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Resonant manifestations of chiral excitons in Faraday and Kerr effects in a topological insulator film
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Manifestations of chiral excitons on a magnetically gapped surfaces of a topological insulator thin film in Kerr
and Faraday effects are analyzed. Excitonic contribution to a surface optical conductivity tensor is calculated.
Chiral excitons contrary to conventional ones resonantly contribute to Hall conductivity due to the lack of
symmetry between the states with opposite angular momentum. They can lead to the considerable enhancement
of Faraday angle and ellipticity of transmitted electromagnetic wave. Chiral excitons cause a decrease of Kerr
angle and prominent signatures in ellipticity of reflected electromagnetic wave. Conditions for experimental
observation of the described effects are discussed.
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I. INTRODUCTION

Theoretical and experimental study of topological insu-
lators (TIs) that have nontrivial topology intrinsic to their
band structure grows rapidly (see Refs. 1,2, and references
therein). TIs have a forbidden band in a bulk but on their
surface (three dimensional) or edge (two dimensional) there
are very unusual electronic states. Recently a “new generation”
of three-dimensional (3D) topological insulators (the com-
pounds Bi2Se3, Bi2Te3, and others), retaining topologically
protected behavior at room temperature, were investigated
experimentally.3–5 The surface states of these materials are
protected from nonmagnetic disorder and obey the Dirac
equation for massless two-dimensional (2D) particles that
is analogous to one for electrons in graphene, a unique
two-dimensional carbon based material with extraordinary
electronic and mechanical properties.6–8

Interesting physics arise when time reversal symmetry on
the surface of a TI is broken by an external exchange field.
An exchange field that can be created by ordered magnetic
impurities introduced to a TI bulk9,10 acts only on the magnetic
moment of the electrons and generates the energetic gap in the
surface spectrum. Contrary to the initial gapless state, the set of
excitonic states appears in the gap due to Coulomb interaction
on the surface. It is interesting that the excitonic state has
minimal energy at a finite value of orbital angular momentum
quantum number and can be called “chiral.”11

The time reversal symmetry breaking leads to half-integer
quantization of the surface Hall conductivity and, as a result,
to quantized Faraday and Kerr effects on the surface of a
TI.12–15 If the time reversal symmetry is broken on the whole
surface of a TI, low frequency electromagnetic response of TI
bulk can be described by a macroscopic approach based on
Lagrangian for an electromagnetic field with an additional
θ -term that corresponds to a topological magnetoelectric
effect.16,17 The topological magnetoelectric effect in TI bulk
provides a solid state realization of axion electrodynamics.18 In
the thin film of a TI, which width is considerably smaller than
the length of the incident electromagnetic wave, Faraday angle
θF and Kerr angle θK are universal: tan θF = α and tan θK =
1/α, where α ≈ 1/137 is the fine structure constant. Within
the macroscopic approach the roles of oblique incidence
of electromagnetic wave,13 substrate,12 and interference in

thick TI film13 were theoretically investigated. In spite of its
mathematical elegancy, this approach is well justified only in
the low frequency limit and does not allow to take into account
the frequency dispersion effects and many-body correlations
on the TI surface.

There is another approach for investigation of the effects on
a TI surface based on the Maxwell equations. Response of a TI
surface in this approach is characterized by the microscopically
calculated optical conductivity tensor. The role of frequency
dispersion of the optical conductivity was investigated for
TI films subjected to an external exchange field.15 Also the
inverse Faraday effect that manifests itself as a generation
of spin polarization under illumination of circularly polarized
electromagnetic wave was considered.19 But the manifestation
of collective excitations—excitons in Faraday and Kerr effects
has not been considered before.

Here we theoretically investigate the role of chiral excitons
on a TI surface with a magnetically induced gap in Faraday
and Kerr effects.

The rest of the paper is organized as follows. In Sec. II
we briefly discuss the electronic structure of a TI surface
with a magnetically induced gap. Section III is devoted to
a descriptions of chiral excitons. In Sec. IV the contribution of
chiral excitons to optical conductivity is calculated. Section V
is devoted to Faraday and Kerr effects in thin films of TI.
Section VI is devoted to conclusions.

II. ELECTRONIC STRUCTURE OF TIs

Electrons populating the surface states of a TI in the
presence of the external exchange field can be described by
the following single particle Hamiltonian1,2:

H0 = vFn[k × σ ] + �σz, (1)

where vF is the Fermi velocity of the electron; the vector
σ = (σx,σy) consists of Pauli matrices acting in the space of
its spin projections; and � parametrizes the coupling of the z

component of the exchange field to that of the electron spin.
Other components of the exchange field can be excluded by
gauge transformation that shifts the Dirac point in momentum
space. It can be shown that the magnetic field caused by a layer
of ordered magnetic impurities is small and its effect on the
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Dirac electrons can be neglected. The spectrum Ekγ = γ εk =
γ
√

|�|2 + v2
Fk

2 is formed by conduction (γ = 1) and valence
(γ = −1) bands separated by the gap 2|�|. Corresponding
eigenfunctions of the Hamiltonian (1) can be written as
eikr|fkγ 〉, where |fkγ 〉 is a spinor part of the wave function:

|fkγ 〉 =
(

cos(θkγ /2)e−iϕk/2

i sin(θkγ /2)γ eiϕk/2

)
, (2)

where cos(θkγ ) = γ�/εk, and ϕk is polar angle for momentum
vector k.

A starting point for the description of the chiral excitons is
the many-body Hamiltonian describing interacting electrons
on the surface of the TI:

H =
∑
kγ

εkγ a+
kγ akγ + 1

2

∑
qk
k′

∑
γ1γ2
γ ′

1γ
′
2

Vc(q)〈fk+q,γ ′
1
|fkγ1〉

×〈fk′−q,γ ′
2
|fk′γ2〉a+

k+q,γ ′
1
a+

k′−q,γ ′
2
ak′γ2akγ1 , (3)

where akγ is the destruction operator for an electron with
momentum k from the band γ ; Vc(q) = 2πe2/εq is the
two-dimensional Fourier transform of the Coulomb interaction
potential; and ε is the effective dielectric permittivity of the TI
surface.

III. CHIRAL EXCITONS

Coulomb interaction between electrons populating surface
states of the TIs can lead to formation of excitons that
manifest themselves as coherent superposition of interband
single-particle transitions and can be represented as a bound
state of an electron from the conduction band and a hole from
the valence band. A creation operator of exciton d+

q with center
of mass momentum q can be written as20

d+
q =

∑
k

Ckqa
+
k+q,1ak,−1, (4)

where the set of coefficients Ckq forms the wave function
of an electron and hole forming exciton in the momentum
representation. We considered excitons with zero center of
mass momentum q = 0 because only they are optically active.
Hence, momentum index q will be omitted below.

Within the equation of motion based approach11,20 excitons
can be represented as composite bosons with corresponding
commutation relation [d,d+] = 1 and their creation operator
satisfies the equation of motion [H,d+] = �d+, where �

is exciton energy and H is the Hamiltonian of interacting
electrons (3). If the part of the Coulomb interaction in (3) that
corresponds to scattering of electrons within a single band is
treated within Hartree-Fock approximation, the equation of
motion for the excitonic creation operator leads to

(2εk + �eh
k )Ck +

∑
k′

Vc(k − k′)k,k′Ck′ = �Ck, (5)

where �eh
k is the self-energy of the electron-hole pair and k,k′

is an angular factor that are given by

�eh
k =

∑
k′

Vc(k − k′)
�2 + v2

F(k · k′)
εkεk′

,

k,k′ = 1

2

v2
Fkk′

εkεk′
+ 1

2

(
1 + �2

εkεk′

)
cos(φk − φk′)

+ i

2

(
�

εk
+ �

εk′

)
sin(φk − φk′). (6)

Equation (5) was derived and solved numerically in Ref. 11.
The set of excitonic states in the surface gap has an unusual
dependence on the orbital angular momentum m and can be
called “chiral.” A chiral exciton has minimal energy at a finite
value of the orbital angular momentum m = 1 and there is
no symmetry between chiral excitonic states with opposite
angular momenta. The sign of the orbital angular momentum
that corresponds to the lowest-energy state depends on the
sign of � and hence on direction of the exchange field.
Chiral excitons also appear21 in bilayer graphene gapped by an
external electric field.22–24 In bilayer graphene chiral excitons
with minimal energy have orbital angular momentum m = 2.

Here we develop an analytical approximate solution of
(5). Self-energy �eh

k only renormalizes parameters of single
particle spectrum �,vF. If we denote by �,vF the renormalized
parameters of the spectrum, then the self-energy term in (5) can
be omitted. Angular factor k,k′ and single particle spectrum
εk contain the single scale k� = |�|/vF that corresponds
to crossover between linear and parabolic regimes of the
massive Dirac spectrum. If localization length kexc of the
wave function of the relative motion in momentum space Ck
satisfies condition kexc � k�, single particle energy and the
angular factor can be approximated in the following way: εk ≈
|�| + v2

Fk
2/2|�| and k,k′ ≈ cos(φk − φ′

k) + i sin(φk − φ′
k).

In this limit Eq. (5) coincides with Schrödinger equation for
a 2D hydrogen atom in which: (1) Multipole momenta of
Coulomb potential Fourier transform are shifted by δm = 1
due to the angular factor k,k′ = ei(φk−φ′

k); and (2) an effective
reduced mass of electron in a 2D hydrogen atom problem
is μ� = |�|/2v2

F. The chiral excitons can be characterized
by radial n = 0,1, . . . and orbital angular m = 0, ± 1, . . .

quantum numbers with |m − 1| � n. Their energy spectrum
�nm and wave functions in momentum space Cnm

k can be
obtained by a shift of well-known ones for a 2D hydrogen
atom. Energy of the excitonic level |n,m〉 is given by

�nm = 2|�| − α2
c |�|

(2n + 1)2
, (7)

where αc = e2/εh̄vF is the dimensionless coupling strength.
State |0,1〉 with minimal energy has orbital angular momentum
m = 1. Bohr radius of the chiral exciton and corresponding
Rydberg energy are (αck�)−1 and α2

c |�|. Characteristic mo-
mentum kexc of excitonic wave function Ck localization in
momentum space can be estimated as an inverse Bohr radius
and is equal to kexc = αck�. Therefore the shifted eigenstates
of the Schrödinger equation for a 2D hydrogen atom are
approximate solutions of (5) if kexc � k� that corresponds
to αc � 1.
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The dimensionless parameter αc is the only parameter
that governs physics of chiral excitons. It is approximately
equal to the ratio between electron-hole Coulomb interaction
energy and their kinetic energies. Experimentally relevant
conditions3–5 correspond to the case αc � 1, therefore we use
the analytical approximation described above for calculation
of the optical conductivity tensor of a TI surface.

IV. OPTICAL CONDUCTIVITY TENSOR

For calculation of the optical conductivity tensor of a TI
surface we used the linear response theory at zero temperature.
Components of the conductivity can be written in a Lehmann
representation in the following way:

σαβ = e2

h̄

∑
n

i

En0

(
J n0

α J 0n
β

ω + En0 + iδ
+ J 0n

α J n0
β

ω − En0 + iδ

)
, (8)

where |n〉 and En0 denote the excited state of the interacting
system and its energy measured from the ground state |0〉 with
filled valence band and empty conduction band; J is the current
operator in second quantization representation. Due to the mo-
mentum conservation law, only states |n〉 with zero momentum
contribute to optical conductivity. Corresponding two-particle
states of an interacting system include single-particle interband
transitions |n〉 = a+

k1ak−1|0〉 and exitonic states |n〉 = d+|0〉.
Their contributions to the optical conductivity tensor can be
separated.

After substitution of single-particle sets of states |n〉 =
a+

k1ak−1|0〉 into general formula (8) one can obtain the
expression for the single-particle contribution to the optical
conductivity tensor. The expression can be presented in the
Kubo-Greenwood formula that is given by

σ
sp
αβ = e2

ih̄

∑
kγ γ ′

nkγ − nkγ ′

εkγ − εkγ ′

〈fkγ |jα|fkγ ′ 〉〈fkγ ′ |jβ |fkγ 〉
ω + εkγ − εkγ ′ + iδ

. (9)

Here j = vF[σ × n] is the single-particle current operator; and
nkγ is the occupation number of the corresponding state at
zero temperature. After evaluation of (9) one can obtain

Re
[
σ sp

xx

] = e2

h

π

8

[
1 +

(
2�

ω

)2]
�(|ω| − 2|�|),

Im
[
σ sp

xx

] = e2

h

[ |�|
2ω

+
(

1

8
+ �2

2ω2

)
ln

∣∣∣∣ω − 2|�|
ω + 2|�|

∣∣∣∣
]
, (10)

Re
[
σ sp

yx

] = −e2

h

�

2ω
ln

∣∣∣∣ω − 2|�|
ω + 2|�|

∣∣∣∣,
Im

[
σ sp

yx

] = e2

h

π�

2ω
�(|ω| − 2|�|). (11)

The obtained expressions for single-particle contribution to the
optical conductivity tensor are the special case of more general
formulas calculated within the quantum kinetic equation in
Ref. 15 that takes into account disorder and finite temperature.

After substitution of the set of excitonic states d+ to general
formula (8) one can obtain the expression for the excitonic
contribution to the optical conductivity tensor that have not yet
been taken into account and can be presented in the following

FIG. 1. (Color online) Squared dimensionless matrix element
|Mnm

x |2 for four lowest-energy optical active excitonic states (|0,1〉,
|1,1〉, |2,1〉, and |2, − 1〉) as a function of dimensionless coupling αc.

form:

σ exc
xx = i

e2

h̄

∑
nm

|Mnm
x |2 ω + iγ

�nm

2�2

(ω + iγ )2 − �2
nm

, (12)

σ exc
yx = −e2

h̄

∑
nm

m|Mnm
x |2 2�2

(ω + iγ )2 − �2
nm

. (13)

Here the summation is performed over all exciton quantum
numbers; γ is the phenomenologically introduced exciton
decay rate; and Mnm is the dimensionless matrix element
that characterizes the coupling strength of the excitonic |n,m〉
level to the external electromagnetic field and depends only on
dimensionless coupling strength αc:

Mnm = h̄

�

∑
k

Cnm
k 〈k, − 1|j|k,1〉. (14)

Dimensionless matrix element Mnm has a nonzero value only
for levels with m = ±1 and all other states are optically
inactive. Dependence of the squared matrix element |Mnm

x |2
on dimensionless coupling strength for four optical active
lowest-energy states is presented in Fig. 1. Absolute value of
the matrix element |Mnm| is decreasing with the increasing
of quantum number n due to destructive interference of
single-particle states. Matrix element Mnm consists of coherent
superposition of single-particle matrix elements with weight
functions Cnm

k and wave functions Cnm
k for high energy

excitonic levels oscillate in momentum space. Also optical
activity of the excitonic levels with orbital angular momentum
m = −1 is considerably weaker than one for the levels with
m = 1.

Contribution of the excitonic level |n,m〉 to Hall conductiv-
ity has the same sign as the orbital angular momentum quantum
number m. States with opposite orbital angular momenta m

and −m are connected by the time reversal transformation.
In conventional two- and three-dimensional insulators there
is symmetry between states with opposite angular momenta
(�nm = �n−m and |Mnm

x |2 = |Mn,−m
x |2) due to time reversal

symmetry. Therefore the total contribution of all excitonic
states to Hall conductivity is zero. For chiral excitons on a TI
surface with a magnetically opened gap the symmetry between
states with opposite orbital angular momenta is broken and
they do resonantly contribute to optical Hall conductivity.
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FIG. 2. (Color online) Frequency dependence of the real part of
longitudinal conductivity Re[σxx] for αc = 0 (solid red line), αc =
0.18 (dashed blue line), and αc = 0.35 (dotted green line).

For all numerical calculations we used the following
parameters: � = 12.5 meV, γ = 0.25 meV, and vF = 0.62 ×
106 m/s. Also we used three values of dimensionless parame-
ter αc. Value αc = 0 corresponds to the case of noninteractiong
electrons on the TI surface. Values αc = 0.18 and αc = 0.35
correspond to values of effective permittivity ε = 20.5 and
ε = 10.5, respectively. The value αc = 0.18 corresponds to
Bi2Te3 and the other values of αc are used for comparison.

Real parts of longitudinal and Hall components of the
optical conductivity tensor Re[σxx(ω)] and Re[σyx(ω)] are
represented in Figs. 2 and 3, respectively. At low frequencies
contribution of excitons can be neglected and the conductivity
tensor tends to its single-particle value [Eqs. (10) and (11)].
Chiral excitons correspond to a sharp maximum of longitudinal
conductivity that leads to resonant absorption of energy of
an electromagnetic wave. For the used set of parameters the
only maximum can be distinguished and corresponds to the
excitonic level |0,1〉 and the contribution of other excitonic
levels almost merges with a contribution of single-particle
transitions. Contrary to conventional ones, chiral excitons
resonantly contribute to Hall conductivity and, hence, can play
an important role in Faraday and Kerr effects.

FIG. 3. (Color online) Frequency dependence of the real part
of Hall conductivity Re[σyx] for αc = 0 (solid red line), αc = 0.18
(dashed blue line), and αc = 0.35 (dotted green line).

FIG. 4. (Color online) Frequency dependence of transmittance T

through TI thin film for αc = 0 (solid red line), αc = 0.18 (dashed
blue line), and αc = 0.35 (dotted green line).

V. FARADAY AND KERR EFFECTS IN TI THIN FILM

We consider Faraday and Kerr effects at normal incidence
of an electromagnetic wave in thin films of TIs whose width is
less than the wavelength. Our results can be easily generalized
to more complicated geometry and oblique incidence.

If an incident electromagnetic wave is linearly polarized
E = exE0, where E0 is its amplitude, characteristics of
transmitted and reflected waves can be expressed in terms
of amplitudes of transmission tλ = |tλ|ei�t

λ and reflection rλ =
|rλ|ei�r

λ of a circularly polarized electromagnetic wave E =
(ex + iλey)E0, where λ = ±1 is the sign of the circular po-
larization. Transmittance of an electromagnetic wave through
the TI film is given by T = (|t+|2 + |t−|2)/2. The angle of
polarization plane rotation (Faraday angle) θF and ellipticity
δF of the transmitted wave are given by θF = (�t

+ − �t
−)/2

and δF = (|t+| − |t−|)/(|t+| + |t−|), respectively. The angle of
polarization plane rotation (Kerr angle) θK and ellipticity δK

of the reflected wave are given by θK = (�r
+ − �r

−)/2 and
δK = (|r+| − |r−|)/(|r+| + |r−|), respectively.

Using Maxwell equations for thin film geometry and the
boundary conditions for electric and magnetic fields that
take into account electric currents excited by electromagnetic

FIG. 5. (Color online) Frequency dependence of Faraday angle
θF for αc = 0 (solid red line), αc = 0.18 (dashed blue line), and αc =
0.35 (dotted green line).
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FIG. 6. (Color online) Frequency dependence of Kerr angle θK for
αc = 0 (solid red line), αc = 0.18 (dashed blue line), and αc = 0.35
(dotted green line).

waves, we find

tλ = σ0

σ0 + ασ t
λ

, rλ = − ασ t
λ

σ0 + ασ t
λ

, (15)

where σ0 = e2/h is the quantum of conductivity; α ≈ 1/137
is the fine structure constant; σ t

λ = σ t
xx + iλσ t

yx ; and σ t
αβ is the

sum of the optical conductivity components from the opposite
surfaces of the TI film. The direction of the polarization plane
rotations for reflected and transmitted electromagnetic waves
depends on the sign of the Hall conductivity and, hence, on the
sign of the z component of the exchange field. The rotations
on the opposite surfaces of the TI film enhance each other
if the sign of the corresponding component of the exchange
fields on opposite surfaces coincide. The case is considered
below. If also the absolute values of the magnetically induced
gaps on the opposite surfaces are the same then σ t

αβ = 2σαβ .
If the corresponding components of the exchange fields have
different signs and the same absolute values then σ t

αβ = 0 and
Faraday and Kerr effects vanish.

Dependence of transmittance T of the electromagnetic
wave through the TI thin film on its frequency ω is represented
in Fig. 4. Chiral excitonic levels lead to resonant absorption
of energy of the electromagnetic wave. But absorption of

FIG. 7. (Color online) Frequency dependence of ellipticity of
transmitted wave δF for αc = 0 (solid red line), αc = 0.18 (dashed
blue line), and αc = 0.35 (dotted green line).

FIG. 8. (Color online) Frequency dependence of ellipticity of
reflected wave δK for αc = 0 (solid red line), αc = 0.18 (dashed blue
line), and αc = 0.35 (dotted green line).

energy is too small to prevent detection of the transmitted
electromagnetic wave.25

Dependence of Faraday angle θF and Kerr angle θK on the
frequency ω is presented in Figs. 5 and 6. At low frequencies
contribution of excitons to optical conductivity is insignificant
and Faraday θF and Kerr angles θK tend to their universal values
tan θF = α and tan θK = 1/α, respectively, where α ≈ 1/137
is a fine structure constant. Resonance enhancement of Hall
conductivity by chiral excitons leads to resonant enhancement
of the Faraday angle. The Kerr angle is very sensitive to the
longitudinal component of the conductivity tensor.26 At the
resonant condition the longitudinal component of the optical
conductivity has a sharp peak and, hence, the Kerr angle is
considerably reduced. Both of these prominent effects can be
directly observed in experiment.

Dependence of the ellipticities of transmitted δF and
reflected δK electromagnetic waves are presented in Figs. 7
and 8. Chiral excitons resonantly enhance ellipticity of the
transmitted wave δF and lead to observable signature in
ellipticity δK of the reflected wave. These signatures can also
be directly observed in the experiments.

VI. CONCLUSIONS

Resonant features in Faraday and Kerr effects caused
by chiral excitons in thin TI film can be observable in
experiments if contribution of at least a single excitonic level
to Hall conductivity is well separated from single-particle
contribution. Thus the excitonic binding energy �b = α2

c |�| of
the lowest energy state |0,1〉 should exceed the excitonic decay
rate γ . The maximal value of the gap induced in Bi2Se3 by
ordered magnetic impurities9 is 2|�| ≈ 50 meV. For Bi2Se3

the dimensionless coupling constant and the binding energy
are αc = 0.09 and �b ∼ 2 K. For Bi2Te3 the dimensionless
coupling constant and the binding energy are αc = 0.18 and
�b ∼ 9 K. Exciton decay rate γ can be estimated from the
scattering rate of electrons. Maximal value of the electron
mobility in absence of the gap estimated from transport
experiments2 is μ ∼ 104 cm2/eV s. It corresponds to the
scattering rate γ ∼ 30 K, hence, present parameters relevant
to the experiments are close enough to the favorable ones.
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The dielectric constant of bismuth and telluride based TI
achieves ε ≈ 40–100, hence the coupling constant and exciton
binding energies of the chiral exciton energies are rather small.
So resonant excitonic resonances are fragile to disorder and
finite temperature effects. The problem can be overcome in
ultrathin TI films whose width is considerably less than the
exciton radius kexcd � 1. In that case the effective dielectric
constant of a TI film equals the half-sum of the dielectric
constant of a substrate surrounding the film and does not
depend on one of the TI. Its value can be considerably smaller
than the dielectric permittivity of the TI. For αc = 0.18 the
character value of d equals 60 nm.

We used the Hartree-Fock approximation for the description
of the delocalized single-particle states. In this approximation
correlation between the motion of the electron and hole is
neglected and their wave functions are approximated by
independent plane waves. So Coulomb interaction leads only
to renormalization of single-particle spectrum. Correlations for
delocalized electron-hole states (unbound excitons) in a more
complicated approximation (that involves the calculation of a
two-particle Green function) were considered for conventional
semiconductor nanostructures (see Refs. 27,28, and references
therein). Coulomb interaction leads to enhancement of the
absorption spectrum with the Sommerfeld-Gamov factor. But
in any case single-particle contribution is not the resonant
and it is smooth as a function of frequency. Hence if the
chiral excitonic state on a TI surface is well separated from
the continuum of single-particle transitions (ω � 2|�|) the
resonant Faraday and Kerr effects will be observable.

Chiral excitons also appear21 in monolayer and bilayer
graphene. In the former the gap in the spectrum can be induced
by the special substrate, for example BN29 or SiC.30 The
spectrum in the latter can be gapped by the external electric
field perpendicular to the layer.22–24 The chiral excitonic state
with minimal energy in monolayer and bilayer graphene has
orbital angular momentum m = 1 and m = 2, respectively. In
the first Brillouin zone of both materials there are two valleys
connected with each other by the time reversal transformation.8

Due to the time reversal symmetry the value of the gaps in the
two valleys have exactly the same absolute values and opposite
signs |�| and −|�|. The chiral excitons from the single valley
resonantly contribute to the optical Hall conductivity, but the
contributions of the two valleys cancel each other. Therefore
the chiral excitons in gapped monolayer and bilayer graphene
do not manifest in Faraday and Kerr effects in the absence of
the external magnetic field.

The time reversal symmetry on a surface of TI can be
also broken by an external magnetic field perpendicular to
the surface leading to reconstruction of the Dirac spectrum

to separate Dirac Landau levels.1,2 Optical Hall conductivity
consists of the set of resonances that correspond to optical
single-particle transitions between Dirac Landau levels.14 In
the presence of the Coulomb interaction, energy of single-
particle transition depends on its total momentum and the
set of Landau levels transforms to the set of the dispersive
magnetoexcitonic branches.31–37 Only magnetoexcitons with
zero total momentum contribute to the optical conductivity
tensor, hence Coulomb interaction does not qualitatively
change frequency dependence of Hall conductivity. Coulomb
interaction shifts the positions of the resonances and can
change their amplitudes. Manifestation of magnetoexcitons in
Faraday and Kerr effects is not so prominent as chiral excitons
on a TI surface with the magnetically induced gap.

At present Faraday and Kerr effects in thin TI films
subjected to an external perpendicular magnetic field are
extensively studied experimentally.38–41 Real samples contain
residual bulk charge carriers (that are not completely excluded
by doping) and polar phonons interacting with electromagnetic
waves. Complicated dependencies of Kerr and Faraday angles
and peaks in longitudinal conductivity observed in Refs. 38–41
are interpreted in terms of bulk response. Observed signatures
that do not depend on TI film thickness can be caused by
magnetoexcitons.

In summary, we theoretically investigated the manifesta-
tions of chiral excitons on the magnetically gapped surfaces
of topological insulator film in Faraday and Kerr effects.
Contribution of chiral excitons to optical conductivity tensor
of the TI surface is calculated. As conventional excitons chiral
ones lead to a sharp peak of longitudinal conductivity and
to resonance absorption of energy of incident electromagnetic
wave. Contrary to conventional excitons chiral ones due to lack
of symmetry between states with opposite angular momentum
resonantly enhance Hall conductivity and play an important
role in Faraday and Kerr effects. Chiral excitons lead to
considerable enhancement of Faraday angle and ellipticity
of transmitted electromagnetic waves at resonance condition.
Also they lead to resonant weakening of the Kerr angle and
prominent signatures in ellipticity of reflected electromagnetic
waves. The described effects can be directly observed in the
experiments.
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