley one discussed
here.

V. CONCLUSIONS

We have computed the spin lifetimes of monolayer MoS2

within a two bands effective model. Assuming an extrinsic
Rashba-like coupling generated by a σh symmetry breaking of
the order of λext ∼ 10−2λint, we have obtained spin lifetimes
of the order of τout ∼ 100 ns, estimation which is in agreement
with recent valley population experiments.9

Our calculations show that the D’yakonov-Perel’ mecha-
nism dominates the SO mediated spin relaxation in monolayers
of MoS2. The method used here is completely general, and
the results can be extrapolated to other dichalcogenides by
simply replacing the values of the model parameters. Of special
interest is the case of WS2 monolayers, for which even longer
relaxation times are expected since it presents an even larger
SO coupling, of the order of ∼400 meV.48 In general, the
in-plane spin relaxation is very efficient due to the strong SO
interaction and the lack of inversion symmetry of the system.
Furthermore it is strongly electron-hole asymmetric due to the
different spin splitting of valence and conduction bands.

Finally, we note that, although the role of temperature
is beyond the scope of this work, spin transport becomes
especially interesting in the case of few-layer systems where
temperature may drive a crossover from indirect toward direct
band-gap regimes, as in the case of MoSe2. In fact, multilayer
samples have been shown to effectively behave as single
layers, by means of thermally decoupling adjacent sheets via
interlayer thermal expansion.49 This procedure could lead
to long spin lifetimes, as the ones needed for spintronic
applications, even without the requirement of isolation of
single-layer samples.
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