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Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper
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Surface energies are important for predicting the shapes of nanocrystals and describing the faceting and
roughening of surfaces. Copper surfaces are of particular interest in recent years since they are the preferred
surfaces for growing graphene using chemical vapor deposition. In this study we calculate the surface energies
of copper for the three low-index facets (111), (100), and (110) and one high-index facet, (210), using density-
functional theory with both the local-density approximation and various parametrizations of the generalized-
gradient approximation to the exchange-correlation functional. To assess the accuracy of the different functionals,
we obtain the average surface energies of an isotropic crystal using a broken-bond model. We use this method,
which can be generalized to other crystal structures, to compare calculated surface energies to experimental surface
energies for fcc crystals. We find that the recent exchange-correlation functionals AM05 and PBEsol are the most
accurate functionals for calculating the surface energies of copper. To determine how solvents affect the surface
energies of copper, we perform calculations using a continuum solvation model. We find that aqueous solvation
changes the overall magnitude of the surface energies only slightly but leads to more isotropic surface energies.
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I. INTRODUCTION

The surface energy of solids is of fundamental importance
for describing a range of phenomena involving the shape
of solids and their interaction with their surroundings. For
example, it is possible to model crystal growth and predict
resulting shapes with available data on surface energies.1

Copper surfaces are of great importance because of their
role as the preferred surface for chemical-vapor deposition
(CVD) growth of graphene,2 resulting in high-quality single-
layer graphene with large grain sizes.3 The main limiting
factors for CVD graphene growth on copper surfaces are the
facets on which graphene is grown and the roughness of the
surface.4,5 To optimize and control the growth of graphene
for increased grain sizes, it is important to understand the
surface faceting of the copper substrate. Copper has been
shown to form steps of alternating facets,6 which could be
used to control the growth of graphene to create strips of
graphene nanoribbons instead of large sheets, which presents
an important step towards the creation of a variety of new
graphene devices.7

The first step in understanding and describing the shapes
and faceting of copper surfaces, and therefore allow for greater
control over the growth of graphene, is to obtain accurate
surface energies. The direct experimental determination of
surface energies is limited because the most reliable methods
do not account for the anisotropy of the energy of the facets.
Additionally, the presence of solvents or surface adsorbates is
difficult to control and decreases surface energies by unknown
amounts.8,9 Advancements in computational methods enable
ever more accurate calculations of the energies of solids and
have been used to calculate the surface energy of copper.10

However, comparisons of the accuracy of various exchange-
correlation functionals for copper surface energies, estimates
of the effect of solvation, and a detailed assessment with
available experimental data are still lacking.

In this work we calculate the surface energy of the three
low-index (100), (110), and (111) facets and the facet with the

highest energy, the high-index (210) facet of copper,11–13 using
density-functional theory (DFT) for various approximations
to the exchange-correlation functional. To compare with
experimental data, we use a broken-bond model to estimate
the average surface energy of a spherical copper crystal, which
we find to be approximately equal to the surface energy of the
(110) facet for fcc crystals. This novel approach enables us to
compare computed surface energies to experimental surface
energies. We find that two recently developed generalized-
gradient approximations (GGAs; AM05 and PBEsol) per-
form significantly better than the local-density approximation
(LDA) and previous GGAs (PBE and PW91). To determine
how solvents affect the surface energies of copper, we perform
calculations using a polarizable continuum model for the
solvent.14–16 We find that solvation in water changes the overall
magnitude of the surface energies only slightly but results in
more isotropic surface energies.

The organization of this paper is as follows. Section II
presents the details of the computational methods. Section III
reports the results for the bulk and surface calculations for
the different functionals under investigation. In Sec. IV, a
broken-bond model is fit to the calculation. The model is used
to estimate the surface energy averaged over all high-index
surfaces to compare the results of various exchange-correlation
functionals to available experimental measurements. Finally,
Sec. V summarizes the work.

II. COMPUTATIONAL METHODS

Our calculations are performed using DFT17 with a plane-
wave basis set and the projector-augmented wave method as
implemented in the Vienna ab initio simulation package18,19

(VASP). A cutoff energy of 460 eV for the plane-wave basis set
is used throughout all calculations. We calculate the surface
energies of copper using the LDA20 and various forms of
the GGA to the exchange-correlation functional. The GGA
exchange-correlation functionals we test are PW91,21 PBE,22
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and the more recent AM0523 and PBEsol.24 The AM05 and
PBEsol functionals are specifically designed for surfaces of
materials.

For all functionals we converge the bulk and surface
energies with respect to the k-point mesh and cutoff energy
to ensure the accuracy of our results. We converge the total
energy to less than 1 meV/atom and the surface energy to an
accuracy of about 1%.

For the calculations of the lattice parameter, the cohesive
energy, the bulk modulus, and its pressure derivative we use a
16 × 16 × 16 k-point mesh. The cohesive energy is obtained
as the energy difference between the relaxed bulk phase and a
spin-polarized atom in a cubic simulation cell with a 10-Å edge
length using the � point. The equilibrium lattice parameter,
a0, the bulk modulus, B, and its pressure derivative, B ′

0, are
obtained by fitting the Birch equation of state to the energy as
a function of volume.25,26

The surface energies are calculated from two calculations
using the same simulation cells, one corresponding to a slab of
seven atomic layers and the second using the same simulation
cell but filled with Cu atoms in the bulk fcc structure. For both
cells we fix the lattice parameter to the relaxed value from the
bulk calculation for the respective functional. For both cells we
use the same 16 × 16 × 1 k-point mesh. The AM05 functional
requires the slightly smaller vacuum spacing of 7 Å to obtain
self-consistency in the DFT calculations and to overcome
instabilities caused by the large vacuum region required for
surface energy calculations.34 For all of the other functionals
for all facets we use a vacuum spacing of at least 10 Å to
minimize the interaction between the slabs. The surfaces are
allowed to relax, with the middle layers held fixed and the top
and bottom two layers allowed to move. Figure 1 shows the
convergence of the surface energy with respect to the number
of layers for the (111) facet using the PBE functional. As shown
in Fig. 1, increasing the number of bulk copper layers from 7

4.2 8.40 12.6 16.8 21.0 25.2
Distance (   )

FIG. 1. (Color online) An example of the convergence of the
surface energy per atom of a Cu (111) surface with respect to the
number of slab layers and vacuum layers using the PBE functional.
Seven layers of vacuum are used for the slab convergence test,
while seven slab layers are used for the vacuum convergence test.
The surface energy per atom converges very rapidly, with almost
no change after two vacuum layers, indicating minimal interlayer
interaction if just two or more vacuum layers are used. The surface
energy converges very rapidly as well, and changes by only about 1%
when the number of layers is increased from 7 to 11.

Cu(111) Cu(100) Cu(110) Cu(210)

FIG. 2. (Color online) Unrelaxed (111), (100), (110), and (210)
surface structures of Cu visualized using VMD.27 Geometries are
shown with 7, 8, 11, and 17 layers for the (111), (100), (110),
and (210) surfaces, respectively. These are the geometries used for
surface energy calculations with the PW91, PBE, PBEsol, and LDA
functionals. For the AM05 functional, we used geometries with 9, 11,
13, and 21 layers but the same overall unit cell size to decrease the
vacuum space in order to overcome instabilities caused by the large
vacuum region. At the surface the coordination number is reduced
from 12 to 9, 8, 7, and 6 nearest neighbors for the (111), (100), (110),
and (210) surfaces, respectively. For the second layer of the (110)
surface, the coordination number is reduced to 11 nearest neighbors.
The coordination numbers of the second and third layers of the (210)
surface are 9 and 11. The layer spacing for the (111), (100), (110), and
(210) surfaces is a0/

√
3, a0/2, a0/(2

√
2), and a0/(2

√
5). In general

for a surface (hkl) the spacing is a0/
√

h2 + k2 + l2 if h, k, and l are
all odd and a0/(2

√
h2 + k2 + l2) otherwise.

to 11 changes the surface energy by about 1%. Our results are
similar to previous work by Da Silva et al.10 Figure 2 shows the
unrelaxed surface geometries for all four facets being studied.

To estimate the effect of solvation we implemented a
continuum solvation model14,15 into the VASP code.16 This
model modifies the electrostatic potential of the electrons
and nuclei to account for the polarization of the solvent
molecules due to the electric field from the solute. We employ
a linear polarization model with a permittivity that increases
smoothly from a value of 1 inside the volume of the solute
to the permittivity of the solvent εsolv away from the solute.14

The modified Hartree potential is obtained from the modified
Poisson equation

∇ · (ε(r)∇φ(r)) = −4πn(r), (1)

where n(r) is the charge density and the permittivity ε(r) is
assumed to be a continuous function of the valence charge
density of the solid. The mean-field solvent potential through
the density dependence becomes itself a functional of the
electron density and is calculated self-consistently. Using this
approach we calculate how the presence of water with a relative
permittivity of εsolv = 80 at 20 ◦C affects the surface energies
of the Cu facets.

III. RESULTS

A. Bulk properties

Table I compares the calculated bulk properties for the
PW91, PBE, AM05, PBEsol, and LDA functionals with
experimental data that was corrected by Csonka et al. for zero-
point phonon effects.28 Similar numbers have been reported
by others, such as by Kambe35 for the lattice constant (3.60 Å)
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TABLE I. Comparison of our calculated bulk properties of copper
with experiments. The table includes the equilibrium lattice parameter
a0, the bulk modulus B0, the pressure derivative of the bulk modulus
B ′

0, and the cohesive energy Ecoh for the functionals PW91, PBE,
AM05, PBEsol, and LDA (listed in the same order as in Table II, the
order of increasing surface energy). The numbers in boldface are those
which are closest to the shown experimental values. Our calculations
of B ′

0 are within the range of those measured experimentally.

PW91 PBE AM05 PBEsol LDA Expt.

a0 (Å) 3.646 3.649 3.577 3.579 3.532 3.595a

B0 (GPa) 134.6 133.2 156.2 160.4 177.7 142a

B ′
0 4.678 4.500 4.954 5.010 5.254 3.91–5.8b

Ecoh (eV/atom) 3.517 3.503 3.783 4.046 4.548 3.524a

aFrom Ref. 28.
bRange of experimental values from Refs. 29–33.

and cohesive energy (3.52 eV/atom) and by Chelikowsky
and Chou36 for the lattice constant (3.50 Å), bulk modulus
(142 GPa), and cohesive energy (3.50 eV/atom). We find, as
is often observed, that the GGA functionals PW91 and PBE
slightly overestimate the equilibrium lattice constant, while
AM05 and PBEsol slightly underestimate it. We find that the
calculated equilibrium lattice constants from the AM05 and the
PBEsol functional agree slightly better with experimental data
than those from the PW91 or the PBE functional. The LDA
functional underestimates the equilibrium lattice constant and
appears to be the least accurate functional of the ones studied.
For the bulk modulus, the GGA functionals PW91 and PBE are
the most accurate. The calculated pressure derivatives of the
bulk modulus of copper, B ′

0, for all functionals are well within

the wide range of experimental values of 3.91–5.8 reported in
the literature.30–33

B. Surface properties

Table II reports the calculated surface energies for
the three low-index facets (111), (100), and (110) and
the high-index facet (210). For all of the functionals,
γ111 < γ100 < γ110 < γ210, which is consistent with the
predictions of the broken-bond model described in Sec. IV.
The GGA functionals, PW91 and PBE, provide the lowest
surface energies, while the new GGA functionals, AM05 and
PBEsol, result in higher surface energies. The LDA functional
predicts the highest surface energies for all four facets. Table II
also shows the ratio of the surface energies of the (hkl) facet
relative to the lowest energy (111) facet. These ratios are
a measure of the anisotropy of the surface energy and are
almost the same for all of the tested functionals. Also shown
are the percentage relaxations �ij , defined as the percentage
change in the distance between layer i and layer j (where 1 is
the top layer) in the relaxed and unrelaxed configuration. The
percentage relaxations �12 and �23 are similar for all of the
functionals we tested. For all functionals, the relaxations occur
in the same direction as is experimentally observed, with the
exception that AM05 predicts a contraction for �23 for all of
the facets, while expansions are observed experimentally. The
calculated relaxations are in general somewhat larger than
measured, particularly for the top layer relaxation �12.

Figure 3 and Table II compare the calculated surface
energies to the average surface energies extrapolated from
high-temperature measurements. Tyson and Miller estimate
a value of 1.790 J/m2 for the surface energy of copper.9

TABLE II. Comparison of the calculated surface energies and relaxations of copper to experimental values. Listed are the surface energies
γhkl in units of both J/m2 and eV/atom for the three low-index (111), (100), and (110) facets and the high-index (210) facet for the functionals
PW91, PBE, AM05, PBEsol, and LDA. Functionals are listed in order of increasing surface energy. Surface energy anisotropy ratios relative to
the lowest energy (111) surface, γhkl/γ111, are also listed. The ratios are taken using the surface energy per area. These ratios are very similar
for the different functionals. Also listed are the percentage relaxation values of the first and second layers (�12) and of the second and third
layers (�23) for each facet and functional. A negative value indicates that the space between the layers contracted, while a positive number
indicates that the space between the layers expanded.

Surface PW91 PBE AM05 PBEsol LDA Expt.

γ111 J/m2 (eV/atom) 1.273 (0.455) 1.289 (0.461) 1.506 (0.518) 1.609 (0.554) 1.760 (0.591)
γ100 J/m2 (eV/atom) 1.442 (0.595) 1.458 (0.602) 1.672 (0.664) 1.806 (0.718) 1.981 (0.768)
γ110 J/m2 (eV/atom) 1.532 (0.894) 1.551 (0.905) 1.798 (1.010) 1.913 (1.076) 2.096 (1.149) 1.790,a 1.825b

γ210 J/m2 (eV/atom) 1.557 (1.438) 1.578 (1.456) 1.854 (1.647) 1.954 (1.738) 2.141 (1.855)
γ100/γ111 1.132 1.131 1.110 1.123 1.126
γ110/γ111 1.203 1.204 1.194 1.189 1.191
γ210/γ111 1.223 1.224 1.231 1.214 1.216

(111) �12 (%) −1.00 −0.78 −1.37 −0.89 −1.16 −0.3 to −0.7c

�23 (%) +0.01 +0.33 −0.15 +0.29 +0.00
(100) �12 (%) −3.05 −2.77 −3.76 −2.73 −2.91 −1.0 to −2.1c

�23 (%) +0.96 +0.95 −0.20 +0.86 +0.85 +0.45 to +2.0c

(110) �12 (%) −10.26 −9.73 −10.21 −9.70 −10.15 −5.3 to −10.0c

�23 (%) +3.57 +3.38 +2.49 +3.24 +3.37 +0.0 to +3.3c

(210) �12 (%) −17.33 −16.58 −16.01 −15.85 −16.91
�23 (%) +0.04 +0.07 −2.19 −0.60 −0.29

aAverage surface energy extrapolated to T = 0 from liquid surface tension data of Tyson and Miller9 (in J/m2).
bAverage surface energy extrapolated to T = 0 from liquid surface tension data of Boer37 (in J/m2).
cExperimental numbers compiled by Wan et al.38 from various sources.
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FIG. 3. (Color online) Comparison of the surface energies for
various functionals with the range of experimental values of 1.790–
1.825 J/m2.9,37 The measured values correspond to an average surface
energy of copper, which is expected to be bound between the lowest
and the highest surface energies, γ111 and γ210. Our analysis using
the broken-bond model in Sec. IV shows that the average surface
energy should be close to γ110, indicating that the AM05 and PBEsol
functionals are the most accurate methods studied here.

Their approach is based on available experimental data for the
liquid surface tension, γLV, which is considered more reliable
than direct experimental measurements of the surface energy
because it is difficult to control for surface contaminants, which
decrease the surface energy by unknown amounts. Tyson and
Miller derive an expression for the solid surface energy at the
melting point, γ (Tm), as a function of the liquid surface tension,
γLV, and the solid-liquid interfacial energy, γSL, of the metals
and determine the solid surface energy using an estimate for
the ratio γSL/γLV. They estimate that γ (Tm) ≈ 1.18γLV for all
metals and extrapolate the surface energy to low temperatures
using an estimate for the surface entropy. This results in
γ (T ) ≈ γ (T = 0) + kBT /A, where A ≈ 1.162N

1/3
A V

2/3
m (kB

is the Boltzmann constant, NA is Avogadro’s number, and
Vm is the molar volume). For copper, they calculate that
γ (Tm) is 1.566 J/m2 and RTm/A is 0.224 J/m2, leading to a
surface energy of copper at zero temperature of 1.1790 J/m2.
The estimate by Tyson and Miller provides an average surface
energy9 and does not provide any information about the
anisotropy of the surface energies. This evidently hinders a
direct comparison with our calculations.

In Fig. 3 we compare our calculated surface energies with
the average surface energy obtained by Tyson and Miller9

and a second experimental value of 1.825 J/m2 by Boer,37

which also approximates the surface energy using the liquid
surface tension of copper. The average surface energy is
expected to fall between the lowest and the highest surface
energies, γ111 and γ210. The PW91 and PBE functionals
predict surface energies for all facets below the experimental
values, so they evidently underestimate the surface energy of
copper. For LDA, the experimental values fall near the lowest
energy surface, γ111. The average surface energy would be
expected to be somewhat higher, within the range of surface
energies between γ111 and γ210, and indeed is expected to
fall near γ110 as we show with the broken-bond model in

FIG. 4. (Color online) Shape of copper nanocrystal predicted
by the Wulff construction using the surface energies calculated by
PBEsol (from Table II). The Wulff construction predicts very similar
nanoparticles for the other functionals under investigation. Only the
two lowest energy facets, (111) and (100), are predicted to occur.
Atoms are colored by the number of nearest neighbors [nine for
atoms on the (111) surface and eight for atoms on the (100) surface].
The nanocrystal is visualized using the AtomEye package.39

Sec. IV. So LDA evidently overestimates the surface energy
of copper. For AM05 and PBEsol, the experimental value
is right in between the calculated γ111 and γ210, indicating
that the AM05 and PBEsol functionals are the most accurate
functionals in our study. For a quantitative comparison with
the experimental data, we estimate the average surface energy
using the calculated surface energies of the four facets by a
broken-bond model in Sec. IV.

Figure 4 shows the predicted shape of a copper nanocrystal
from the Wulff construction using the surface energies from
the PBEsol functional. The predicted shapes for the other func-
tionals are very similar, as expected from the nearly identical
anisotropy ratios calculated with the different functionals as
reported in Table II. Only the (111) and (100) facets, the lowest
energy facets, are predicted to show on the nanocrystal. The
shape is consistent with that predicted by Duan et al. for clean
surfaces.40 In their paper they predict that the shape changes
significantly for different levels of oxygen adsorption on the
surface.

To study how the environment affects the surface energies
and shape of nanocrystals, we determine the change in energy
of the copper surfaces when the material is solvated in water.
Table III lists the resulting solvation energies. The presence of
water reduces the surface energies by small amounts, ranging
from 15 to 85 meV/atom. Interestingly, solvation reduces

TABLE III. Effect of aqueous solvation on the surface energy of
copper facets.

Facet

(111) (100) (110) (210)

Solvation energy
J/m2 −0.045 −0.053 −0.083 −0.095
eV/atom −0.015 −0.021 −0.047 −0.085
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the energy of the higher energy facets by a larger amount,
effectively reducing the anisotropy of the surface energies.
This can be understood since the electrostatic screening is
more effective for Cu atoms with lower coordination numbers.

IV. AVERAGE SURFACE ENERGY AND
THE BROKEN-BOND MODEL

To compare our calculated surface energies with estimates
based on high-temperature measurements of the average
surface energy, we calculate the average surface energy of
a spherical copper crystal using a broken-bond model. The
broken-bond models estimate the surface energy of a crystal
based on the number of broken bonds. In this section we start
with a surface energy expression from Mackenzie et al.41

to derive an expression for the average surface energy. We
start by using their approximation that the surface energy
per area is given by the number of broken bonds per surface
area multiplied by the energy associated with each bond, and
average the expression over a unit sphere.

A. First-nearest-neighbor approximation

The surface energy as a function of the Miller indices for
an fcc crystal according to the broken-bond model counting
only nearest neighbors is

γh = γhkl = Eb

2�|h| h · (2,1,0), (2)

where Eb = Ecoh/12 is the energy per bond (using the
coordination number of 12 for fcc), � = a2

0/4 is the volume
per atom in the primitive unit cell for an fcc crystal divided by
the lattice constant a0, and h/|h| is the surface normal vector
for the facet (hkl),

h
|h| = (h,k,l)√

h2 + k2 + l2
. (3)

It is important to note that Eq. (2) only holds assuming the
following relationship between the Miller indices:

h � k � l � 0. (4)

The motivation for these equations and relations can be found
in Mackenzie’s original paper.42

Some important trends of the surface energy can immedi-
ately be gleamed from Eq. (2). First, by taking the gradient
of this equation with respect to (h,k,l) and setting it equal
to 0, it can be shown that h = (2,1,0) gives the maximum
surface energy and therefore γ210 provides an upper bound
on the average surface energy. Various theoretical studies
corroborate that the (210) facet exhibits the highest surface
energy of any facet for fcc copper.11–13 Hence as mentioned
earlier, the experimental estimate of the surface energy must
fall within the range of calculated surface energies between
γ111 and γ210.

Next, we examine the predicted anisotropy of the surface
energies relative to the lowest energy (111) surface,

γh

γ111
=

√
3

3

(2h + k)√
h2 + k2 + l2

. (5)

These ratios determine the shape of the copper nanocrystals
and are independent of the cohesive energy. Figure 5 and
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FIG. 5. (Color online) Comparison of the prediction of the
broken-bond models for the anisotropy ratios relative to the (111)
surface energy γh/γ111 with the calculation using the PBEsol
functional. Both models describe the trend of the surface energies
well, with the second-nearest-neighbor broken-bond model being
most accurate.

Table IV show that the parameter-free prediction of the
first-nearest-neighbor broken-bond model correctly predicts
the trend of the surface energies γ210 > γ110 > γ100 > γ111

and quantitatively agrees within about 4% with the calculated
values for the PBEsol functional.

To compare with the experimentally estimated average
surface energy, we calculate the average surface energy of a
spherical copper crystal, γave, using the first-nearest-neighbor
broken-bond model. For brevity we define a constant,

γ0 ≡ Eb

2�
= Ecoh/12

2a2
0

/
4

, (6)

so that Eq. (2) becomes

γhkl = 2h + k√
h2 + k2 + l2

γ0. (7)

For convenience we use spherical polar coordinates,

h = |h| cos θ cos φ, (8)

k = |h| sin θ cos φ, (9)

l = |h| sin φ, (10)

TABLE IV. Anisotropy ratios relative to the (111) surface en-
ergy, γh/γ111, for the nearest-neighbor and second-nearest-neighbor
broken-bond model compared to the calculated values for the PBEsol
functional. Both models describe the trend of the surface energies
well, with the second-nearest-neighbor broken-bond model being the
more accurate.

1st-nearest-neighbor 2nd-nearest-neighbor
Facet broken-bond model broken-bond model PBEsol

(100) 2√
3

≈ 1.155 1.102 1.123

(110)
√

3
2 ≈ 1.225 1.188 1.189

(210)
√

5
3 ≈ 1.291 1.244 1.214
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where φ is the angle off of the l̂ axis and θ is the angle in the
ĥ-k̂ plane off of the ĥ axis. Equation (7) in polar coordinates
becomes

γ (θ,φ) = [(2 cos θ + sin θ ) sin φ]γ0. (11)

The change to polar coordinates modifies the inequality given
by Eq. (4) to

cos θ sin φ � sin θ sin φ � cos φ � 0, (12)

which leads to the following constraints on θ and cos φ:

0 � θ � π

4
, (13)

0 � cos φ � 1√
csc2 θ + 1

. (14)

The first inequality constraining θ results from cos θ � sin θ �
0 and the second inequality constraining φ results from
sin θ sin φ � cos φ � 0.

To obtain the average surface energy we integrate the
expression for the surface energy given by Eq. (11) over the
section of the sphere given by the above constraints and divide
that by the corresponding surface area of that same section of
the sphere:

γave =
∫ π

4
0 dθ

∫ 1√
csc2 θ+1

0 d(cos φ)γ (θ, cos φ)

∫ π
4

0 dθ
∫ 1√

csc2 θ+1

0 d(cos φ)

. (15)

Evaluating these integrals gives a surprisingly simple result:

γave = π/4
√

2

π/12
γ0 = 3√

2
γ0. (16)

This is a remarkable result because the predicted average
surface energy of a spherical copper crystal is exactly the
same as that predicted by the broken-bond model for the (110)
facet! In short, the broken-bond model accounting only for
nearest-neighbor interactions predicts that γave = γ110 for any
fcc crystal.

The broken-bond model provides a simple way to evaluate
the accuracy of different functionals for the surface energy,
which is to merely compare the experimental surface energy
data to the calculated surface energy of the (110) facet. Table II
and Fig. 3 show that γ110 is closest to the experimental values
for the AM05 and PBEsol functionals, which are the most
accurate methods for calculating the surface energy of copper,
while the PW91 and PBE functionals both underestimate the
surface energies and the LDA functional overestimates them.

B. Second-nearest-neighbor approximation

The broken-bond model can be improved by including
second nearest neighbors, resulting in the surface energies

γhkl = Eb

2�|h|h · [(2,1,0) + (2,2,2) ρ], (17)

where the parameter ρ represents the ratio of the second-
nearest-neighbor bond energy to the first-nearest-neighbor
bond energy, Eb. The value of ρ can be estimated using
calculations for the cohesive energy and one surface energy.

Using the lowest surface energy, γ111, we get

γ111 = (Ecoh/12)

2
(
a2

0

/
4
)√

3
[3 + 6ρ]. (18)

With the values of the PBEsol functional (γ111 = 1.609 J/m2,
Ecoh = 4.046 eV, and a0 = 3.577 Å), we obtain ρ ≈ 0.050.
Figure 5 and Table IV show that including the second nearest
neighbors in the broken-bond model further improves the
agreement of the anisotropy ratios with the calculations.

Following the same steps as in Sec. IV A we obtain the
average surface energy of a spherical copper crystal for the
broken-bond model including second nearest neighbors:

γave =
(

3√
2

+ 3ρ

)
γ0. (19)

The anisotropy ratio for the average surface energy taking
into account second-nearest-neighbor interactions becomes
γave/γ111 ≈ 1.192, which is very close to the anisotropy ratio
for the (110) facet of γ110/γ111 ≈ 1.188. Again, comparing
the surface energy γ110 to the experimental estimate provides
a good measure of the accuracy of different functionals for
the surface energy. Hence, our earlier conclusions for the
accuracy of the different functionals for the surface energies
are unchanged when including second-nearest-neighbor inter-
actions in the broken-bond model, i.e., the PBEsol and AM05
functionals are the most accurate of those studied.

This broken-bond method can easily be generalized. It can
be applied to any fcc material and extended to bcc and other
crystal structures as well by using modified expressions for the
first- and second-nearest-neighbor broken-bond model surface
energies. A comparison with experimental estimates requires
only the calculation of either the cohesive energy or a single
surface energy when using the first-nearest-neighbor approxi-
mation of the broken-bond model. Using the significantly more
accurate second-nearest-neighbor approximation requires as
input two pieces of data, either the cohesive energy and one
surface energy or two surface energies.

V. CONCLUSION

In this study we have calculated the surface energy of
the three low-index facets (111), (100), and (110) and one
high-index facet, (210), of copper for various approximations
of the exchange-correlation functional and compared our
results to reliable experimental estimates. To compare with
experimental data, we have used a broken-bond model to
derive an estimate for the average surface energy of a spherical
copper crystal, which we found to be approximately equal to
the surface energy of the (110) facet for fcc crystals. Using
this approach we compare the computed surface energies to
the experimental average surface energies. We find that the
more recent GGA functionals, AM05 and PBEsol, designed
for bulk and surface calculations, are the most accurate for
calculating the surface energies of copper, while the PW91
and PBE functionals perform better for the bulk modulus
and cohesive energy. The PW91 and PBE functionals yield
surface energies below the experimental values, while the LDA
calculates surface energies that are too high.

All functionals predicted similar percentage relaxations
of the top two layers, which are generally consistent, albeit
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somewhat larger, than the available experimental data. The
surface energy anisotropy ratios for the different functionals
are all very similar and agree with the predictions of the
broken-bond model including both first- and second-nearest-
neighbor interactions. Hence, the shapes of copper nanocrys-
tals predicted by the Wulff construction are essentially the
same for the different functionals.

We determined the effect of solvent on the surface energies
using a continuum solvation model we implemented into the
VASP code. We predict that the presence of water slightly
reduces the overall surface energies of all facets, with larger
reductions observed for the higher energy facets. We hope
that our method of using the broken-bond model to compare
calculated surface energies to the available experimental data
and our approach of determining the effect of solvents on

surface energies using a continuum solvation model will
improve the accuracy of future surface energy calculations.
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