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Friedel oscillations at the Dirac cone merging point in anisotropic graphene
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We study the Friedel oscillations induced by a localized impurity in an anisotropic graphenelike structure.
We focus on the limit when the two inequivalent Dirac points merge. We find that, in this limit, the Friedel
oscillations manifest very peculiar features, such as a strong asymmetry and an atypical inverse square-root decay.
Our calculations are performed using both a T -matrix approximation and a tight-binding exact diagonalization
technique. They allow us to numerically obtain the local density of states as a function of energy and position as
well as an analytical form of the Friedel oscillations in the continuum limit. The two techniques yield results that
are in excellent agreement, confirming the accuracy of such methods to approach this problem.
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I. INTRODUCTION

Graphene has known an increased interest over the past
few years with some of the most interesting questions, at
present, focusing on the possibility to modify the electronic
structure of graphene, either by mechanical deformations,
such as stretching1 or twisting2,3 via chemical additions
or by changing the nature of the substrate. In light of
possible important applications, the most promising directions
have been towards opening a gap,4 enhancing the spin-orbit
interaction, the realization of the quantum spin Hall effect,4–7

and obtaining quantum Hall states using pseudomagnetic
(curvature) fields.8,9

One of the most studied modifications of graphene is me-
chanical stretching, which gives rise to a hopping anisotropy
and, consequently, to a strong renormalization of the band
structure. Such hopping anisotropies can yield interesting
modifications of the band structure, for example, a critical
value of the anisotropy is expected to give rise to a hybrid Dirac
cone, exhibiting a linear dispersion along one direction and a
quadratic one along the perpendicular one.1 Although such
anisotropy is not experimentally achievable via mechanical
stretching, recently, the realization of a cold-atom equivalent
of such an anisotropic system has been achieved.10 Similar
hybrid Dirac cones have been predicted to arise when the
higher-order hopping parameters are strongly enhanced,11,12

which may occur, for example, in the presence of adatoms. In
the future, one can hope that this could be engineered as well
in graphenelike hexagonal molecular structures, such as the
one described in Ref. 13.

In this paper, we focus on a system with such hybrid
semi-Dirac points, and we study the Friedel oscillations (FOs)
generated in the presence of a single localized impurity. We
use both analytical techniques, such as the T -matrix approx-
imation, and numerical techniques (the exact diagonalization
of the lattice tight-binding Hamiltonian). Using the T -matrix
approximation, we obtain the form of the Fourier transform
of the Friedel oscillations induced by the impurity. We also
calculate the real-space form of these oscillations. For small
energies and long distances (in the continuum limit), we obtain
an exact analytical form of these oscillations, whereas, we
evaluate the short distance behavior of the Friedel oscillations

using a numerical integration. On the other hand, we calculate
the local density of states (LDOS) at each lattice site using an
exact diagonalization of the lattice tight-binding Hamiltonian.
Finally, we study the form of the LDOS at zero energy using
wave-function arguments along the lines of Ref. 14, which
allow us to obtain an analytical form for the impurity state at
zero energy. The results obtained via the above methods are in
perfect agreement, confirming the accuracy of these tools for
describing the impurity effects in such systems.

The most interesting characteristic of the observed Friedel
oscillations is a strong anisotropic spatial dependence—the
period and decay length of these oscillations depends strongly
on direction—consistent with the anisotropy of the band
structure. Also, we observe an atypical inverse square-root
decay for long distances and small energies on each of the
two A and B sublattices. Moreover, similar to the isotropic
graphene, the LDOS contributions of the two sublattices are
dephased by π , yielding a cancellation of the 1/

√
r terms and

an effective 1/r decay of these oscillations with the distance
from the impurity.

The structure of the paper is as follows. In Sec. II, we present
the model employed to describe isotropic as well as anisotropic
graphene. In Sec. III, we present the Friedel oscillations
in the LDOS calculated using wave-function considerations
(Sec. III A), tight-binding exact diagonalization (Sec. III B),
and the T -matrix approximation (Sec. III C). We conclude in
Sec. IV.

II. MODEL

Graphene consists of a honeycomb lattice of carbon atoms
with two atoms (A and B) per unit cell (see Fig. 1). Denoting
the distance between two nearest neighbors a0 with a0 =
0.142 nm, then a1 = a0(−

√
3

2 , 3
2 ) and a2 = a0(

√
3

2 , 3
2 ) are basis

vectors of the triangular Bravais lattice.
The corresponding first Brillouin zone (BZ) is hexagonal

as depicted by the green dashed line in Fig. 2. Its geometrical
properties only depend on the Bravais lattice. Nevertheless, the
number of atoms per unit cell becomes relevant for the energy
spectrum. For graphene (two atoms per unit cell with one
electron per atom), the energy bands are well described using
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FIG. 1. Graphene honeycomb lattice.

a tight-binding model: Each 2pz electron may hop between
two sites i and j with a given amplitude tij . In this paper, we
only consider the hopping between nearest neighbors with a
fixed hopping amplitude t ≈ 2.7 eV for the nearest-neighbor
vectors �δ1, �δ2, and a variable amplitude t ′ for �δ3. The
corresponding second-quantized Hamiltonian is given by

H =
∑
〈i,j〉

tij a
†
i bj + H.c. (1)

=
∫

BZ

d2k

SBZ
[a†(�k),b†(�k)]H�k

(
a(�k)

b(�k)

)
, (2)

FIG. 2. (Color online) Energy spectra when t ′ = t (top) and t ′ =
2t (bottom). The latter corresponds to the merging of Dirac points into
a single point M . The green dashed line depicts the Brillouin zone.

with H�k = ( 0 f (�k)
f ∗(�k) 0

) and f (�k) = −t(e−i�k·�δ1 + e−i�k·�δ2 ) −
t ′e−i�k·�δ3 . SBZ is the area of the BZ. The operators a (b)
and a† (b†) are field operators that annihilate and create,
respectively, an electron on the A(B) sublattice. The energy
spectrum is then obtained by diagonalizing the Hamiltonian
matrix H�k . As there are two atoms per unit cell, there
are two energy bands ε±(�k) = ±|f (�k)|. Negative values of
ε correspond to the valence band, whereas, positive ones
correspond to the conduction band. When t ′ = t , there are two
inequivalent points K and K ′ at the corners of the BZ for which
the two bands touch. These points are denoted Dirac points
since the energy spectrum is conical in their vicinity. Note that
the coincidence between the Dirac points (determined by the
band structure) and that of the corners of the BZ (intrinsic to
the Bravais lattice) occurs only when t ′ = t as mentioned in
Refs. 1, 11, and 12.

Figure 2 illustrates the fact that the Dirac points move
away from the corners of the BZ when varying the hopping
parameter t ′. Increasing this amplitude from t to 2t makes
the two inequivalent Dirac points merge11,12 at the M point
(right at the middle of the edges of the BZ). The critical value
t ′ = 2t corresponds to the annihilation of a pair of Dirac points
with opposite Berry phases. This topological invariant changes
abruptly from ±π to 0 at the merging, which, thus, defines a
topological transition between a semimetallic phase and a band
insulator since a gap opens at the M point for t ′ > 2t . This can
be seen by expanding f (�k) in the vicinity of this point defined
by (0, 2π

3a
)

f M (�q) =
(

� + icyqy + q2
x

2m∗

)
e−i(π/3). (3)

Here, cy = 3ta0, 2m∗ = 4
3ta2

0
, and � = t ′ − 2t characterizes

the distance from the topological transition and gives the value
of the gap when t ′ > 2t . Exactly at the transition (� = 0), the
Hamiltonian exhibits a semi-Dirac energy dispersion such that
εM
± (�q) = ±|f M (q)| is linear in qy but quadratic with respect

to qx ,

εM
± (�q) = ±

√
(cyqy)2 +

(
q2

x

2m∗

)2

. (4)

III. LOCAL DENSITY OF STATES IN THE PRESENCE
OF IMPURITY SCATTERING

The effects of impurity scattering on the graphene LDOS
have been extensively studied15,16 in the past. It has been
shown17–19 that this gives rise to long-wavelength oscillations
that decay as 1/r2, instead of the 1/r law expected for
conventional two-dimensional materials. Here, we investigate
how the merging of the two Dirac cones changes the form
of these long-wavelength oscillations. We start this section
with some zero-energy wave-function arguments along the
lines of Ref. 14 that allow us to characterize the impurity
state. Furthermore, we perform a more detailed study using
analytical (T -matrix approximation) and numerical (tight-
binding) techniques.
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A. Wave-function considerations

1. The sublattice symmetry

A graphene honeycomb lattice contains two atoms per unit
cell (A and B), which allows one to define two sublattices.
Moreover, the Hamiltonian (1) only takes into account nearest-
neighbor hopping processes and neglects hopping between
sites belonging to the same sublattice, resulting in a bipartite
system. For such systems, a generic Hamiltonian takes the
form

H =
(

0 T

T † 0

)
. (5)

Without loss of generality, T is a NA × NB block (not
necessarily a square matrix), where NA(B) is the number of
atoms in the A(B) sublattice, assuming there is only one
electron per atom. Here, we restrict ourself to NB � NA. Such
a Hamiltonian anticommutes with

S =
(
INA

0

0 −INB

)
. (6)

IN is the N × N identity matrix so that the unitary operator
S always squares to +1, which defines a chiral symmetry: the
sublattice symmetry.

This fundamental symmetry implies a particle-hole sym-
metric spectrum and includes the possibility for the existence
of zero-energy states, which transform into themselves under
the transformation S. As a consequence, they have null
components on one sublattice.

Moreover, as pointed out in Refs. 20–23, every finite
bipartite lattice has an extra number of NB − NA zero-energy
eigenstates living on the sublattice B, regardless of the
components of the block T . This is because the non-zero-
energy eigenstates appear in pairs: |ψ〉 and S|ψ〉, and in
order to form non-zero-energy states, it is necessary to pair
a localized state living on the sublattice A with another one
living on B. As a number of NB − NA zero modes living on
the sublattice B are unable to satisfy this condition, they are
stuck at zero energy, cannot hybridize to A states, and remain
localized purely on B.

2. Zero-energy impurity wave function

In the presence of a single vacancy, NB − NA = 1, and we
have a single zero-mode impurity-state wave function. Here,
the fundamental point is that varying parameter t ′ does not
change the structure of the matrix (5). Then, the sublattice
symmetry ensures that such a zero mode does exist, even in
the gapped phase (t ′ > 2). As a consequence, this zero-energy
state is a good candidate to characterize the Dirac cones
merging in real space. In this section, we study the form of
its wave function, using simple arguments along the lines of
Ref. 14. We already know that such a wave function has null
components on the A sites, represented by the black disks in
Fig. 3, and we need to determine its value on the B sublattice. In
Ref. 14, the authors have determined the exact analytic form
of the impurity wave function for an isotropic honeycomb
lattice with a single vacancy. Their method consists of an
appropriate matching of the zero modes of two semi-infinite
and complementary graphene sheets. This is the method we
generalize in what follows for anisotropic graphene.

FIG. 3. The zero-energy wave function components for t ′ = αt

with α � 2. The wave function is zero for all sites for which no value
is specified. The black square denotes the vacancy. The direction of
anisotropy is the y direction. The two dashed lines are the boundaries
of the upper and lower half planes, respectively.

In Fig. 3, the two semi-infinite graphene sheets are defined
such that their edges are orthogonal to the anisotropic direction,
along which t ′ = αt with α � 2. Here, we have introduced an
anisotropy parameter α (α = 2 exactly at the merging), that
allows us to explore the gapped phase beyond the merging
point. The upper half plane has a “bearded” edge (as indicated
by the upper dashed line in Fig. 3), whereas, the lower half
plane has a zigzag edge.

Let us first consider the lower half plane terminated by
the zigzag edge. The form of the edge states for a semi-infinite
zigzag ribbon is well known24,25 for isotropic graphene. In
a manner similar to that of Ref. 24, the edge states for
anisotropic graphene can be determined by imposing the
condition |2 cos(k/2)| � α, where k is the momentum along
the edge. Although, for isotropic graphene (α = 1), this
condition is verified for 2π/3 � k � 4π/3, above the merging
point (α � 2), such a condition is satisfied for all values
of k, 0 � k � 2π . Next, regarding the complementary semi-
infinite bearded plane, the condition becomes |2 cos(k/2)| � α,
which cannot be satisfied for any k when α > 2. The case of
α = 2 leads to k = 0, associated with an extended state, and
there are no allowed edge states in this limit.

The condition that the impurity wave functions on the two
semi-infinite planes match at the interface can be written as

αb
(l)
m,0 + b

(u)
m,0 + b

(u)
m+1,0 = 0, (7)

where b(l)
m,n (b(u)

m,n) corresponds to a given site of the lower
(upper) half plane characterized by �rm,n = m(�a2 − �a1) − n�a1.
The origin is defined to be on the B atom right below the
vacancy in Fig. 3. The above relation is valid everywhere on
the edges except for m = 0. Introducing bm,0 = ∑

k bk,0e
ikm,

the condition (7) can be rewritten in terms of momentum as

α
∑

k

b
(l)
k,0e

ikm +
∑
k′

b
(u)
k′,0(1 + eik′

)eik′m = 0. (8)

A possible solution for the boundary conditions is b
(l)
k,0 = 1

with 0 � k � 2π and b
(u)
k′,0 = 0. As for the case of isotropic
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graphene studied in Ref. 14, this corresponds to the edge
solutions for two isolated complementary semi-infinite planes.
Considering the lattice as infinite, the discrete sum in (8) turns
into an integral, and the impurity wave function can be written
as

b(l)
m,n ∼

∫ 2π

0
dk(−2/α)n cosn(k/2)eik(m+n/2)

∼ (−1)n
exp

[−nln
(

α
2

) − (2m+n)2

2n

]
√

n
. (9)

The details of the derivation of the above result are presented
in Appendix A. This approximation is valid for α � 2 and for
long distances. We have defined x = a0

√
3(2m + n)/2 and

y = −n3a0/2. Most useful to compare with the results of
the subsequent sections is the behavior of the wave function
along the direction x = 0. Along this direction, the zero-energy
impurity state exhibits an exponential decay with the distance
from the impurity in the gapped phase (α > 2), whereas,
it decays as 1/

√
y at the merging (α = 2). As detailed

in Appendix A, we check that, in the semimetallic phase
(for 1 < α < 2), the wave function decays as 1/r in both
directions, albeit exhibiting a strong asymmetry between x and
y; we also check that, for α = 1, the classical results for the
Friedel oscillations in graphene are correctly retrieved. Hence,
the decay law of the zero-energy impurity states provides a
real-space signature of the Dirac cone merging.

Furthermore, we can evaluate the amplitude of this impurity
state by hand, see Fig. 3, by searching for a decaying wave
function with null components everywhere in the semi-infinite
bearded ribbon. The condition (7) becomes αb

(l)
m,0 + 0 + 0 = 0

and must be satisfied at each A site between the two dashed
lines, except for the impurity site. So the wave function has zero
components along the zigzag edge, except at the site situated
right under the impurity for which we take b

(l)
0,0 = 1. Then, the

Hamiltonian (5) implies that αb
(l)
m,1 + b

(l)
m,0 + b

(l)
m+1,0 = 0 for all

values of m. This leads to b
(l)
−1,1 = b

(l)
0,1 = −1/α and b

(l)
m,1 = 0

for all other sites with n = 1. If we extend this analysis to
the subsequent rows, we obtain the impurity wave-function
values shown in Fig. 3. So, above the merging point, this
peculiar localized state describes electrons that are localized
only in the lower-half plane of the graphene sheet with a single
impurity.

B. Exact diagonalization

In order to obtain the local density of states on the lattice
in the presence of disorder, one can diagonalize exactly
or, using numerical approximation, the lattice tight-binding
Hamiltonian. Here, since the systems we consider are not too
large (around 1800 atoms), we base ourselves on an exact
diagonalization technique. The lattice Hamiltonian is defined
by

H = −
∑
〈i,j〉

tij |i〉〈j | + V0|0〉〈0|, (10)

where |i〉 stands for the 2pz nonhybridized orbital centered
on site i. The impurity that we consider is a vacancy, which
can be modeled by removing the corresponding atom from
the lattice or by taking an infinite value for V0. By |k〉, we

FIG. 4. (Color online) Snapshot of the LDOS obtained using
exact diagonalization. We plot the zero-energy impurity state slightly
above the merging point (α = 2.1) when a small gap opens in the
spectrum. The highest-intensity site (in blue) corresponds to the
B site right below the impurity.

denote the eigenstate corresponding to the eigenvalue Ek . The
eigenfunctions of (10) can be written as a linear combination
of individual orbitals,

|k〉 =
∑

i

cki |i〉, (11)

cki = 〈i|k〉, (12)

The LDOS, corresponding to the number of available states
on a site i at energy E, is then given by

ρi(E) =
∑

k

|cki |2fk(E), (13)

where fk(E) = δ(E − Ek) is the Dirac δ function centered
on the eigenenergy Ek . Although, in an infinite system, this
procedure automatically yields a continuous energy spectrum,
in a finite sample, the spectrum is smoothed by taking fk to be
a Gaussian or a Lorentzian.

In Fig. 4, we show the LDOS obtained using this method
at zero energy in the gapped phase (α = 2.1). This is in
agreement with the zero-energy wave function described
previously and depicted in Fig. 3. The result for the spatial
dependence of the LDOS at a finite energy is presented in
Fig. 7. Note the strong asymmetry of the LDOS between the
positive and the negative values of y close to the impurity.
Although some of these features are consistent with the
previous observations concerning the impurity-state wave
functions, we also investigate them in more detail (for example,
in what concerns their energy dependence) in the next section
via the T -matrix approximation technique.

C. T -matrix approximation

The T -matrix approximation consists of a perturbative
expansion of the Green’s function to all orders in the impurity
scattering as shown in Fig. 5. In this paper, we consider the case
of a localized impurity V (�r) = V0δ(�r) situated on a sublattice
A for which V (q) is independent of momentum. Moreover,
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FIG. 5. Diagrammatic perturbative expansion of the generalized
Green’s function to all orders in the impurity potential.

here, the impurity refers to a vacancy for which V0 becomes
infinite.

The expansion of the T matrix in Fig. 5 is a geometric series,
and the infinite summation of diagrams can be performed
exactly

T (iωn) =
[
I2 − V

∫
BZ

d2k

SBZ
G0(�k,iωn)

]−1

V, (14)

where SBZ is the area of the BZ, iωn is a Matsubara frequency,
G0(�k,iωn) = [iωnI2 − H�k]−1 is the unperturbed Green’s func-

tion, I2 is the 2 × 2 identity matrix, and V = ( V0 0
0 0 ).

We define �ρ as the correction to the LDOS due to the
impurity. According to Fig. 5, we have

�G( �Ri, �Rj ,E)
.= G( �Ri, �Rj ,E) − G0( �Ri − �Rj ,E)

= G0( �Ri,E)T (E)G0(− �Rj ,E). (15)

The correspondence between the components of �G in the
continuum and on the lattice is the following:

�Gαβ(�r1,�r2,E) =
∑
i,j

φβ(�r1 − �Rj )φ∗
α(�r2 − �Ri)

×�Gαβ (Rj ,Ri,E), (16)

where φα(/β) is a carbon 2pz orbital and the α and β indices
denote the sublattice, whereas, i and j label the unit cell. The
impurity correction to the LDOS is given by

�ρ(�r,E) = − 1

π
Im[Tr{�G(�r,�r,E)}], (17)

which yields in the momentum space,

�ρ(�q,E) = i

2π

∫
BZ

d2k

SBZ
Tr{�G(�k + �q,�k,E)

−�G∗(�k,�k + �q,E)}. (18)

1. Momentum dependence of the Fourier transform of the LDOS

We focus first on the evaluation of the momentum depen-
dence of �ρ, corresponding to the measured Fourier transform
of the LDOS. In Fig. 6, we plot this momentum dependence
for ω = 0.15t and ω = 0.8t . The first column corresponds
to isotropic graphene (t ′ = t). As noted previously,19 the
central circle (in red) corresponds to intranodal scattering,
whereas, the outer regions around the corners of the BZ
correspond to internodal scattering. In the second column,
we consider an intermediate value of t ′ = 1.5t , whereas, in
the third column, we consider the Dirac cone merging limit

t ′ = 2t . We note that the outer regions disappear at the merging
point for which internodal quasiparticle scattering no longer
exists. Moreover, we note that the features corresponding to
intranodal scattering, centered on the sites of the reciprocal
lattice, are strongly anisotropic, corresponding to the low-
energy anisotropic semi-Dirac spectrum.

2. Friedel oscillations in real space

In what follows, we focus on the real-space form of the
Friedel oscillations. Although they can be evaluated numer-
ically for arbitrary energy and position using the formulas
presented in the previous section, we can also obtain an
analytical form of these oscillations in certain limits by
performing an expansion of the Hamiltonian at low energies.
In what follows, we exclusively focus on the merging point
corresponding to t ′ = 2t in the considered model so that the
low-energy physics is dominated by the semi-Dirac spectrum
around the M point.

Using the expansion (3) with � = 0, the unperturbed
Green’s function for x = 0 can be rewritten as

G0(0,y,ω) =
(

G0
AA(0,y,ω) G0

AB(0,y,ω)

G0
BA(0,y,ω) G0

BB(0,y,ω)

)
, (19)

with

G0
AA(0,y,ω) = −i2−5/4π3/2�(1/4)ω−1/4y1/4H

(1)
−1/4(ωy),

G0
BB(0,y,ω) = GAA(0,y,ω),

G0
AB(0,y,ω) = −iA2−3/4π3/2�(3/4)ω1/4y−1/4H

(1)
1/4(ωy)

∓ iAi2−5/4π3/2�(1/4)ω3/4y1/4H
(1)
3/4(ωy),

G0
BA(0,y,ω) = −iĀ2−3/4π3/2�(3/4)ω1/4y−1/4H

(1)
1/4(ωy)

∓ iĀi2−5/4π3/2�(1/4)ω3/4y1/4H
(1)
3/4(ωy),

(20)

where H (1)
ν are Hankel functions of the first kind, � is the Euler

γ function, and Ā is the conjugate of an arbitrary phase factor A

that depends on the basis we choose to write as f (�k); the value
of any observable physical quantity should be independent of
this choice.26 Note that, on the right-hand side of the above
formulas, we have chosen to denote the absolute value |y|
simply by y. Moreover, the ∓ signs correspond to a positive
and negative value, respectively, for y. The antisymmetric
form of GAB and GBA is responsible for an anisotropy of the
impurity-induced corrections to the LDOS on the B sublattice
as will be described in more detail in what follows. According
to Eq. (17), the LDOS correction on each sublattice is given
by

�ρAA(0,y,ω) = − 1

π
Im

[
G0

AA(0,y,ω)t(ω)G0
AA(0,−y,ω)

]
,

�ρBB(0,y,ω) = − 1

π
Im

[
G0

BA(0,y,ω)t(ω)G0
AB(0,−y,ω)

]
,

(21)

where t(ω) is the only non-nul component of the T matrix. In
the case of an infinite impurity potential (vacancy), it takes the
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FIG. 6. (Color online) Fourier transform of the LDOS correction �ρ when t ′ = t (first column), t ′ = 1.5t (second column), and t ′ = 2t

(third column). The energy is ω = 0.15t for the first row and ω = 0.80t for the second row.

form

t(ω) ∼ e−iπ/4

ω1/2
. (22)

At this point, we can check that, at zero energy, our
T -matrix calculations recover the same expression for the
LDOS as the one obtained from the zero-energy wave-function
considerations. In the limit ω → 0,

G0
AA(0,y,ω) ∼ ω1/2, G0

AB(0,y,ω) ∼ A
eiπ

√
y

θ (y), (23)

where θ is the Heaviside step function. The LDOS correction
then vanishes on the sublattice A. We stress that the sublattice
symmetry implies that, at zero energy, the LDOS on the
sublattice A is zero, whereas, it behaves in the following
manner on the sublattice B:

�ρBB(0,y,ω) ∼ θ (−y)

ω1/2y
. (24)

This result is in agreement with the analysis of the zero-energy
wave function. Remember that the impurity wave function
decays as 1/

√
y with the distance from the impurity [cf. (9)],

which then leads to a 1/y decay for the LDOS.
Now, we turn back to the FOs and evaluate the corrections to

the LDOS using the corresponding expressions for the Green’s
function components in Eq. (20). The results are presented in
Fig. 7. We compare these results to a full evaluation of the
T matrix (without performing the low-energy expansion) as

well as with results obtained using the tight-binding method.
As can be seen in Fig. 7, all methods yield very similar results,
which confirms their accuracy for this type of calculation. We
also note that the LDOS correction is asymmetric between
the positive and the negative values of y on the B sublattice,
whereas, it is symmetric on the A sublattice.

To obtain the asymptotic expansion of the Friedel oscilla-
tions, we expand the Hankel functions for large values of ωy,
and we get

�ρAA(0,y,ω) ∼ 1

y1/2
cos

(
2ωy

cy

+ π

)
,

(25)

�ρBB(0,y,ω) ∼ 1

y1/2
cos

(
2ωy

cy

)
.

The resulting FOs decay as 1/
√

y at long distances on
both sublattices, slower than the typical inverse decay for a
regular two-dimensional system, however, their period is still
proportional to 1/ω. When summing the contribution of the
two sublattices, the terms in y−1/2, which are dephased by a
factor of π , vanish. The FOs are then described by the next
leading correction, which is nonzero only on the B sublattice,

�ρ(0,y,ω) ∼ ∓ 1

ω1/2y
cos

(
2ωy

cy

+ π

4

)
. (26)

Here, the minus/plus signs correspond to positive and negative
values, respectively, of y. The long-wavelength oscillations,
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FIG. 7. (Color online) The LDOS correction as a function of position in the vicinity of the impurity for a critical value of anisotropy (t ′ = 2t).
The second line presents a series of zoom ins of the plots outlined on the first line. In the first column, we compare �ρ obtained using the full
T -matrix approximation to the one obtained by the tight-binding method for an energy ω = −0.20t . Note that, consistent with the low-energy
expansion given by Eq. (25), the FOs are dephased by π between the two sublattices. The second column presents a comparison between the
correction to the LDOS �ρ along the x = 0 direction obtained by the full T -matrix approximation (full lines) and by the low-energy expansion
(dotted lines) for ω = −0.20t . In blue, we plot the LDOS on the A sublattice comprising the impurity (y = 0), whereas, in green, we plot the
LDOS on the B sublattice. In the third column, we plot the LDOS along the y = 0 direction obtained by the full T -matrix approximation for ω =
−0.20t . The blue curve is obtained using the full T -matrix approximation, whereas, the black one is obtained in the continuum approximation.

thus, decay following the usual 1/y law, different from the
1/r2 law corresponding to the intranodal scattering in typical
graphene. Thus, the transition from the 1/r2 decay to a 1/r

decay in the low-energy FOs provides a real-space signature
of the Dirac points merging.

The Friedel oscillations along the perpendicular direction
(y = 0) cannot be evaluated analytically, however, in the third
column of Fig. 7, we plot the dependence of the Friedel
oscillations as a function of x for y = 0. Note that the
amplitude of the oscillations is greatly reduced with respect

of the oscillations in the y direction, consistent with the
asymmetric shape of the impurity-state cloud, elongated in
the y direction.

In Fig. 8, we also present a two-dimensional plot of the
LDOS at a finite energy, obtained both by using the full T -
matrix form and by using the low-energy expansion. Note
that the behavior is very similar to that obtained using the
tight-binding method described in the previous section.

So far, the phase beyond the merging point has not been
explored. In such a gapped phase, the expansion (3) leads to

FIG. 8. (Color online) Correction of the LDOS �ρ (in arbitrary units) for t ′ = t (first column) and t ′ = 2t (second and third columns), ob-
tained using the full T -matrix approximation (first and second columns) and the low-energy expansion (third column). The energy is ω = 0.15t .
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the following spectrum, which is quadratic in both directions,
although anisotropic:

εM
± (�q) = ±

(
� + q2

x

2m∗ + c2
yq

2
y

2�

)
. (27)

Defining X = xm∗/� and Y = y/cy so that �R = (X,Y ) and
using expansion (B5), the LDOS correction for electrons in
the valence or conduction bands (ω2 > �2) can be written as

�ρAA( �R,ω) ∼ ω

| �R| cos(2
√

ω2 − �2| �R|),
(28)

�ρBB( �R,ω) ∼ �2

ω| �R| cos(2
√

ω2 − �2| �R|).

Note that the Friedel oscillations decay as 1/R on both
sublattices, typical of a usual bidimensional electron gas.

Besides, when ω2 < �2, expansion (B5) holds for ω → iω

so that the LDOS decays exponentially with the gap,

�ρAA( �R,ω) ∼ ω

| �R|e
−2

√
�2−ω2| �R|,

(29)

�ρBB( �R,ω) ∼ �2

ω| �R|e
−2

√
�2−ω2| �R|.

IV. CONCLUSION

We have studied the LDOS in the presence of a simple
impurity for an anisotropic graphene system at the Dirac
cone merging point. We have found that, near this particular
point, the zero-energy impurity wave function and the Friedel
oscillations in the LDOS exhibit very peculiar features. In
particular, the decay length of the Friedel oscillations along
the anisotropy direction and along the direction perpendicular
to this direction are very different, yielding a very asymmetric
impurity state in real space. The spatial dependence of the
impurity state wave function allows us to clearly distinguish
the semimetallic phase (power-law decay of the wave function
with the distance from the impurity) from the gapped phase
(exponential decay). On the other hand, the semi-Dirac
spectrum near the merging point induces a change in the
decay laws in the Friedel oscillations from an inverse-square
law (1/r2) below the transition to an inverse-linear law (1/r)
exactly at the transition. At low energies this provides a
real-space signature of the topological transition.

The agreement between the methods that we have used,
the analytical T -matrix approximation, the numerical tight-
binding exact diagonalization, and the wave-function consid-
erations, is remarkable, proving the accuracy of these methods
to describe the LDOS in the presence of disorder in a generic
two-dimensional system.
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APPENDIX A: ZERO-ENERGY WAVE-FUNCTION
EXPANSION

The general form of Eq. (9) for an arbitrary value of α is

b(l)
m,n ∼

∫ 2B

2A

dk(−2/α)n cosn(k/2)eik(m+n/2)

∼
∫ B

A

2 dk(−2/α)n cosn(k)eik(2m+n). (A1)

The condition to determine points A and B is |2 cos(k/2)| =
α, leading to k/2 = A or k/2 = B = π − A. For α � 2, one
takes A = 0 and B = π as we do in Eq. (9).

We can see that, for large values of n, i.e., at long distances,
only the largest values of the cosine need to be considered in the
integral. This occurs in the vicinity of A and B; we assume that
the cutoff parameter which controls this approximation is kc,

b(l)
m,n ∼

∫ A+kc

A

2 dk(−2/α)n cosn(k)eik(2m+n)

+
∫ B

B−kc

2 dk(−2/α)n cosn(k)eik(2m+n). (A2)

A Taylor expansion of the cosine around points A and B

yields cos(A + q) = cos(A)[1 − q tan(A) − q2/2] + o(q2)
and cos(B − q) = cos(B)[1 + q tan(B) − q2/2] + o(q2).
Note that the first-order terms are nonzero only for α < 2 (for
α � 2, we have A = 0 and B = π ), in this case, we can limit
ourselves to the first-order approximation,

b(l)
m,n ∼

∫ kc

0
2 dq(−1)ne−n tan(A)qeiq(2m+n)eiA(2m+n)

+
∫ kc

0
2 dq(−1)2nen tan(B)qe−iq(2m+n)eiB(2m+n)

∼
∫ ∞

0
2 dq(−1)ne−n tan(A)qeiq(2m+n)eiA(2m+n)

+
∫ ∞

0
2 dq e−n tan(A)qe−iq(2m+n)eiB(2m+n)

∼ 2(−1)n
eiA(2m+n)

tan(A)n − i(2m + n)

+ 2
eiB(2m+n)

tan(A)n + i(2m + n)
. (A3)

[ ]±

+

FIG. 9. Contour integral.
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In the case of isotropic graphene, A = π/3. Given that x = a0

√
3(2m + n)/2 and y = −n3a0/2 we have

b(x,y)(l) ∼ a0

√
3
ei2π[−y+x/

√
3/(3a0)]

−y − ix
+ a0

√
3
ei4πx/(3

√
3a0)

−y + ix
. (A4)

One, thus, recovers the results of Ref. 14 by performing the substitution x → y and −y → x.
However, for α � 2, we have A = 0, the first-order terms are null, and we need to consider the second-order terms. This yields

b(l)
m,n ∼

∫ kc

0
2 dq(−2/α)ne−n(q2/2)eiq(2m+n) +

∫ kc

0
2 dq(−2/α)ne−n(q2/2)e−iq(2m+n)

∼ 2(−2/α)n exp

[
− (2m + n)2

2n

] ∫ ∞

0
dq exp

[
−n

2

(
q + i

2m + n

n

)]

+ 2(−2/α)n exp

[
− (2m + n)2

2n

] ∫ ∞

0
dq exp

[
−n

2

(
q − i

2m + n

n

)]

∼ (−1)n
exp

[ − nln
(

α
2

) − (2m+n)2

2n

]
√

n
. (A5)

This is the result presented in Eq. (9).

APPENDIX B: FRIEDEL OSCILLATIONS IN THE GAPPED PHASE

In the gapped phase, the spectrum is quadratic (although anisotropic), and the unperturbed Green’s functions are proportional
to the following integral:

I (r,ω) =
∫
R2

d2q

(2π )2

ei �q·�r

ω2 − q2
=

∫ ∞

0

dq

2π

q

ω2 − q2

∫ 2π

0

dθ

2π
eiqr cos(θ) =

∫ ∞

0

dq

π

q

ω2 − q2

∫ ∞

1

du

π

sin(ruq)√
u2 − 1

, (B1)

where ω > 0 and r = |�r|. Partially decomposing the fraction 1/(ω2 − q2) and using the representation 1/(x + iε) to define the
1/x distribution when ε → 0+ leads to∫ ∞

−∞

dq

2π

q sin(ruq)

ω2 − q2
=

〈
P

[
1

ω + q

]∣∣∣∣ 1

4πω
q sin(ruq)

〉
+

〈
P

[
1

ω − q

]∣∣∣∣ 1

4πω
q sin(ruq)

〉
− iπ

〈
δ−ω

∣∣∣∣ 1

4πω
q sin(ruq)

〉

− iπ

〈
δ+ω

∣∣∣∣ 1

4πω
q sin(ruq)

〉

= −eiωru

2
. (B2)

The principal value P[1/(ω ± q)] has been determined
using the contours depicted in Fig. 9. Contours C−, C+, and �

give a zero contribution according to Jordan’s lemma. Equiv-
alently, one could have added an infinitely small imaginary
part to ±ω in order that these poles leave the real axis to get
result (B2).

Then, the I (r,ω) integral becomes

I (r,ω) = −
∫ ∞

1

du

2π

eiωru

√
u2 − 1

= − i

4
H

(1)
0 (ωr), (B3)

where H is a Hankel function of the first kind. Performing the
linear transformation u = it + 1, the integral reads

I (r,ω) = −ei(ωr+π/4)

2π

∫ ∞

0
dt

e−ωrt√
2t

(
1 + it

2

) , (B4)

which is the Laplace transform of [2t(1 + it
2 )]1/2. Thanks

to the Watson lemma, a series expansion of this term

leads to

I (r,ω) = −ei(ωr+π/4)

2π

∞∑
k=0

ik

2k+1/2

�
(

1
2

)
k!�

(
1
2 − k

)
×

∫ ∞

0
dt e−ωrt t k−1/2

= −ei(ωr+π/4)

2π

∞∑
k=0

ik

2k+1/2

�
(

1
2

)
k!�

(
1
2 − k

)
×

∫ ∞

0

dt

ωr
e−t

(
t

ωr

)k+1/2−1

= −ei(ωr+π/4)

2π

∞∑
k=0

ik

2k+1/2

�
(

1
2

)
k!�

(
1
2 − k

) �
(

1
2 + k

)
(ωr)k+1/2

I (r,ω) = −ei(ωr+π/4)

2
√

2πωr

∞∑
k=0

�
(

1
2 + k

)
k!�

(
1
2 − k

)(
i

2ωr

)k

. (B5)
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