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We present a first-principles approach for inelastic quantum transport calculations based on maximally localized
Wannier functions. Electronic-structure properties are obtained from density-functional theory in a plane-wave
basis, and electron-vibration coupling strengths and vibrational properties are determined with density-functional
perturbation theory. Vibration-induced inelastic transport properties are calculated with nonequilibrium Green’s
function techniques; since these are based on a localized orbital representation we use maximally localized
Wannier functions. Our formalism is applied first to investigate inelastic transport in a benzene molecular
junction connected to monoatomic carbon chains. In this benchmark system the electron-vibration self-energy is
calculated either in the self-consistent Born approximation or by lowest-order perturbation theory. It is observed
that upward and downward conductance steps occur, which can be understood using multieigenchannel scattering
theory and symmetry conditions. In a second example, where the monoatomic carbon chain electrode is replaced
with a (3,3) carbon nanotube, we focus on the nonequilibrium vibration populations driven by the conducting
electrons using a semiclassical rate equation and highlight and discuss in detail the appearance of vibrational
cooling as a function of bias and the importance of matching the vibrational density of states of the conductor
and the leads to minimize joule heating and breakdown.
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I. INTRODUCTION

Molecular electronic devices have been intensively studied
for the past decade, having been regarded as candidates to
replace silicon-based electronics. Since Aviram and Ratner
proposed the concept for the first molecular rectifier in 1974,1

a variety of molecular devices has been suggested. In addition,
thanks to advancement in experimental fabrication and mea-
surement techniques, electronic currents through molecules
have been experimentally measured and investigated.2–9 De-
spite these efforts, there are still many issues in the practical
realization of molecular electronic devices.

Understanding interactions between conducting electrons
and molecular vibrations is one of the key issues to address
for future applications. Vibrational excitations due to the
scattering of conducting electrons can change molecular
configurations and attachment geometries, affecting the func-
tionality and performance of molecule-based devices, or in turn
backscatter electrons, impeding flow. The worst-case scenario
is that local heating effects might ultimately break down the
junction.

Vibration-induced inelastic transport has been theoretically
investigated following two directions. The first focuses on
simple model Hamiltonians, e.g., a single electronic level
coupled to a single phonon mode as in the Anderson-Holstein
model.10–25 Based on this simplified assumption, many novel
and interesting transport properties have been predicted and
investigated. However, the models used in this approach
tend to be too simplified to provide detailed and accurate
theoretical data that can quantitatively explain experimental
results.

As an alternative, approaches based on density-functional
theory (DFT) offer the chance to describe realistic systems
accurately and without any adjustable parameters.26,27 In
particular, using DFT one can routinely calculate equilibrium
geometries, electronic couplings, normal modes, and electron-
vibration interactions.28

Transport theories can then be combined with DFT, and
several approaches have been proposed.29–44 In particular,
a nonequilibrium Green’s function (NEGF) formulation, in
combination with DFT, and commonly called DFT-NEGF, has
been widely used in ab initio quantum transport problems.42–44

This approach is more powerful than other methods in that
it can tackle not just the emergence of electron-vibration
interactions, but any other type of interactions. DFT-NEGF
has been successfully applied to elastic quantum transport
for both zero-bias and finite-bias cases,42–44 and recently it
has been extended to include interaction effects such as those
arising from electron-vibration couplings.36–41

DFT-NEGF requires the use of an atomic-like localized
basis, since the device needs to be spatially divided into two
electrodes and a molecular conductor. For this reason most
DFT-NEGF calculation packages have been implemented
using localized basis sets. However, a plane-wave-based cal-
culation can provide a systematically accurate description of
electronic states and, in particular, can describe in an unbiased
fashion electronic states which have considerable spread in
vacuum, where localized basis sets tail off. Furthermore, while
basis functions used in localized-basis calculations need to be
tuned depending on the types of atoms and the chemistry of
the system, a plane-wave basis can describe any given system
without further assumptions.

245407-11098-0121/2013/87(24)/245407(11) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.245407


SEJOONG KIM AND NICOLA MARZARI PHYSICAL REVIEW B 87, 245407 (2013)

However, plane-wave calculations in periodic-boundary
conditions are not suitable for the DFT-NEGF formalism.
For this, maximally localized Wannier functions (MLWFs), as
proposed by Marzari and Vanderbilt,45–47 provide the needed
formulation to link delocalized and localized orbitals. Since
the Wannier transformation is an exact unitary mapping, one
can construct an exact, minimal set of atomic-like local-
ized functions within an energy window of interest without
losing the accuracy of plane-wave-based DFT calculations,
and an MLWF approach to quantum transport has been
very successfully applied to zero-bias quantum conductance
calculations.48–52 The next step to develop an MLWF approach
to quantum transport is to include interaction effects on the
transport properties. In this paper we focus on extending these
MLWF-based quantum transport calculations to investigate
electron-vibration interaction effects on molecular junctions.

The paper is organized as follows. In Sec. II we briefly
review first-principles electronic structure calculations, espe-
cially focusing on (i) density-functional perturbation theory
(DFPT) to calculate vibrational properties and electron-
vibrational interactions and (2) transformation of electron-
vibration matrix elements from a plane-wave basis to a
maximally localized Wannier function basis. In Sec. III,
quantum-transport theory based on NEGFs and diagrammatic
perturbation theory is summarized. We also discuss nonequi-
librium vibrational populations in the presence of interactions
with conducting electrons and harmonic coupling to bulk
vibrations in the electrodes. In Sec. IV application results and
further analysis are presented.

II. ELECTRONIC-STRUCTURE METHODS

A. Vibrational properties: Density-functional
perturbation theory

In the following, the electronic structure of the device is
calculated within the framework of DFT with the ground-state
charge density n(r) and Bloch wave functions |ψi〉 determined
by solving the Kohn-Sham equations.26,27,54

Vibrational properties and electron-vibration interactions
are determined with DFPT,56 with vibrational spectra and the
corresponding normal modes obtained from the first-principles
interatomic force constants. The key quantity needed to obtain
these is the linear variation �n(r) of the charge density n(r)
with respect to ionic displacements. In DFPT,57 �n(r) and
|�ψi〉 can be calculated self-consistently using first-order
perturbation theory (see Ref. 56 for a detailed discussion on
DFPT).

Electron-vibration interactions can be written in a second
quantized form as follows:58

Hel-vib =
∑
kqλ

∑
mn

g
qλ,mn

k+q,ka
†m
k+qa

n
k(b†−qλ + bqλ), (1)

where a
†n
k (an

k) is the electron creation (annhilation) operator
for Bloch state |ψnk〉. Similarly, b

†
qλ (bqλ) is the creation

(annhilation) operator for the phonon mode λ with energy
h̄ωqλ at wave vector q, and g

qλ,mn

k+q,k is the electron-phonon cou-
pling matrix element. The electron-phonon coupling matrix
can be calculated from the derivative of the self-consistent
Kohn-Sham potential �VKS with respect to ionic

displacements,

g
qλ,mn

k+q,k =
(

h̄

2ωqλ

)1/2

〈ψk+q,m|�V
qλ

KS |ψk,n〉, (2)

where ψk,n is the nth Kohn-Sham orbital wave function at
wave vector k, and �V

qλ

KS is the response of the self-consistent
Kohn-Sham potential with respect to the phonon mode λ at
wave vector q.58 Following Ref. 58, �V

qλ

KS is explicitly written
as

�V
qλ

KS =
∑

R

∑
s

∂VKS

∂ �usR
· �vqλ

s√
Ms

eiq·R
√

N
, (3)

where �usR is the atomic displacement for the sth basis atom
at the Bravais lattice vector R, �vqλ is the phonon displacement
vector of the λth mode at wave vector q, Ms is the mass of the
sth basis atom, and N is the number of unit cells considered
(equivalent to the number of points in the equispaced wave-
function mesh sampled in reciprocal space).

B. Maximally localized Wannier functions

As discussed in Sec. I, DFT calculations based on a
plane-wave basis can provide a very accurate description
of the electronic structure of the system, in particular, in
comparison with a localized basis set. However, since Bloch
orbitals are intrinsically delocalized, they are not suitable for
quantum transport calculations based on Green’s functions, in
which spatial separation between electrodes and the conductor
is required in the Hamiltonian description. In this work
MLWFs45–47 are used in order to transform Bloch wave
functions into localized functions. Wannier functions can be
calculated as

|ωnR〉 = 1

NR

∑
k

∑
i

∑
j∈N

(k)
win

e−ik·R|ψjk〉U (k)
in U

dis(k)
ji , (4)

where U dis(k) stands for a disentanglement procedure in which
a maximally connected subspace is extracted from the entire
entangled manifold. Here, N (k)

win is the number of entangled
bands in a desired energy window at a wave vector k. The
Wannier rotation matrix U (k) is determined by minimizing the
mean squared spread of the resulting Wannier functions (for
details on MLWFs, we refer to Refs. 45–47).

Throughout this paper, we study quasi-one-dimesional
systems simulated by large supercells that contain a conducting
molecule and two electrodes. For these quasi-one-dimesional
systems �-point sampling can be safely used (if electrodes
were modeled by three-dimensional bulk materials, one could
use k-point sampling in the plane transverse to the transport
direction, with electron-vibration interactions calculated for
the k mesh in the plane transverse to the transport direction).
For �-point sampling, the electronic Hamiltonian and electron-
vibration interactions in the Wannier representation can be
explicitly written as

He =
∑
m,n

Hmnc
†
mcn, (5)

Hel-vib =
∑

λ

∑
m,n

Mλ
mnc

†
mcn(b†λ + bλ), (6)
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where

Hmn =
∑
ij

(U disU )∗im〈ψi |He|ψj 〉(U disU )jn, (7)

Mλ
mn =

√
h̄

2ωλ

∑
ij

(U disU )∗im〈ψi |�V λ|ψj 〉(U disU )jn. (8)

Here c
†
m (cm) is the electron creation (annihilation) operator

for the Wannier state |ωm〉.

III. QUANTUM TRANSPORT

In order to calculate transport properties, we adopt the
Meir-Wingreen formulation, which has been widely applied
to mesoscopic and nanoscale transport problems based on
NEGFs.53 The NEGF formalism for inelastic transport can
be found in Refs. 59 and 60, and it has been extensively used
to study inelastic transport properties.14–21,36–41 In particular, it
has recently been combined with first-principles methods,36–41

and our present calculations are based on Ref. 40. Here we
briefly summarize some essential elements,40 which are useful
to understand the results in the following sections.

In the Meir-Wingreen formulation,53 the net electrical
current Iα entering the electrode α is

Iα = 2e

h̄

∫ ∞

−∞

dε

2π
Tr[�>

α (ε)G<(ε) − �<
α (ε)G>(ε)], (9)

where �
≶
α denote the lesser and greater self-energies of

electrode α.40 Full Green’s functions with electron-vibration
couplings are obtained by using the Dyson and Keldysh
equations61–63

Gr/a = G
r/a

0 + G
r/a

0 �
r/a

vib Gr/a, (10)

G≶ = Gr (�≶
L + �

≶
R + �

≶
vib)Ga. (11)

The electron-vibration self-energies �
r/a

vib and �
≶
vib can be

calculated from a diagrammatic perturbation theory.61–63 Fol-
lowing Ref. 40, we use two approximations here. The first one
is the self-consistent Born approximation (SCBA), in which
Hartree and Fock diagrams due to electron-vibration couplings
are self-consistently calculated together with Eqs. (10) and
(11). The SCBA, however, is computationally very demanding.
Instead, in the case of weak electron-vibration couplings, one
may use lowest order perturbation theory (LOPT),38,40 where
electron-vibration self-energies are calculated up to the second
order in the electron-vibration couplings.

Due to the electron-vibration interactions, conducting elec-
trons can exchange their energy with molecular vibrations by
absorbing or emitting local vibrational quanta. Therefore the
vibrational population Nλ does not in general follow a Bose-
Einstein distribution.64 In order to describe a nonequilibrium
vibrational population, Ref. 40 introduced a semiclassical rate
equation,

d

dt
Nλ = Pλ

h̄ωλ

− γλ(Nλ − nB(h̄ωλ)), (12)

where Pλ denotes the net power transferred to the vibrational
mode λ, h̄ωλ is the vibrational energy of the λth mode, and
nB is the Bose-Einstein distribution. The net power Pλ is also

calculated by using NEGFs:40

Pλ = 2

h̄

∫ ∞

−∞

dε

2π
εTr[�>

α (ε)G<(ε) − �<
α (ε)G>(ε)]. (13)

The first term on the right-hand side of Eq. (12) represents the
net molecular vibrations excited by the conducting electrons.
The second term describes the heat dissipation process,
which makes local vibrations equilibrated to the Bose-Einstein
distribution at the temperature of the electrode. Molecular
vibrations are not isolated but are mechanically coupled to
the surroundings (e.g., the bulk phonons of the electrodes).
Due to this coupling, local vibrations in the molecule decay
into bulk phonons, and γλ represents this decay rate. Note that
here we restrict ourselves to considering only the harmonic
coupling to bulk phonons. Harmonic coupling describes one
local vibration–to–one phonon transitions, which means that
a local vibration decays by exciting one phonon mode in the
electrodes.

When localized vibrations are harmonically coupled to
bulk phonons (heat reservoir), the decay rate at which the
λth vibration disappears by exciting bulk phonons can be
calculated by using Fermi’s golden rule,65–67

γλ = 2π

h̄

∑
k∈bath

|B〈k|HC |λ〉S |2δ(h̄ω̄k − h̄ωλ), (14)

where |λ〉S and |k〉B denote the λth local vibrational state and
a bulk phonon state with a quantum number k, respectively,
and h̄ω̄k is the phonon energy of |k〉B . Here HC denotes
the harmonic coupling between local vibrations and the heat
reservoir.

In fact, Eq. (14) is equivalent to the expression

γλ = − 1

ωλ

�uT
λ Im�r (ωλ)�uλ, (15)

where �uλ is the normal mode vector of the λth local
vibration.68,69 �r (ω), which is defined as the retarded heat bath
self-energy, is the mechanical counterpart to the electronic lead
self-energy �r (ε).68,69

Reference 39 further decomposes the first term in Eq. (12)
into absorption and emission processes,

d

dt
Nλ = (Nλ + 1)Eλ − NλAλ − γλ(Nλ − nB(h̄ωλ)), (16)

where Aλ and Eλ stand for absorption and emission rates.39

Using Eq. (16), the steady-state solution for the vibrational
populations can be immediately obtained as

Nλ = nB (h̄ωλ) γλ + Eλ

Aλ + γλ − Eλ

. (17)

Note that this steady-state solution exists only when Aλ +
γλ > Eλ. Otherwise, Eq. (16) gives an exponentially increas-
ing population as a function of time, indicating a vibrational
instability.

IV. APPLICATIONS

In this section we present two applications of our first-
principles inelastic transport approach. First, we calculate
the transport properties of a benzene molecule connected to
monoatomic carbon chains (cumulenes). For this benchmark
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FIG. 1. (Color online) Band structure of cumulene for a two-atom
unit cell. Filled (red) circles, direct DFT calculation; solid (black)
lines, Wannier interpolated bands. (a) p-type Wannier function at an
atomic site; (b) σ -like Wannier function at a midbond site.

system we apply both the SCBA and the LOPT for the
equilibrium and nonequilibrium solutions. As the second
example we replace the cumulenes with (3,3) single-wall
carbon nanotubes (CNTs). In this molecular junction we focus
on the calculation of realistic decay rates and nonequilibrium
vibration populations. Technically, all DFT and DFPT calcu-
lations are performed using the Perdew-Zunger local-density
approximation,70 norm-conserving pseudopotentials,71 and a
plane-wave basis with a cutoff of 55Ry using the QUANTUM-
ESPRESSO distribution55 and the WANNIER90 package.52

A. Cumulene-benzene-cumulene junction

We first study a benzene molecule connected to a
monoatomic carbon chain. It is known that cumulene is subject
to a Peierls distortion: It readily becomes dimerized and opens
an energy band gap favored by a lower energy structure. We
thus freeze the structure of cumulene and use it as a metallic
electrode. We construct two p orbitals and one σ -like midbond
Wannier function (see Fig. 1) for this electrode. The two
p orbitals, py and pz, are perpendicular to the transport
direction, which is along the x axis in our calculation.
Figure 1 shows the band structure of cumulene. The energy
bands are obtained either from a direct plane-wave-based
DFT calculation or by Wannier band interpolation and are
in excellent agreement with each other. While the lowest
energy band originates from σ orbitals, p orbitals give rise
to doubly degenerate π bands around the Fermi level, and
transport properties at the Fermi energy are characterized by
these two π bands.

Figure 2 shows the supercell geometry used in the transport
calculations. The benzene molecule alone is allowed to vibrate.

FIG. 2. (Color online) Cumulene-benzene-cumulene junction.
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FIG. 3. (Color online) Differential conductance G = dI/dV

and its derivative dG/dV with equilibrum vibrational populations
calculated using the LOPT [solid (black) line] or the SCBA [dashed
(red) line]. At a lower bias two differential conductance increases are
observed. At a higher bias, two large conductance drops occur. These
conductance changes correspond to peaks in dG/dV .

The device region, containing the vibrating region and part of
the cumulene, is taken to be large enough to make sure that
there is no direct coupling between electrodes and that the
electron-vibration coupling is 0 outside the device region. For
the benzene molecule, pz-type Wannier functions on carbon
atoms and σ -like Wannier functions on C–C and C–H bonds
are constructed.

The differential conductance G = dI/dV and its derivative
dG/dV are calculated using either the SCBA or the LOPT
scheme. Temperature is taken to be kBT = 1meV. As shown
in Fig. 3, these two approximations display essentially perfect
agreement. Four conductance changes are observed in the
differential conductance curve in Fig. 3. The corresponding
inelastic transport signals due to electron-vibration interac-
tions appear as peaks in the d2I/dV 2 plot. The peak position
on the bias axis corresponds to the vibrational energy involved
in the electron-vibration scattering events. From the four peaks
shown in Fig. 3 one might conclude that there are four active
vibrational modes, but there is a shoulder on the right side of
the third peak. This may indicate that there is a fifth active
vibrational mode. To investigate which vibrational modes
participate in the inelastic transport, we perform modewise cal-
culations by considering only one particular vibrational mode.
For clarity, the elastic contribution is excluded from these
modewise calculations. These calculations show that there
are five major peaks in dG/dV (Fig. 4). The corresponding
vibrational configurations of these five active modes are also
shown: While two upward peaks are out-of-plane vibrations,
three downward peaks correspond to in-plane motions. Thus,
electron-vibration interactions can lead to both differential
conductance rises and drops. This simultaneous occurrence
can be understood from scattering theory and transmission
eigenchannels,73,74 as discussed in Ref. 41. Let us consider
an electron injected from the left electrode on a left-incident
ith eigenchannel |�i

L〉 at energy ε (see Fig. 5). If there is no
scattering with molecular vibrations, this electron contribution
to the elastic conductance is

G1 =
∑

i

T i
L→R(ε), (18)

where T i
L→R(ε) is the elastic transmission probability of

|�i
L(ε)〉. Note that the conductance is normalized by the

conductance quantum G0 = 2e2/h. Now let us consider that
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FIG. 4. (Color online) dG/dV in modewise calculation. Five
active vibrational modes are found. The corresponding vibrational
configurations are illustrated. While the first two active modes
leading to conductance jumps are out-of-plane motions, the three
conductance-drop modes correspond to in-plane vibrations.

the electron on a left-incident ith eigenchannel |�i
L(ε)〉 is

scattered off to a right-incident j th eigenchannel |�j

R(ε − h̄ω)〉
by emitting a vibrational quantum h̄ω. The outgoing state of
|�j

R(ε − h̄ω)〉 can go either to the left electrode or to the
right one. Since conductance measured in the right lead is
considered here, the probability to move back to the right
electrode for |�j

R(ε − h̄ω)〉 is given by its reflection probability
Rj

R(ε − h̄ω). If Pi→j denotes the probability that |�i
L(ε)〉 is

scattered to |�j

R(ε − h̄ω)〉, then the total conductance can be
computed as

G2 =
∑

i

(
1 −

∑
j

Pi→j

)
T i

L→R(ε) +
∑
i,j

Pi→jRj

R(ε − h̄ω).

(19)

FIG. 5. (Color online) Schematic representation of inelastic
scattering in the presence of electron-vibration interactions. Solid
arrows indicate transmission eigenchannels.

Thus, the conductance change is given by

�G = G2 − G1 ≈
∑
i,j

Pi→j (Rj

R(εF ) − T i
L→R(εF )), (20)

where the transmission and reflection probabilities are approx-
imated by those at the Fermi energy εF (since vibrational
energies are generally low, one might expect that transmission
and reflection probabilities would not change significantly
over [εF − h̄ω,εF + h̄ω]). Note that the conductance can
increase or decrease depending on the relative magnitude
of Pi→j (Rj

R(εF ) − T i
L→R(εF )) and that, while (Rj

R(εF ) −
T i

L→R(εF )) does not depend on the vibrational configuration,
Pi→j ∝ |〈�j

R|Hλ
el-vib|�i

L〉|2, calculated from Fermi’s golden
rule,75,76 is determined by the electron-vibration interaction
matrix.

For the cumulene-benzene-cumulene system, it is found
that there are two transmission eigenchannels: the major
transmission channel |�1

L,R〉, with T 1
L→R = T 1

R→L = 0.741;
and the minor channel |�2

L,R〉, with T 2
L→R = T 2

R→L = 0.004.
pz orbitals on the cumulene wire and the benzene molecule
constitute the major transmission eigenchannel |�1

L,R〉. py

orbitals on the cumulene wire and σ bonds of the benzene
molecule contribute to the minor transmission channel |�2

L,R〉.
In addition, while |�1

L,R〉 is symmetric with respect to the
zx plane, |�2

L,R〉 is antisymmetric. In other words, when P̂zx

denotes the reflection operator with respect to the zx plane,
P̂zx |�1

L,R〉 = |�1
L,R〉 and P̂zx |�2

L,R〉 = −|�2
L,R〉 hold.

The first two active vibrational modes, λ = 5 and 11,
shown in Fig. 4 and leading to differential conductance jumps,
show antisymmetric vibrational motions with respect to the
zx plane. Then the corresponding electron-vibration interac-
tions Hλ=5,11

el-vib satisfy

Hλ=5,11
el-vib = −P̂zxHλ=5,11

el-vib P̂zx . (21)

Because of these reflection symmetries,〈
�1

R

∣∣Hλ=5,11
el-vib

∣∣�1
L

〉 = 〈
�2

R

∣∣Hλ=5,11
el-vib

∣∣�2
L

〉 = 0, (22)

i.e., scattering from |�1(2)
L 〉 to |�1(2)

R 〉 is prohibited. Since
(R2

R − T 1
L→R) = (R1

R − T 2
L→R) = 0.255, one obtains a differ-

ential conductance rise:

�G = [
Pλ=5,11

1→2

(
R2

R−T 1
L→R

) + Pλ=5,11
2→1

(
R1

R − T 2
L→R

)]
> 0.

(23)

In contrast, the last three active modes, λ = 17, 19, and 25,
are symmetric with respect to the zxplane:

Hλ=17,19.25
el-vib = P̂zxHλ=17,19,25

el-vib P̂zx . (24)

Therefore, one has these reflection selection rules:〈
�1

R

∣∣Hλ=17,19,25
el-vib

∣∣�2
L

〉 = 〈
�2

R

∣∣Hλ=17,19,25
el-vib

∣∣�1
L

〉 = 0. (25)

Since numerical calculations show that Pλ=17,19,25
1→1 �

Pλ=17,19,25
2→2 , one finds the three differential conductance drops

�G = [
Pλ=17,19,25

1→1

(
R1

R − T 1
L→R

)
+Pλ=17,19,25

2→2

(
R2

R − T 2
L→R

)]
< 0, (26)
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FIG. 6. (Color online) Inelastic transport calculations with nonequilibrium vibrational populations Solid (blue) line, LOPT; dashed (red)
line, SCBA; dot-dashed (black) line, equilibrium case. (a) Differential conductance, (b) second derivative of the current, and (c) vibration
populations.

where (R1
R − T 1

L→R) = −0.482 and (R2
R − T 2

L→R) = 0.992.
In general, this multichannel analysis shows that differential
conductance rises and drops can occur at the same time.

Next, let us take into account the effect of nonequilibrium
vibrational populations on transport properties. This situation
corresponds to the case where the decay rate of a molecular
vibration to its surroundings is lower than the emission rate
due to electron-vibration scattering. In order to compare
equilibrium and nonequilibrium vibration cases the decay rate
h̄γλ = 0.1meV has been chosen for all vibrational modes; this
condition is relaxed in the next example.

As shown in Fig. 6(a), nonequilibrium effects lead to larger
slopes in comparison with the equilibrium case. Furthermore,
the differential conductance change increases at the threshold
bias voltage. These two changes appear as (i) a finite dG/dV

value between peaks and (ii) increased peak heights [see
Fig. 6(b)]. When the bias exceeds the threshold voltage equal
to the vibrational energy, the vibrational population starts to
increase, as shown in Fig. 6(c). This is due to the increase in
phase space for conducting electrons that can emit molecular
vibration quanta. Recalling that electron-vibration scattering
is roughly proportional to Nλ, increased vibration populations
enhance inelastic transport signals in return. Finally, we also
consider transport calculations where we change the decay rate
and show in Fig. 7 that the differential conductance approaches
the equilibrium case as the decay rate increases.

B. (3,3) CNT–benzene–(3,3) CNT

In the previous benchmark, the cumulene wire, subject to
Peierls’ instability, was frozen in order to maintain its metallic
character, and the decay rate for molecular vibrations was
used as a parameter. Here we replace the cumulene wire
with a metallic (3,3) CNT, which is mechanically stable, and
calculate all decay rates from the first-principles couplings.

Carbon-based nanostructures, such as CNTs and graphene,
could become new platforms for future nanotechnology
applications due to their excellent electronic properties.
Recently, carbon-based nanojunctions have been experimen-
tally fabricated: These include carbon chains connected to
graphene77 or CNTs78 and organic molecules coupled to
CNT electrodes with amide linkers.79 These experimental

achievements have stimulated theoretical and computational
studies on carbon-based nanodevices.80,81 In particular, a
benzene molecule connected to CNT electrodes (which is
the system of our interest) was suggested as a molecular
switch, operated by controlling the relative angle between π

orbitals of the benzene and the π -orbital manifold of CNT
electrodes.81 Functionality and performance of molecular
devices are strongly affected by molecular geometries or
anchoring points to the electrodes, and they may be affected
by vibrations induced by conducting electrons. In a worst-case
scenario, local heating may break down the junctions.

In our work, we choose a vibrating region by defining an
extended molecule in which a benzene and the outmost relaxed
CNT layers are included. This extended molecule is seam-
lessly connected to the bulk CNT electrodes. The vibrating
region contains 56 atoms in total, and these correspond to
168 vibrational modes. Figure 8 illustrates the supercell
geometry used in the decay rate calculations: It contains the
extended molecule and two vibrational principal layers72 for
bulk phonons.

We proceed as follows. First, by allowing only the extended
molecule to vibrate, the electron-vibration interactions Hel-vib,
the vibrational spectrum {h̄ωλ}, and the corresponding normal

0 0.1 0.2 0.3 0.4
bias (V)

0.72

0.73
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0.75

0.76

G
=

dI
/d

V
 (

2e
2 /h

)

decaying rate  = 0.0001 eV
decaying rate = 0.001 eV
decaying rate = 0.01 eV
equilibrium case 

equilibrium
0.01 eV

0.001 eV

0.0001 eV

FIG. 7. (Color online) Differential conductance for different
decay rates. Black line, h̄γλ = 0.1meV; red line, h̄γλ = 1meV; green
line, h̄γλ = 10meV; blue line, equilibrium case (h̄γλ → ∞).
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FIG. 8. (Color online) (3,3) CNT–benzene–(3,3) CNT supercell
geometry used in decay rate calculations. The vibrating region
contains a benzene molecule and three relaxed surface CNT layers.
Dashed (red) lines represent the molecular region containing a
benzene molecule, anchoring carbon atoms, and hydrogen atoms
saturating the CNT edge.

modes are calculated. Then the interatomic force constants
for the entire supercell in Fig. 8 are calculated. From these
interatomic force constants one can extract the harmonic
coupling matrix HC between the extended molecule and the
bulk electrodes. In addition, we take a periodic unit cell
for the bulk (3,3) CNT and calculate its interatomic force
constants HB .

The calculated decay rates are shown in Fig. 9(a), in units
of electronvolts. While most of the decay rates are of the
order of 10−2 to 10−3 eV, there are few modes with much
lower rates. These low decay rates can arise for two reasons.
First, as shown in Fig. 9(a), decay rates start to increase
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FIG. 9. (Color online) (a) Decay rates for each vibrational mode
of the (3,3) CNT–benzene–(3,3) CNT junction. (b) Decay rate vs
localization (see text for the definition). Decay rates are plotted on a
logarithmic scale.

significantly from the 153rd mode on. These vibrational modes
(between 153 and 168) have energies higher than the highest
(3,3) CNT phonon energy. Recalling that decay processes
based on the harmonic coupling essentially correspond to
one vibration–to–one phonon transitions, there are no bulk
phonons to which the vibrational modes laying outside the
band width of bulk phonons can transfer their vibrational
energies. Once the anharmonic coupling that makes one
vibration–to–multiphonon transition possible is taken into
account, these modes may have higher decay rates. However,
this correction goes beyond the present approach.

Second, we can notice that even among the vibrational
modes whose energies lie inside the bulk phonon dispersions,
some also display low decay rates. Most of these correspond to
vibrations that are localized inside the benzene molecule or to
wagging motions of the surface hydrogen atoms. Because these
motions are spatially well separated from bulk phonons, one
may expect that they are less coupled to bulk phonons. In order
to measure how localized these modes are inside the molecule,
we define the benzene molecule, two anchoring carbon atoms,
and the surface hydrogen atoms as the molecular region shown
in Fig. 8. If PM denotes a projection operator onto a molecular
region, one can find how localized the vibration is inside
the molecular region from |PM |λ〉|2, where |λ〉 indicates the
vibrational state for the normal mode λ. We call |PM |λ〉|2
the localization measure for vibrations. Figure 9(b) shows
the relation between localization and decay rates. When the
vibration is localized in the molecular region, or, equivalently,
|PM |λ〉|2 approaches 1, its decay rate is much lower.

Except for the modes between 153 and 168, the majority
of the vibrations overlap with the phonon dispersions of the
CNT electrodes. This happens due to the same chemical
character between hydrocarbons and carbon-based electrodes.
If we were to consider organic molecules attached to a metal
electrode such as gold and platinum, the large mass difference
between atoms in the molecule and those in the electrode
would make most of the molecular modes lie outside the
electrode phonon dispersions. Therefore, most of the vibra-
tional modes would have very low decay rates, significantly
increasing the probability of the molecular junction’s breaking
down.

Using Eq. (16), we can now calculate nonequilibrium
vibrational populations. Vibrational occupations will start
to increase as the bias voltage exceeds their corresponding
threshold voltages. While in the vicinity of the threshold
voltage the vibrational populations increase linearly, nonlinear
effects can appear at higher bias voltages. For low-energy
modes vibrational populations monotonically increase with
bias; however, nonmonotomic populations are observed for
some of the high-energy modes. These trends are shown in
Fig. 10, where vibrational populations Nλ and corresponding
effective temperatures T λ

eff for some of the highly excitable
modes are illustrated. The effective temperature T λ

eff is defined
as Nλ = 1

e
h̄ωλ/kB T λ

eff −1
. Mode 1, which is low energy, shows a

monotonically increasing behavior. For the other high-energy
modes, their populations increase, then decrease in a certain
bias voltage range and then start to increase again, giving
rise effectively to the phenomenon of vibrational cooling82

(Fig. 10).
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FIG. 10. (Color online) (a) Nonequilibrium vibrational popula-
tions and (b) effective temperature T λ

eff for the most excitable modes
as a function of the bias voltage. Vibrational configurations of the
modes are shown in Fig. 11.

One can hint at a qualitative explanation for this cooling
behavior by examining the local density of states in the
device region, as recently discussed in Ref. 82. As shown
in Fig. 12(a), there is one resonant peak located at an energy
higher than μeq, which is the common Fermi level before a
bias is applied. Figure 12(b) shows absorption and emission
processes where electrons can exploit the resonant density of
states for different bias voltages. Red and blue lines indicate

FIG. 11. (Color online) Vibrational configurations for the modes
discussed in Fig. 10.

FIG. 12. (Color online) (a) density of states for the device region.
Close to the equilibrium Fermi level, one resonance peak is found.
(b) absorption (red arrow line) and emission (blue arrow line) pro-
cesses taking place via the resonant peak as the bias voltage increases.

absorption and emission processes, respectively. For a very
small bias none of the electrons can access the resonant peak, as
shown in Fig. 12(b), 1. When the bias increases, the absorption
process using the resonant peak starts to take place, but the
electrons participating in the emission process cannot reach the
resonance [see Fig. 12(b), 2]. Therefore, the absorption rate Aλ

becomes enhanced, so it may lead to a decrease in vibrational
populations. For higher biases such that the resonant peak
is located between the left and the right chemical potentials,
the emission process using resonance is activated, leading to
enhanced emission rates, as shown in Fig. 12(b), 3. When the
bias increases even more, another resonant emission process
becomes possible, as shown in Fig. 12(b), 4, while the resonant
absorption process at which the electrons are reflected back to
the left lead is prohibited due to Pauli blocking. As a result, the
emission rate is enhanced more in comparison to the absorption
one, and vibrational populations may increase again in this
bias range. As an illustratative example, Fig. 13(b) shows the
absorption and emission rates for mode 156. One can clearly
observe that the bias voltages for which the absorption and
emission rates get enhanced are different: The slope of the
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FIG. 13. (Color online) Absorption (red dashed line) and emis-
sion (blue solid line) rates for (a) vibrational mode 1 (low-energy
mode) and (b) 156 (high-energy mode)

absorption rate curve first increases around 0.4V but then
decreases at 0.7V. By contrast, the emission rate linearly
increases up to 0.8V, and at a bias larger than 0.8V its slope also
increases. The difference in bias voltages at which absorption
and emission rates become enhanced results in the cooling
behavior observed in the intermediate bias range.

For low-energy modes whose energies are much lower
than the broadening of the resonant peak, the intermediate
cooling regime may not appear distinctly. For example, see
in Fig. 13(a) the absorption and emission rates for mode 1.
Unlike mode 156, the absorption and emission rates show
quite similar dependences on the bias voltage, implying that a
cooling behavior is not observed.

Finally, not every high-energy mode will necessarily go
through a cooling phase, since vibrational populations are
determined by the interplay of absorption, emission, and decay
rates. When the decay rate γλ is higher than the difference
between the absorption and the emission rates Aλ − Eλ, the
steady-state solution can be approximated as

Nλ = nB(h̄ωλ)γλ + Eλ

γλ + Aλ − Eλ

≈ nB(h̄ωλ) + Eλ

γλ

. (27)

In this case, the dependence of the vibrational population on
the bias voltage becomes similar to that of the emission rate,
and a cooling behavior does not appear.

Finally, we would like to stress the importance of mass
ratios between the conducting molecule and electrodes. As
pointed out above, since the band width of bulk phonons in
the electrodes gets smaller as the atomic mass of the elec-
trodes increases, a molecular junction connected to electrodes
consisting of heavier atoms will have fewer opportunities to
thermalize. To demonstrate this mass ratio effect, we calculate
the total vibrational energy stored in the vibrating region by
increasing the mass of the atoms in the carbon electrode, to
model, e.g., silicon or germanium. As shown in Fig. 14, the
junction with a higher mass ratio has more vibrational energy,
and a higher probability of breaking down due to heating
effects.

Before concluding, we note that in this work, electronic
structure properties have been calculated at equilibrium, while
the finite-bias effect is considered only in the transport
calculations based on the NEGF formalism. This approach
is valid in a low bias regime. In contrast, in a high bias regime,
the finite bias could affect the electronic-structure properties
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FIG. 14. (Color online) Total vibrational energy stored in the
vibrating region, as a function of the mass of the electrode atom. Solid
(black) line, carbon; dashed (red) line, silicon; dot-dashed (blue) line,
germanium.

such as charge densities, electron-vibration interactions, and
vibrational frequencies. In fact, Ref. 83 investigated the
finite-bias effect on the electron-vibration coupling strengths
and vibrational spectrum, showing that the electron-vibration
coupling strengths can be drastically enhanced (for the system
studied) above 0.5 V.

V. SUMMARY

In this work we have described a first-principles quantum
approach based on MLWFs to calculate inelastic trans-
port properties in the presence of electron-vibration inter-
actions. In our implementation, calculations are performed
using the plane-wave DFT and DFPT QUANTUM-ESPRESSO

distribution55 and transformation into a MLWF representa-
tion and the construction of Hamiltonians in the Wannier
basis using WANNIER90.52 Inelastic transport properties such
as differential conductance and nonequilibrium vibrational
occupations have been calculated within the Meir-Wingreen
transport formalism based on the NEGF. In particular, the
electron-vibration self-energy is computed using either the
SCBA or the LOPT. We have tested our implementation by
applying it to carbon-based molecular junctions: a benzene
molecule connected to cumulene chains and a (3,3) CNT–
benzene–(3,3) CNT junction.

In the first system we have found differential conductance
changes at bias voltages corresponding to the vibrational
energies of active modes. Using a multieigenchannel analysis
based on scattering theory, we have identified that out-of-plane
and in-plane vibrational motions lead to conductance jumps
and drops, respectively. This analysis of the simultaneous
occurrence of conductance jumps and drops is consistent with
recently reported calculations.41
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In the second application, where cumulene wires are
replaced with realistic CNT electrodes, we have focused on
the decay rates of molecular vibrations and nonequilibrium
vibrational populations. Low decay rates can be rationalized
by examining the band width of bulk phonons that molecular
vibration can resonantly access and the localization of molec-
ular vibrations. Also, we have argued that a higher mass ratio
between the conducting molecule and electrodes can enhance
local heating and ultimately lead to junction breakdown.
Thus, organic molecular junctions connected to carbon-based
electrodes or lighter metals may be more stable in comparison
to heavy-metal electrodes (of course, the strength of the
anchoring chemical bonds will also play a role). We have
also observed that nonequilibrium vibrational occupations for
high-energy modes can be cooled down in an intermediate bias

regime, which may be understood in terms of a resonant state in
the device region. This observation agrees well with resonant
cooling reported in other first-principle calculations.82

These applications and detailed analysis, in very good
agreement with other first-principle studies, confirm that our
first-principles approach to inelastic transport with plane-wave
basis and Wannier functions can be applied in all generality to
other realistic nanoscale junctions.
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