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Transition between direct and indirect band gap in silicon nanocrystals
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Using ground-state density functional theory we study the transition from indirect to direct band gap in
hydrogen-terminated silicon nanocrystals (NCs) as a function of decreasing diameter. The studied range, from
1.0 to 4.6 nm diameter of nanocrystals, with spherical and Wulff-shape NCs, covers the transition from nano- to
bulk regime. A change in the symmetry of the lowest unoccupied state as a function of decreasing NC diameter
is observed, gradually increasing the oscillator strength of transitions from the highest occupied to the lowest
unoccupied state. Real space and Fourier space characteristics of highest occupied and lowest unoccupied states
are explored in detail and linked to a smooth transition from nano- to bulk regime.
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I. INTRODUCTION

Silicon is among the most important materials in optoelec-
tronic devices, such as photodetectors and photovoltaic cells.
However, the use of bulk silicon, as an active material in light
emitting devices, is limited because of its indirect nature of
the electronic band gap. This disadvantage can be overcome
by structural manipulation at the nanoscale. The discovery
of photoluminescence from porous silicon1 confirmed that by
confining the lateral dimensions silicon can emit light. Since
then, a great interest had been devoted to the study of silicon
nanocrystals, and their fundamental physical properties.

The nanocrystals (NCs) exploit effects of quantum
confinement2,3—a change of the electronic structure of a
system, when some of its dimensions become comparable to
wavelengths of electrons in the sample. At these scales the
band gap becomes wider and the absorption is blue-shifted, as
the size is reduced. This increase of the Si band gap shifts it to
the visible spectrum, and at the same time, the indirect nature
of the gap undergoes a transformation. For an isolated
nanocrystal there are no Bloch states and k vectors, since peri-
odic boundary conditions are absent, therefore the notion of an
indirect band gap has a different meaning. As already seen in
previous works4–7 and also detailed below, the HOMO-LUMO
gap (also called Kohn-Sham gap in literature) and the onset
of optical absorption do in general occur at different energies,
even in isolated NCs. This is the NC analog of the indirect
band gap observed in bulk Si. Qualitatively, the widening of
the gap can be understood as a narrowing of the bands, when
the size of the system is reduced from bulk towards a single
atom. As a consequence, if the center of the band remains
approximately at the same energy, the distance between the
edges of occupied and unoccupied bands becomes larger.

Semiempirically, the NCs are often modeled as a Si
crystal with superimposed infinite spherical potential well8

employing the Luttinger model Hamiltonian9 and effec-
tive mass approximation.10 More recently, a number of
investigations employed electronic structure calculations at
various levels of sophistication, ranging from tight-binding
methods,7,11,12 empirical pseudopotentials,13 via density func-
tional theory4–6,14–16 (DFT), to the GW approximation com-
bined with Bethe-Salpeter equation (BSE) or time-dependent
DFT17–20 and diffusion Monte Carlo calculations (DMC).21

These methods have generally confirmed the quantum confine-
ment on an ab initio level and provided valuable insight into the
electronic structure and optical properties, although, inevitably
the GW, BSE, and DMC methods were limited to rather small
Si clusters (<1.5 nm), so that details of the transition from
nano- to bulk regime were not accessible.

In this study we turn our attention to the transition from
the indirect band gap, observed in the bulk, towards a direct
gap, seen in small NCs, and attempt to provide a microscopic
explanation by means of ground-state DFT calculations of
the electronic structure and absorption spectra. Although we
perform only ground-state DFT calculations, it was found that
the cancellation of many-body effects and the excitonic effects
give rise to DFT HOMO-LUMO gaps comparable with the ex-
perimental optical gaps,5,12,21 although these effects go beyond
the main interest of our study. Previously, Trani et al.7 used
tight-binding methods to interpret this behavior of the band
gap in Si NCs in terms of increasing localization of the highest
occupied molecular orbital (HOMO) level in k space around
the � point, and localization of the lowest unoccupied
molecular orbital (LUMO) level around the k point
2π
a

(0.83,0,0), as the diameter of the nanocrystal increases.
Furthermore, Weissker et al.5 showed, using DFT-LDA,
that with increasing size of the NCs, the tail in the energy
dependence of oscillator strength is becoming longer, which
has been assigned to development of bulklike properties. We
extend these studies by a detailed investigation of HOMO and
LUMO wave functions.

Structure of this manuscript is the following: In Sec. II
we introduce our structural models for Si NCs—a spherical
model and two polyhedral structures with different planar
terminations. We analyze the influence of NC shape on
basic characteristics, such as cohesive energy, valence band
width, and general shape of density of states. In Sec. III we
discuss in detail the HOMO-LUMO and optical absorption
gaps and their correlation with position-resolved electronic
structure (surface or interior of NCs). In Sec. IV we inspect
the spatial characteristics of highest occupied and lowest
unoccupied eigenstates, HOMO and LUMO, both in real and
reciprocal space. These provide an explicit picture of the
gradual development of the bulk regime. Finally, concluding
remarks are summarized in Sec. V.
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II. STRUCTURAL MODELS OF SILICON NANOCRYSTALS

We have analyzed the Si NCs of diameters 1.0 nm up
to 4.6 nm using the pseudopotential DFT package SIESTA,22

which uses real space three-dimensional (3D) grid to appro-
priate the real space integrals, charge densities and potentials,
and numerical atomic orbitals allowing for very efficient yet
reliable calculations. The fineness of the grid is governed by the
plane-wave cutoff. We have used plane-wave cutoff of 160 Ry,
which gives converged energies and DOS for bulk silicon.
The basis size for Si atoms was single ζ with polarization
orbitals (SZP) and for hydrogen (H) double ζ . Since the main
interest of our study are the Si NCs, and their properties,
thus we consider that H does not take an active part in the
studied properties. However, we have performed benchmark
calculations for small Si clusters, using DZ and SZP for H
and SZP for Si, and we had seen that there is no significant
difference in the band gaps for a particular cluster, when DZ or
SZP basis is used for H. In addition, the gain in computational
efficiency, by excluding polarization functions, is significant,
especially for the bigger NCs. Furthermore, the results of the
SIESTA calculations with SZP and DZ basis sets for Si and H,
respectively, were cross-checked with the WIEN2K package,23

both in the bulk regime and for the smallest considered Si NC
of diameter 1.0 nm. Good agreement was observed for states
up to ∼7.5 eV above the Fermi level.

To see how the shape of the Si NCs affects the electronic
properties, and whether there is any particular shape that
the Si NCs would favor energetically, we tested three struc-
tural models—spherical and two types of polyhedral Wulff
structures.24 The spherical NCs are made by cutting out a
sphere from bulk Si. The Wulff-shaped NCs are made by
cutting along {110} planes or {100} and {111} planes in bulk
Si. All Si atoms with only one Si neighbor were removed and
the surface was passivated with hydrogen atoms. The volume
of each structure is calculated as the volume of a convex
hull drawn around the structure. The diameter of the NCs is
calculated as a diameter of a sphere that has the same volume
as the NCs’ structure. Shown on Fig. 1 are the ball models of
relaxed NCs. In Table I the diameters of relaxed NCs, and the
number Si and H atom in the NCs are summarized.

The atom positions were relaxed by SIESTA for the whole
range of NC shapes and sizes, until all forces on the atoms
were lower than 0.04 eV/Å. The importance of the structural
relaxation for Si NCs was pointed out in Ref. 6 for NCs
of smaller sizes, demonstrating that an order of valence

(b) (c)(a)

FIG. 1. (Color online) Ball models of relaxed Si NCs: (a) spheri-
cal, (b) Wulff {110}, and (c) Wulff {100}/{111} structural models.

TABLE I. Diameter (in nanometers), and number of silicon and
hydrogen atoms in Si NCs.

Spherical
Wulff structures

structures {110} {100}/{111}
d (nm) Si H d (nm) Si H d (nm) Si H
1.0 29 36
1.5 87 76 1.5 87 76 1.1 35 36
1.9 175 116 2.4 329 172 1.8 147 100
2.5 389 196 2.8 555 252 2.5 377 196
3.1 705 300 3.3 795 300 3.2 765 324
3.5 1087 412 4.1 1213 412 3.8 1351 484
4.2 1863 604 4.6 2320 660 4.6 2355 676

and conduction states may change as a result of structural
relaxation.

For each of the relaxed structures we have calculated
normalized cohesive energies as a difference between the total
energy of an NC and the sum of energies of free Si and H
atoms, of which the NC consists. The cohesive energies were
normalized per atom using the following equation:

Ec = E(NC) − ∑
i Ei(free) · Ni

N
,

where the summation is over every atom type i, E(NC) is the
total energy of the NC, Ei(free) is the energy of a free atom,
and Ni and N are the number of atoms of type i and the total
number of atoms, respectively. Differently from the bulk, in
an NC there is surface on which the atoms have less than four
silicon neighbors, which will cause lowering of the cohesive
energy. This lowering of the cohesive energy is expected to
depend on the surface area, as well as on the number of the
fourfold coordinated Si atoms, i.e., it will depend on the surface
to volume ratio. Having in mind that the NC’s surface is not
perfect, and there are differently coordinated silicon atoms
on it, the cohesive energy is expected to follow a power-law
function of the following form:

Ec(d) = Ec,0 − A

dB
, (1)

where Ec and Ec,0 are the normalized cohesive energy of the
NC and of the bulk Si, both in eV, d is the diameter of the NC
in nm, and A, B are parameters, which depend on the used
exchange and correlation potential, LDA or GGA (the values
for A and B are given in Fig. 2). Regardless of the shape of
the NCs, Wulff-shaped or spherical NCs, all follow a universal
function, with average accuracy of ∼0.35%. This shows that
when the cohesive energies are considered, any of the three
structural models can be used as a model for Si NCs. However,
our interest is in the changes in the band gaps with the size of
the Si NCs, thus further analysis of the electronic properties
of the NCs is needed to support the previous observation.

To see how the electronic properties of the Si NCs depend
on the structural model and the size of the NCs, we have
calculated the density of states (DOS) for all of the relaxed
NCs. Figure 3 shows GGA calculations of the DOS of bulk
silicon and silicon NCs with different shapes (spherical and
Wulff structures), as a function of the diameter of the NCs. The
DOS curves are aligned so that the top of the valence band (VB)
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FIG. 2. (Color online) Comparison between the cohesive energies
of Si NCs with different shapes (spherical and Wulff structures),
calculated using LDA and GGA. The fitting curves, for the data
calculated with LDA and GGA, is shown with solid red and blue
lines, respectively.

is at 0 eV. Comparing the DOS of NCs with different shapes
one can see that they are very similar to each other. A similar
observation follows from the DOS calculated using LDA (data
not shown).

As can be seen from Fig. 3, the width of the VB is
getting smaller as the diameter of NC decreases. Following the
quantum confinement effect, the narrowing of the VB causes
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FIG. 3. (Color online) Density of states (DOS) of Si NCs with
different shapes (spherical and Wulff structures), calculated using
GGA. The DOS are shown as a function of diameter of the NC.
The spherical, {110} Wulff shapes and {100}/{111} Wulff shapes are
shown in blue, red, and green solid lines, respectively. The DOS of
bulk silicon is shown in violet color as the top-most curve.
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FIG. 4. (Color online) Valence band width of NCs with different
shape (spherical and Wulff-shape structures), calculated using LDA
and GGA. The fitting curves, for the data calculated with LDA and
GGA, is shown with solid red and blue lines, respectively.

widening of the gap,25 which can also be seen on Fig. 3. To see
if the dependence of the VB width is similar to the one of the
HOMO-LUMO gaps, we have fitted the VB width using the
same power-law function as in the case of band gaps reported
by Delerue et al.11—see the discussion about HOMO-LUMO
gaps in Sec. III for more details. Figure 4 shows the VB width
fit for both LDA and GGA, together with the valence band
width of bulk Si (VB0) and the fit parameters A,B. It is
worth noting that the cohesive energies calculated using LDA
and GGA start to differ more for bigger NCs, whereas the
difference in the VB widths calculated using LDA and GGA
is almost the same throughout the studied NC diameters. This
means that although LDA and GGA perform differently when
total energies are in question, when it comes to the electronic
properties, both exchange correlation potentials give similar
results.

Comparing the size of the HOMO-LUMO gaps from NCs
with different shapes, it is noticeable that they are very similar
to each other. This observation, together with the correlation
between the cohesive energies, and the similarities in the
DOSes, shows that the spherical NCs are a suitable structural
model of Si NCs. This is a good enough reason to use the
spherical NCs in our further analysis of electronic structure of
states around the band gap.

III. FUNDAMENTAL AND OPTICAL ABSORPTION GAP

Following the effective mass approximation the band gaps
of Si NCs should follow a d−2 law. Delerue et al.11 have
shown that using a better description of the bands will cause
lowering of the exponent, reporting a −1.39 exponent, which
is getting bigger for bigger NCs, and eventually approaching 2
at infinitely big NCs. To see if our calculated HOMO-LUMO
gaps, extracted from the DOS, show similar behavior, we have
used the same power-law function to fit them. From our fits, see
Fig. 5, it is evident that the dependence on the NC’s diameter of
the HOMO-LUMO band gap, is well represented by the power-
law function, although with smaller exponent. Comparing the
fitting curves for the HOMO-LUMO gaps and the VB width,
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it is noticeable that the HOMO-LUMO gaps are changing
more rapidly with the diameter than the VB width, thanks
to the larger magnitude of parameter A. This shows that the
HOMO-LUMO gap does not depend solely on the VB width,
but also on the changes in the conduction band width.

Here we should point out that in this work all the
calculations of gaps are based on the ground-state density
functional theory. Under the notion of fundamental gap we
understand a difference between the energy of the lowest
unoccupied eigenstate and the energy of the highest occupied
eigenstate in an NC, which is also called the Kohn-Sham gap
in the literature.5 Calculating the optical absorption gap on the
base of ground-state DFT (also called an independent particle
model) means that we employ a random-phase approximation
(RPA) to the first-order time-dependent perturbation theory.26

For a detailed comparison to experiment one should include
effects beyond the ground-state DFT, namely the many-body
effects and the excitonic effects.27 It is interesting to note
that more rigorous theoretical approaches have shown that
excitonic and quasiparticle effects to a large extent cancel each
other, and as a consequence, the HOMO-LUMO gaps compare
well to measured optical gaps.5,12,21 Thus our comparison of
theoretical and experimental results should be understood in
this context. However, the main focus of our study is the direct
vs indirect nature of optical transitions in terms of ground-state
oscillator strengths, the nature of HOMO and LUMO states,
and the evolution of these properties as a function of NC
diameter. In this sense, the excitonic and many-particle effects
go beyond the scope of our study.

To extract the optical absorption gap, we have calculated the
imaginary part of the dielectric tensor by explicitly evaluating
the dipole transition matrix elements between all occupied
states and unoccupied states up to 15 eV above the top of
the valence band. Using the Kramers-Krönig transformation,
the real part of the dielectric tensor was obtained, and
hence the refraction and absorption indices—the latter is
shown in Fig. 6. Our absorption spectra qualitatively agree with
calculations of Ref. 13, although for smaller clusters our DFT
calculations predict a broader spectrum than that of Ref. 13.

FIG. 6. (Color online) Absorption index (right axes) of Si NCs as
a function of the diameter (left axes) and energy, and the exchange
correlation potential: (i) LDA (red); (ii) GGA (dotted line). For bulk
Si it is shown on the top (the k values for the bulk are scaled by 2).
The khaki and pink colored areas depict the HOMO-LUMO gap and
the optical absorption gap, respectively.

The shapes of calculated absorption spectra agree well with
previous measurements.29,30 A recent experimental work for
4-nm Si NCs31 also matches well with our calculations. From
the absorption indices we extracted the optical absorption
gap—an energy at which the absorption index becomes larger
than a given threshold. Although, small nonzero contributions
to the absorption index appear below this optical absorption
threshold, these matrix elements are typically of negligible
sizes. As a practical solution for the optical absorption
threshold, we have chosen a value of 0.1, which is two orders of
magnitude smaller than the maximum of the absorption peak.
Different threshold criteria have been used in literature (see,
e.g., Ref. 7), all leading to very similar quantitative results.

A comparison of the fundamental gap and the optical
absorption gap, extracted with the above-mentioned criterion,
is shown in Fig. 7. As the size of the NC increases, the
difference between the optical absorption and fundamental gap
also increases, approaching the difference between the bulk
� − � gap and the bulk � − X gap. Following the conception
that bulk Si has an indirect gap, implying a difference between
the optical absorption and fundamental gap, the coalescing
of these two gaps at the smallest sizes, around 1.0 nm,
allows us to speak about Si in this size range as a direct gap
material. This finding was previously obtained by tight-binding
model calculations7 and was also confirmed by our WIEN2K

calculations. For the largest considered NC both gaps are
close to the bulk values. However, the fundamental and the
optical absorption gaps of the bulk material are somewhat
lower, suggesting an importance of the surface effects in all
of the NC structures investigated here. Similar behavior of
the fundamental and the optical absorption gaps has been
observed in Si nanowires32,33 and nanotubes.34 There is a
good qualitative agreement, in terms of trend, between the
theoretical HOMO-LUMO gap and experimental data,35–38 as
is clear from Fig. 7. This is in accord with above-mentioned
cancellation of the quasiparticle and excitonic effects. How-
ever, there is noticeable difference between our calculated
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HOMO-LUMO gaps and the experimentally observed gaps in
Ref. 37. As interpreted by van Buuren et al.,37 this difference
can be attributed to the changes of the shape and the atoms
on the surface of the experimentally analyzed NCs, whereas
in calculations NCs with perfect spherical shape are used,
terminated only with hydrogens.

For obtaining local electronic structure information, we
have decomposed the DOS of the region around the gap (from
the HOMO-LUMO gap to energies well above the optical
absorption gap) layer-by-layer (see Fig. 8). The PDOSes
around the gap of the surface layer, in each of the NCs,
follow a convex curve (see Fig. 8, bottom right corner, for
more details). It is noticeable that the number of states at the
surface is smaller and is decreasing faster when approaching
the gap, compared to the states in the interior of the NC.
These features are already less pronounced in the layer right
below the surface layer, which shows some similarities with
the bulk, when comparing the height of the peaks from s, p,
or d states. In addition, for the layers below the surface the
contribution from s, p, and d states to the states around the gap,
i.e., the relative height of the peaks from s, p, and d states for a
particular eigenstate, is similar to the contribution observed in
the bulk. In the NC’s interior (compared to the rest of the NC),
the contribution to the states around the gap is bigger, which
is evident from the intense peaks around the gap, particularly
for smaller NCs. This shows that the states around the gap
are localized in the NC’s interior, implying that the lowest
energy dipole transitions are localized there. Considering the
similarity between the states of the layers below the surface
and the bulk, and the indirect nature of the band gap in bulk
Si, it is expected that the intrinsic indirect nature of the Si will
dominate in this region. Therefore, the dipole transitions in
the region around the gap, which are not allowed in the bulk,
should be suppressed or weak in this region. Indeed, it has
been shown that the oscillator strength of these transitions is
relatively small, and it is getting smaller as the size of the NC
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FIG. 8. (Color online) Projected density of states (PDOS) of Si
NCs and of bulk Si. The s, p, and d states are shown in green, red,
and blue, respectively. The size of the NCs is shown on the right. The
NC’s interior PDOS is a sum over all the layers below the outer two
layers. On the figure in the right bottom corner a comparison between
the states in the interior and the surface of 4.2-nm NC are shown. The
states in the interior are shown in lighter color, and the states in the
surface in darker color.

is growing.5,7,28 In the small NCs, the states on the surface start
to dominate, and these transitions become more probable.5,7,28

As the size of the NCs is growing, the difference between
the optical absorption and fundamental gaps gets bigger. This
picture is further supported by a study of the wave functions
(WFs) around the gap.

IV. HIGHEST OCCUPIED AND LOWEST UNOCCUPIED
EIGENSTATES

According to DFT calculations, the HOMO is triply degen-
erate over the whole range of sizes, as in the nonrelativistic
description of the Si bulk crystal. On the other hand, the degen-
eracy of the LUMO changes as a function of size: A nonde-
generated state is found up to a diameter of 1.9 nm, a double-
degenerated state is found at 2.5 nm, and a triple-degenerated
state for diameter of 3.1 nm and larger. In the following
subsections we explore the NC size dependence of HOMO
and LUMO wave functions both in real and reciprocal space.

A. Real space characteristics

In Fig. 9 we summarize the spatial characteristics of the
HOMO and LUMO eigenstates. The first two rows display
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FIG. 9. (Color online) HOMO and LUMO wave functions of NCs of various sizes. The first row shows HOMO wave functions on a
line passing through NC center parallel to lattice axes, for NCs of sizes 1.0, 2.0, 3.0, and 4.2 nm, respectively. The second row shows three
perpendicular planar cuts (parallel to lattice axes and passing through the center of NC) of the HOMO wave function for the 4.2-nm NC. The
third row shows nondegenerate LUMO wave functions of 1.0-, 1.5-, and 1.9-nm NCs, respectively, then the three perpendicular cuts of LUMO
for the 2.5-nm NC, the triple-degenerated LUMO of the 3.5-nm NC, and three perpendicular cuts of the bulk LUMO wave function. The planar
cuts of LUMO in the 4.2-nm NC and bulk are compared in the fourth and fifth rows, respectively. All axes labeling is in Å units. The color
bars are symmetric around zero, in arbitrary units.

the HOMO wave functions of NCs; the remaining part shows
LUMO wave functions for NCs and bulk.

In the first row we plot the WF on a line passing along
a lattice axis through the center of the NC. By construction

there is always an atom in the center of our NC models. As
mentioned above, HOMO is triple degenerated throughout the
whole range of sizes. Therefore one can see three WFs, at
each of the diameters, 1.0, 1.9, 3.1, and 4.2 nm, respectively.
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Generally, these WFs have similar spatial characteristics
across the whole range of NC sizes—an oscillatory behavior
modulated with an envelope of a spherical Bessel function
type,8 causing the WF to decay towards the edges of the
NC. These states have predominantly p character, consistent
with their threefold degeneracy (per spin). In the second
line of Fig. 9 we show xy, xz, and yz planar cuts of
a HOMO eigenstate for the largest structural model. Due
to the p-type symmetry of the HOMO wave function, the
other two degenerated eigenstates would exhibit equal planar
cuts, just with a cyclical interchange of the role of x,y,z

axes. These plots expectedly show �-type symmetry without
any longer-range modulation, as would be the case of a
developing Bloch state with nonzero k vector (see the next
subsection).

The spatial characteristics of the LUMO eigenstates are
rather different across the sizes of NCs. This was qualitatively
interpreted by a higher number of Si-Si bonds, which leads
to a k-selection rule causing the dipole matrix element from
HOMO to LUMO to be suppressed.28

For a 2.5-nm NC the nondegenerated state moves higher in
energy, crossing two other eigenenergies. The LUMO becomes
a double-degenerated state and the next lowest is a triple-
degenerated state. The double-degenerated LUMO WF has
an elliptically distorted s symmetry—its WFs along the x, y,
and z directions, respectively, are all identical up to a sign
and a scaling constant across both WFs. While one appears
compressed along the z direction, the other one is elongated
along z. The linear plots along all three axes are shown in
Fig. 9 in the third row.

NCs with diameter 3.1 nm or larger have a triple-
degenerated LUMO of p-type symmetry. In Fig. 9, in the
fourth row we show planar cuts of the LUMO. While the yz

plane shows a simple regular pattern with periodicity of the
lattice parameter, the other two planar cuts of the LUMO WFs
show mutually identical behavior with a longer wavelength

modulation along the x direction. This is indicative of a
development of a Bloch state with wave vector k having a
nonzero x component. Note also the linear plots of the LUMO
WF in the third row of Fig. 9, where LUMO of a 3.5-nm NC
is compared to LUMO of the bulk Si. The similarity between
the spatial characteristics of LUMO of larger NCs and bulk is
clearly exposed by plotting the xy, xz, and yz planar cuts of
the LUMO WF for 4.2-nm NC (Fig. 9, fourth row) and bulk
LUMO for k point 2π

a
(0.83,0,0) (Fig. 9, bottom row).

Oscillator strengths for transitions from HOMO to these
states are negligible7,28 (or exactly zero in bulk), therefore
the optical absorption and fundamental gaps differ. As we
previously noted at the decomposition of the NC DOS layer-
by-layer (Fig. 8), the states around the gap are mostly localized
in the interior of the NCs, which is consistent with the shape
of the modulation of HOMO and LUMO cuts.

B. K-space characteristics

The development of the k-selection rule between the
HOMO and LUMO wave functions, as well as the gradual
transition from a nanoregime to a bulk can be well elucidated
in Fourier space. In Fig. 10 we are showing Fourier transforms
of the HOMO and LUMO wave functions as a function of NC
diameter from 1.0 to 4.2 nm. The figures display the volume
occupied by positive values of the real part of the Fourier
transform, parallel projected to the xz plane. The step size in
the real space grid �x = 0.267 Å determines the dimension
of the Fourier space as ± π

�x
≈ ±11.78 Å−1.

For the NCs with smallest diameter the Fourier spectrum
fills space without any signs of grid of spots, reminiscent of the
periodic solid. But already at 1.9 nm we can observe a tendency
of clustering of the maxima of the Fourier components,
although these clusters are broad and overlap with their
neighbor clusters.

(a) (b) (c)

(d)

FIG. 10. (Color online) Fourier transform of the HOMO (upper row) and LUMO (lower row) wave function of Si NCs of the following
sizes: (a) 1.0 nm, (b) 1.9 nm, and (c) 3.1 nm. (d) Overlap between Fourier transform of the HOMO and LUMO wave functions for the 4.2-nm
NC. The 3D Fourier transform was projected on the x-z plane. For clarity of the graphical representation, the color range, blue to red for the
HOMO WF and opposite, red to blue, for the LUMO WF, maps positive values of the real part of Fourier transform, within a fixed range for
all sizes (in arbitrary units). The k(x) and k(z) are scaled by a reciprocal vector G of size 2π

a
.
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At 3.1 nm the clustering of maxima of Fourier components
of HOMO forms into an arrangement reminding a diffraction
pattern of an fcc structure. Using the terminology of diffraction
patterns, we see allowed reflections, which have Miller indices
all odd or all even, and columns of forbidden reflections
with low intensities, that have Miller indices h and l of
different parity. It is very interesting to note that at this
NC size there is a substantial qualitative difference between
the Fourier transforms of HOMO and LUMO. While for
HOMO we see a formation of fcc-like diffraction pattern,
for LUMO—at first sight—it looks more like a diffraction
pattern of a simple cubic structure with nonzero spots
at all h,k,l indices. On the other hand, a more detailed
inspection reveals a different picture. Note that the spots
corresponding to forbidden reflections are actually shifted
towards the origin. We interpret this as an onset of the bandlike
character of the LUMO wave function corresponding to the
k point 2π

a
(0.83,0,0) and its degenerated symmetry-related

counterparts.
At 4.2 nm the “Bragg spots” become even more sharp. Their

shape and dimension is related to the Fourier transform of the
complex hull of the NC models. At this NC size, HOMO shows
a clear fcc-like pattern including a strong spot at the origin
(hkl) = (000). The Fourier transform of LUMO misses the
central spot and although we can see weak spots corresponding
to columns of Miller indices with h = ±1 and l = ±1, their
intensity is much reduced compared to the grid originating
from the k points corresponding to the LUMO of the bulk.
This also shows that the two wave functions, HOMO and
LUMO, developed almost mutually exclusive components in
the Fourier space—as is the case of Bloch states in a bulk
corresponding to different k points in the Brillouin zone. The
mutually exclusive components of the 4.2-nm NC’s HOMO

and LUMO wave functions in Fourier space can be clearly see
in Fig. 10(d), where the overlap of these two wave functions
is shown.

V. CONCLUSIONS

In conclusion, using DFT calculations we have performed
calculations of the electronic structure and optical properties
of hydrogenated Si NCs, ranging from 1.0 to 4.6 nm in
diameter, covering the transition from confined nanoregime
to bulk regime. We have explored three types of structural
models for NCs—a spherical model and two polyhedral
Wulff-type structures—and found them equivalent in terms
of cohesive energies and densities of states. We have argued
that the narrowing of the valence band states contributes to the
blue-shift of the band gap, as a function of reduced size of the
NCs. For the sizes of the NCs, where a comparison is possible,
we find good agreement between theory and experiment,
regarding the trend of the fundamental band gap as a function
of the NCs’ size and optical absorption spectra. A detailed
inspection of the HOMO and LUMO wave functions from the
smallest sizes up to 4.2 nm has revealed a gradual onset of the
bulk regime and development of the k-selection rule.
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