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Controlling edge state transport in a HgTe topological insulator by superlattice effect
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We investigate theoretically the edge state transport in a HgTe topological insulator under periodic electrical
modulation. We find constructive interference of the backscattering amplitudes, leading to the formation of
superlattice minigaps and hence complete suppression of the edge state transmission. Consequently, the edge
channel can be switched on/off by appropriately tuning the modulation amplitude via gate voltages, even for
wide Hall bar with a small finite size effect. We also find efficient conversion between spin-up and spin-down
edge channels by the gate-induced Rashba spin-orbit interaction.
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I. INTRODUCTION

The topological insulator (TI) is a topologically distinct
quantum state of the matter, where the spin-orbit coupling
plays an essential role.1,2 Unlike the quantum Hall insulator
(with broken time-reversal symmetry) or trivial insulators
(with a zero Z2 topological invariant), the TI preserves
the time-reversal symmetry and has nonzero Z2 topological
invariants.3–7 At the interface between the TI and the trivial
insulator, the transition from a nontrivial Z2 topology to a
trivial topology dictates the closing of the insulating gap
and hence the existence of an odd number of massless,
helical Dirac fermions on the interface.8 For example, in
a two-dimensional HgTe/CdTe or InAs/GaSb quantum well
(QW) with an inverted band structure,9,10 the helical edge
channels have been demonstrated experimentally in the Hall
bar geometry.11–13 These edge states show spin-momentum
locking in a time-reversal invariant fashion: The right-moving
electrons with spin pointing strictly up are connected to the
left-moving electrons with spin pointing strictly down by time-
reversal operation.14 Consequently, the spin-resolved edge
states are robust against elastic scattering (e.g., by nonmagnetic
impurities) that preserves the time-reversal symmetry.15,16

This offers great potential for a new generation of spintronic
devices for low-power information processing.17,18 A crucial
step in this development is the (preferentially electrical)
manipulation, e.g., switch on or off, of the edge channel
transport. However, since electrical modulation also preserves
the time-reversal symmetry, it is not expected to have a
nontrivial influence on the edge states. Recently it was
proposed19 that in an inverted-band HgTe Hall bar, the edge
channel transport can be switched off by narrowing the Hall bar
by a single quantum point contact, where a stronger coupling
between the edge states on opposite edges opens a sizable
forbidden gap in the edge channel that blocks the electron
transport within the energy window of the gap.

In this work we investigate theoretically the electron
transport through periodic electric potential modulation in a
HgTe Hall bar with a constant width. We find constructive
interference of the backscattering by different modulation
layers, leading to the formation of superlattice minigaps that
block the edge state transmission. This effect can be further

enhanced by tuning the edge channel into resonance with the
bulk states. The present mechanism is based on the superlattice
minigap effect instead of the finite-size gap as utilized in a
previous proposal.19 Consequently, our mechanism works well
in the regime of a small finite-size gap and enables us to switch
on/off the edge channel transport by appropriately tuning the
modulation amplitude via gate voltages. In the presence of
gate-induced Rashba spin-orbit interaction, efficient conver-
sion between spin-up and spin-down channels is found.

The paper is organized as follows. In Sec. II we describe
the model and the formalism of ballistic electron transport
through the HgTe Hall bar, with the detailed derivations given
in the Appendix. In Sec. III we present the numerical results
to demonstrate the switch off and electron spin conversion
of the spin-resolved edge channel transport at an appropriate
modulation amplitude. Finally, the summary and conclusions
are given in Sec. IV.

II. MODEL AND FORMALISM

We consider a narrow-gap HgTe QW with an inverted band
structure in the Hall bar geometry, as shown schematically
in Fig. 1(a). Through periodic electric gating, N periods of
tunable, square-shaped potential modulation of height V0 (or
depth |V0| if V0 < 0, see the shaded region in Fig. 1) along the
transport direction, the x axis, is generated. The low-energy
spectrum is well described by a four-band Hamiltonian,
including two �6 electron bands |e↑〉 , |e↓〉 and two �8 heavy
hole bands |hh↑〉 , |hh↓〉. The Hamiltonian Ĥ (x,k̂x,k̂y) for the
above structure is the sum of the Hamiltonian ĤQW(k̂x,k̂y) of
the HgTe QW, the hard-wall confining potential U (x,y) =
0 for y ∈ [0,W ] and U (x,y) = ∞ elsewhere, the modula-
tion potential V (x), and the gate-induced Rashba spin-orbit
interaction20 (the linear Rashba term)

ĤRSOI(x,k̂x,k̂y) = i
α(x)k̂− + k̂−α(x)

2
|e↑〉〈e,↓| + H.c.,

(1)

which leads to intrinsically nonlinear and even nonmonotonic
Rashba spin splitting as a function of the in-plane momen-
tum k‖ = (kx,ky), especially in narrow-gap QWs. Here the
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FIG. 1. (Color online) (a) HgTe QW with an inverted band
structure in the Hall bar geometry, under N periods of potential
modulation. (b) The bulk energy spectra of the HgTe QW in the
regions with and without the potential modulation V0 (tunable through
electric gating), respectively. Here a small gap around Egap is opened
in the Dirac spectra of the edge states due to the finite-size effect, i.e.,
the finite width of the Hall bar. The green dashed line indicates the
Fermi energy EF .

piecewise constant functions V (x) = V0 and α(x) = α in the
shaded regions of Fig. 1(a) and V (x) = α(x) = 0 elsewhere. In
the basis |e↑〉 , |hh↑〉 , |e↓〉, and |hh↓〉, the QW Hamiltonian9

ĤQW(k̂x,k̂y)

=

⎛
⎜⎜⎝

εk̂ + M(k̂) Ak̂− 0 0
Ak̂+ εk̂ − M(k̂) 0 0

0 0 εk̂ + M(k̂) −Ak̂+
0 0 −Ak̂− εk̂ − M(k̂)

⎞
⎟⎟⎠ ,

where k̂ = (k̂x,k̂y) is the in-plane momentum operator,
εk̂ = C − D(k̂2

x + k̂2
y), M(k̂) = M − B(k̂2

x + k̂2
y), k̂± = k̂x ±

ik̂y , and A, B, C, D, and M are parameters describing the
band structure of the HgTe/CdTe QWs. The topological
insulator and trivial insulator phases are distinguished by the
different signs of the parameter M , which in turn is determined
by the thickness of the HgTe/CdTe QWs.9

The experimentally measurable conductance at zero tem-
perature across the Hall bar structure is given by the Landauer-
Büttiker formula as

G(EF ) = e2

h

∑
m∈L,n∈R

Tn←m, (2)

where Tn←m (m ∈ L, n ∈ R) is the transmission probability
from the mth forward propagating channel in the left lead
(denoted as ψ

(L)
+,m) to the nth forward propagating channel

in the right lead (denoted as ψ
(R)
+,n). These transmission

probabilities can be calculated by applying the scattering
matrix formalism21–25 to the HgTe topological insulator in
the Hall bar geometry under periodic modulations. The details
are given in the Appendix.

In this paper we focus on the control of the edge state
transmission, so EF lies in the bulk gap of the left and right
leads and only intersects the four edge channels in the leads.
The Rashba spin-orbit interaction ĤRSOI has little influence
on the edge states since ĤRSOI preserves the time-reversal
symmetry and hence can only couple distant edge states on

opposite sides of the Hall bar.20 In particular, all four edge
channels on the Fermi level have well-defined spin orientations
[as shown in Fig. 1(b)]: the spin-up, forward propagating
channel ψ+,↑ and its time-reversed counterpart, the spin-down,
backward propagating channel ψ−,↓ on the upper edge; as well
as the spin-down, forward propagating channel ψ+,↓ and its
time-reversed counterpart, the spin-up, backward propagating
channel ψ−,↑ on the lower edge. Due to mirror reflection
symmetry about the plane y = W/2, we have

T↑←↑ = T↓←↓ = Tsc,

T↓←↑ = T↑←↓ = Tsf,

i.e., the spin-conserving transmission probabilities for the spin-
up channel (from ψ

(L)
+,↑ to ψ

(R)
+,↑) and the spin-down channel

(from ψ
(L)
+,↓ to ψ

(R)
+,↓) are equal (denoted as Tsc). Similarly, the

spin-flip transmission probabilities from ψ
(L)
+,↑ to ψ

(R)
+,↓ and that

from ψ
(L)
+,↓ to ψ

(R)
+,↑ are also equal (denoted as Tsf). Therefore,

the total conductance G(EF ) = (2e2/h)(Tsc + Tsf) is simply
proportional to the total transmission probability T ≡ Tsc +
Tsf of a single incident edge channel.

III. RESULTS AND DISCUSSIONS

In this section we present our numerical results for the
transmission probabilities T ,Tsc,Tsf of a single incident edge
state (on the Fermi level EF in the bulk gap of the leads)
across N periods of potential modulations with amplitude
V0, which can be tuned by varying the gate voltages. The
transmission probabilities are connected to the experimentally
measurable conductance G by the relation G = (2e2/h)(Tsc +
Tsf). We consider a W = 200 nm wide Hall bar under N

modulations with the period L = 100 nm. The parameters
for the HgTe/CdTe QWs are A = 364.5 meV nm, B =
−686 meV nm2, C = 0, D = −512 meV nm2, and M =
−10 meV.9 In this case the energy spectrum of the lead
has a finite-size gap near Egap = 7.5 meV, while the energy
spectrum of the modulated region [shaded area in Fig. 1(a)] has
a finite-size gap near Egap + V0 = V0 + 7.5 meV. In contrast to
a previous work,20 where the Rashba spin-orbit coupling ĤRSOI

has a negligible effect on the edge states, in our system with
periodic modulation, ĤRSOI is able to induce almost complete
spin-flip transmission Tsf ≈ 1 once the edge states are tuned
into resonance with the bulk states in the modulated region
[shaded area in Fig. 1(a)], as discussed below. To clearly
distinguish the superlattice minigap effect (which switches
on/off the edge state transport) and the spin-flip effect by
Rashba spin-orbit coupling (which converts between spin-up
and spin-down edge channels), we first focus on the former
by dropping ĤRSOI (so that Tsf = 0 and T = Tsc), leaving the
inclusion of ĤRSOI at the end of our discussion.

A. Constructive interference of backscattering

To begin with, we illustrate the effect of periodic modu-
lation by plotting the edge state transmission T = Tsc across
the Hall bar structure under successively increasing number
of modulations N = 1,2, . . . ,6 in Fig. 2. The sudden block
of the edge state transmission around V0 = 5 meV originates
from the finite-size gap: At V0 = 5 meV the finite-size gap of
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FIG. 2. (Color online) Transmission probability T = Tsc of an
incident edge state on the Fermi level EF = 12.5 meV across succes-
sively increasing N = 1,2, . . . ,6 periods of potential modulation as
a function of modulation amplitude V0. Inset: For V0 = 5 meV, the
Fermi level EF lies in the finite-size gap of the modulated region.

the modulated region [shaded area in Fig. 1(a)] locates around
Egap + V0 = 12.5 meV, which coincides with the Fermi energy
EF , as sketched in the inset of Fig. 2. This mechanism has been
used to confirm the intrinsic spin Hall effect26 and to switch
off the edge state transport by quantum point contact.20 Here
we propose a very different mechanism based on periodic
modulation to control the edge state transport. The dramatic
influence of this mechanism on the transmission can be clearly
seen in Fig. 2. For a single modulation N = 1, the edge
state transmission is nearly perfect T ≈ 1 away from the
finite-size gap, corresponding to a well quantized conductance
G = 2e2/h. With increasing N , successively pronounced dips
gradually develop near V0 ≈ 10 meV and V0 ≈ −8 meV,
respectively. These dips arises from the constructive interfer-
ence of the backscattering amplitudes by different modulation
layers when the incident wave vector kx is an integer multiple
of π/L: The extra phase kx × 2L acquired in one round trip
between successive modulation layers is an integer multiple of
2π , thus constructive interference occurs.

When the number N of modulation is further increased, we
expect that the increasingly strong interferences of backscatter-
ing might give rise to superlattice minigaps near V0 ≈ 10 meV
and V0 ≈ −8 meV that could block the edge state transport
completely. To demonstrate this effect we show the contour
plot of the transmission probability T (V0,N ) as a function of
the modulation amplitude V0 and the number N of modulation
in Fig. 3. In addition to the finite-size gap at Egap + V0

that blocks the edge state transmission for any modulation
number N , the most striking feature is the appearance of two
additional gaps (marked by �g1 and �g2), where the edge state
transmission decreases with increasing N and finally becomes
blocked for large modulation numbers N � 15 (for �g1) or
N � 8 (for �g2). As shown below, these two gaps �g1 and �g2

are both associated with the superlattice minigap effect, but
their origin are quite different: �g1 comes from the finite-size
gap in the leads, while �g2 results from the interference of the
edge states with the bulk states in the modulated region.

B. Superlattice minigap from finite-size gap

To reveal the nature of the gap �g1, we set V0 = 10 meV
at the center of the �g1 gap (see Fig. 3) and plot in Fig. 4(b)

FIG. 3. (Color online) Contour plot of the transmission probabil-
ity T of an incident edge state on the Fermi level EF = 12.5 meV
as a function of modulation amplitude V0 and number of modulation
N . For V0 < −0.7 meV, the Fermi level enters the bulk energy bands
in the modulation region [shaded area in Fig. 1(a)], as schematically
shown in Fig. 1(b) (edge-bulk coupling). For V0 > −0.7 meV, the
Fermi level lies in the bulk gap (edge-edge coupling).

the transmission probability T (E) across the Hall bar under
N = 30 modulations as a function of the incident energy E.
There are three transmission gaps. The first two are associated
with the finite-size gap of the left lead and the modulated
region, respectively: The first one around ∼7.5 meV arises
since EF = 7.5 meV coincides with the finite-size gap around
Egap = 7.5 meV of the left lead, as sketched in the inset of
Fig. 4(b); the second one around ∼17.5 meV arises because
EF = 17.5 meV coincides with the finite-size gap around

FIG. 4. (Color online) (a) and (c) The solid lines show the
energy spectra of the Hall bar under an infinite number N → ∞ of
modulations; the dotted lines show the energy spectrum of the leads,
shifted upward by V0/2. (b) and (d) The transmission probability
T of a single incident edge state with energy E across the Hall bar
under N = 30 modulations. The modulation amplitude V0 = 10 meV
[corresponding to EF in the bulk gap, as sketch in the inset of (b)]
for (a), (b) and V0 = −8.5 meV [corresponding to EF entering the
bulk energy spectra of the modulated region, as sketched in the inset
of (d)] for (c), (d).
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Egap + V0 = 17.5 meV of the modulated region [shaded area
in Fig. 1(a)], as sketched in the inset of Fig. 4(a). Here
we are interested in the third one, the minigap �g1 around
∼12.5 meV, which comes from the constructive interference of
backscattering by the periodic modulation, i.e., the superlattice
minigap effect. This is confirmed by the complete coincidence
(marked by the shaded area) of the �g1 gap in the transmission
spectrum with the corresponding minigap of the superlattice
energy spectrum in Fig. 4(a) for the Hall bar under an infinite
number of periodic modulations N → ∞.

To understand the origin of the superlattice minigap �g1,
we recall that the superlattice Hamiltonian is the sum of the
lead Hamiltonian and the modulation potential V (x) = V0[1 +
(−1)j ]/2, where j = 0 for x in the modulated region [the
shaded area in Fig. 1(a)] and j = 1 elsewhere. The constant
part V0/2 of V (x) leads to a global upper shift of the lead energy
spectrum, while the modulation part V0(−1)j /2 with period
L weakly couples the kx = nπ/L (n = 1,2, . . . ) edge states
to the kx = −nπ/L edge states with the same spin orientation
on the opposite side of the Hall bar. This coupling could in
principle opens up new minigaps at the boundaries kx = ±π/L

of the superlattice Brillouin zone. However, for energies in the
bulk gap, the strong localization of the edge states (especially
those below the Dirac point) significantly reduces this coupling
and the resulting minigap is negligible, e.g., at E ≈ 5 meV
in Fig. 4(a). With both effects of V (x) taken into account,
the superlattice energy spectrum should largely coincide with
the energy spectrum of the leads upper shifted by V0/2, as
confirmed by the good coincidence of the solid and dotted
lines in Fig. 4(a).

To conclude, the minigap at �g1 ≈ Egap + V0/2 originates
from the shift of the finite-size gap Egap of the leads by the
modulation potential. For V0 = 10 meV, �g1 ≈ 12.5 meV
coincides with the Fermi energy, so the transmission is
blocked, as shown in Fig. 3. However, the minigap at �g1

is qualitatively different from the finite-size gap at Egap.
The former results from the constructive interference of
backscattering from many modulation layers, so it exits and
hence blocks the edge state transmission only when the number
N of modulation is sufficiently large (N � 15, see Fig. 3). By
contrast, the latter comes from the finite-size effect of the Hall
bar, so it always exists and blocks the transmission for any
modulation number N .

C. Superlattice minigap from edge-bulk coupling

Now we investigate the nature of the gap �g2 by setting
V0 = −8.5 meV at the center of the �g2 gap (see Fig. 3).
From Fig. 4(d) the transmission probability T (E) for N = 30
shows four transmission gaps. The first two around ∼7.5
and ∼−1 meV, respectively, are just the finite-size gap
Egap and Egap + V0 of the left lead and the modulated
region. The third one is the superlattice minigap �g1 =
Egap + V0/2 ∼ 3.25 meV, which originates from the finite-size
gap Egap ∼ 7.5 meV of the left lead shifted downwards by
|V0|/2 = 4.25 meV by the modulation potential, as discussed
in the previous subsection. In this subsection we focus on
the fourth gap �g2 ∼ 12.5 meV, which is also associated
with the superlattice minigap effect, as confirmed by the
coincidence (marked by the shaded area) of the gap at �g2

in the transmission spectrum with the corresponding minigap
of the superlattice energy spectrum in Fig. 4(c). However, the
origin of the gap at �g2 is very different from the gap at �g1.
Instead of coming from the shift of the finite-size gap in the
leads, the �g2 gap is a truly “new” minigap resulting from the
superlattice effect: As sketched in Fig. 1(b), the Fermi level EF

lies in the bulk gap of the unmodulated regions, but it enters the
bulk energy spectrum of the modulated regions [shaded area
in Fig. 1(a)]. Therefore, the resonant coupling between the
edge state in the unmodulated region and the bulk states in the
modulated region by the modulation potential greatly enhances
the superlattice minigap effect and opens a relatively large
gap at �g2. Therefore, by tuning the modulation amplitude
with gate voltages, the edge state transport can be switched
on/off without relying on the finite-size gap20 or breaking the
time-reversal symmetry by introducing magnetic impurities or
magnetic fields.

D. Spin conversion by gate-induced Rashba spin-orbit coupling

So far we have focused on the superlattice minigap effect by
dropping the Rashba spin-orbit coupling ĤRSOI. In a realistic
experimental setup, however, the electric gating above the
HgTe QWs not only induces the modulation potential V (x),
but also gives rise to Rashba spin-orbit coupling ĤRSOI. In this
subsection we present the edge state transmission including
the Rashba spin-orbit coupling. Now the spin-flip transmission
probability Tsf does not vanish and the total transmission prob-
ability T = Tsc + Tsf . These two probabilities for an incident
edge state on the Fermi level EF = 12.5 meV across the Hall
bar under N = 30 modulations are plotted in Fig. 5. First,
we consider the linear Rashba term [as described by Eq. (1)],
we confirm from Fig. 5(a) that inclusion of ĤRSOI does not
change the essential features of the previous results, including
the finite-size gap around V0 ∼ 5 meV (corresponding to the
finite-size gap at Egap + V0 ≈ 12.5 meV of the modulated
region coinciding with the Fermi level EF = 12.5 meV), the
superlattice minigap �g1 around V0 ∼ 10 meV originating
from the finite-size gap of the leads (corresponding to the
minigap at �g1 = Egap + V0/2 ≈ 12.5 meV coinciding with
the Fermi level EF ), and the superlattice minigap �g2 around
V0 ∼ 8 meV, which comes from the resonant coupling between
the edge channel and the bulk states. Note that although
the Rashba spin-orbit coupling has negligible influence on the
edge states, it does influence the bulk states and hence
the associated superlattice minigap �g2. Second, in the pres-
ence of ĤRSOI (which behaves like an in-plane magnetic field),
the spin-up and spin-down bulk states become strongly mixed
and have slightly different Fermi wave vectors. Consequently,
once the Fermi level EF enters the bulk energy bands in the
modulated region (edge-bulk coupling regime), the bulk states
mediate efficient conversion between the spin-up edge channel
and the spin-down edge channel, e.g., maximal conversion
Tsf ≈ 1 is achieved at V0 ∼ −3 meV. (Furthermore, we find
that the number of modulation with the Rashba spin-orbit
coupling must satisfy N � 28, hence the totally spin-flip will
be achieved.) This allows the realization of a spin-flip device by
adjusting the gate voltages. By contrast, when the Fermi level
EF lies in the bulk gap, ĤRSOI only induces a weak coupling
between edge states on opposite sides of the Hall bar, so it
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FIG. 5. (Color online) (a) Total transmission probability T and
(b) the spin-flip transmission probability Tsf of an incident edge state
on the Fermi level EF = 12.5 meV across the Hall bar under N = 30
modulation periods. The gate-induced Rashba spin-orbit coupling
strength (the linear Rashba term) is taken as α = 50 meV nm (orange,
solid curve) and α = 0 (black, dashed curve), respectively. The green
dashed curve indicates the spin-flip transmission probability Tsf with
including the nonlinear Rashba terms. The vertical, blue dashed line
distinguishes the edge-edge coupling regime (EF in the bulk gap) and
the edge-bulk coupling regime (EF entering the bulk energy bands of
the modulated region).

has a small influence on the edge state transmission. However,
additionally to the linear Rashba term, there are other nonlinear
Rashba terms present for HgTe QWs as investigated in Ref. 27.
Therefore, we plot the edge state transmission probability Tsf

in Fig. 5(b) (see the green dashed curve) with the nonlinear
Rashba term. One can see that maximal conversion Tsf ≈ 1 is
achieved at V0 ∼ −4, −3, −2.5, and −1 meV (with N � 25);
the efficiency of the spin-flip processes will be increased with
consideration of the nonlinear Rashba terms. That is because
the quadratic Rashba terms will couple the electron and heavy
hole while the cubic term will couple the heavy hole with
different spins.

IV. CONCLUSIONS

In summary, we have investigated theoretically the edge
state transport in an inverted-band HgTe topological insulator
in the Hall bar geometry under gate-induced periodic potential
modulation. We find constructive interference of the backscat-
tering amplitudes by different modulation layers, leading to
two different kinds of superlattice minigaps that block the
edge state transmission: One comes from the shift of the
finite-size gap in the lead energy spectrum, the other comes
from the enhanced superlattice minigap effect by the resonant
coupling between the edge state and the bulk states. In the
presence of gate-induced Rashba spin-orbit coupling, we find
efficient conversion between the spin-up and spin-down edge
channels. This modulation induced switch on/off of the edge
state transmission and spin conversion offers the possibility to

control the spin-resolved edge state transport by tuning the gate
voltages, without relying on the finite-size effect or introducing
magnetic impurities or magnetic fields. It may pave the way to
constructing low-power information processing devices using
the topological edge states.
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APPENDIX: TRANSMISSION FROM SCATTERING
MATRIX FORMALISM

In this Appendix we give the detailed derivation of
the reflection and transmission coefficients of an incident
eigenstate on the Fermi level EF across the Hall bar structure
(Fig. 1) using the scattering matrix formalism.21–25 For this
purpose we divide the entire Hall bar into 2N + 1 segments
separated by 2N interfaces x1, . . . ,x2N , as sketched in Fig. 6. In
particular, the left lead corresponds to the 0th segment and the
right lead corresponds to the 2N th segment. In each segment,
V (x) and α(x) take constant values: V (x) = V0 and α(x) = α

in the modulated region (shaded area) and V (x) = α(x) = 0
elsewhere. The essential idea is to first solve the Schrödinger
equation at the Fermi energy EF in each segment and then
match the wave functions of different segments at the 2N

interfaces.
For the first step, we solve the Schrödinger equation inside

each segment. In the j th segment, the total 4 × 4 Hamiltonian
H(j )(k̂x,k̂y) is independent of x, so the four-component
eigenmode ψ (j )(x,y) = eik(x−xj )φ(j )(y) (for j = 0, we define
x0 ≡ x1), where φ(j )(y) is obtained from the Schrödinger
equation EF φ(j )(y) = H(j )(k,k̂y)φ(j )(y), with k̂x replaced by
its eigenvalue k. The hard-wall boundary conditions along
the upper edge y = W and lower edge y = 0 enables the
expansion of φ(j )(y) using the j -independent complete ba-
sis ϕn(y) = √

2/W sin(nπy/W ) (n = 1,2, . . . ,Ncut, with a
sufficiently large Ncut to ensure convergence) as φ(j )(y) =∑

n c(j )
n ϕn(y), where c(j )

n is a four-component vector. This gives
an eigenvalue problem

H(j )(k)C(j ) = E
(j )
F C(j ) (A1)

with dimension M ≡ 4Ncut, where C(j ) ≡ [c(j )
1 , . . . ,c(j )

Ncut
]T

is a M-component vector and H(j )(k) is a M × M square
matrix with H(j )

m,n(k) ≡ 〈ϕm|H(j )(k,k̂y)|ϕn〉. For a given real
k there are M eigenvalues E(j )(k) and eigenvectors C(j )(k).
Conversely, for a given real energy EF , there are 2M solutions

x1 x2 x3 x4

……
x2N-1 x2N

V0 V0 V0

1 2 2N-13 2N0

FIG. 6. Division of the Hall bar into 2N + 1 segments (denoted
by j = 0,1, . . . ,2N ) by the N periods of modulation potential. The
interfaces coordinates are denoted by x1,x2, . . . ,x2N .
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k(j )(EF ) (which are in general complex) and C(j )(EF ). To find
these solutions we expand H(j )(k) = H(j )

0 + H(j )
1 k + H(j )

2 k2

into power of k and define C̃(j ) ≡ kC(j ), then Eq. (A1) can
be written as

[
0 1

EF − H(j )
0 −H(j )

1

][
C(j )

C̃(j )

]
= k

[
1 0
0 H(j )

2

][
C(j )

C̃(j )

]
.

Solving this 2M-dimensional generalized eigenvalue prob-
lem gives 2M solutions {k(j )

m ,C(j )
m } (m = 1,2, . . . ,2M), cor-

responding to 2M eigenmodes ψ (j )
m on the Fermi level

EF . Next we introduce the velocity operator v(j )(k̂x) =
−i[x,H(j )(k̂x,k̂y)] along the transport direction (x axis):

v(j )(k̂x) =

⎡
⎢⎢⎣

−2D+k̂x A iα(j ) 0
A −2D−k̂x 0 0

−iα(j ) 0 −2D+k̂x −A

0 0 −A −2D−k̂x

⎤
⎥⎥⎦

(A2)

(with D± ≡ D ± B) and classify these 2M solutions into
M forward-going solutions {k(j )

+,α,C(j )
+,α} (corresponding to

M forward-going eigenmodes ψ
(j )
+,α) and M backward-going

solutions {k(j )
−,α,C(j )

−,α} (corresponding to M backward-going

eigenmodes ψ
(j )
−,α). The forward-going eigenmodes include

forward propagating states (with a real k(j ) and positive
velocity 〈ψ (j )|v(j )|ψ (j )〉) and forward decaying states (with
Imk(j ) > 0). The backward-going eigenmodes include
backward propagating states (with a real k(j ) and negative
velocity 〈ψ (j )|v(j )|ψ (j )〉) and backward decaying states (with
Imk(j ) < 0 ).

For the second step, we calculate the scattering state
ψ emanating from the αth forward propagating incident
eigenmode ψ

(0)
+,α of the left lead on the Fermi level EF .

In the j th segment, the scattering state can be expanded as
the linear combination of local eigenmodes on the Fermi
level:

ψ (j ) =
∑

β

a
(j )
β←αψ

(j )
+,β +

∑
β

b
(j )
β←αψ

(j )
−,β ,

subjected to the boundary conditions a
(0)
β←α = δα,β in the 0th

segment (i.e., only one incident eigenmode ψ
(0)
+,α in the left

lead) and b
(2N)
β←α = 0 in the 2N th segment (i.e., no incident

eigenmodes in the right lead). Altogether there are M + M +
(2N − 1) × 2M = 4NM unknown coefficients. These coeffi-
cients, especially the reflection and transmission coefficients
{b(0)

β←α} and {a(2N)
β←α} can be obtained (see the next paragraph)

by matching ψ and v̂ψ at the 2N interfaces x1, . . . ,x2N , which
gives 2N × 2M = 4NM equations. Then the transmission
probability from the αth forward propagating eigenmode ψ

(0)
+,α

in the left lead to the βth forward propagating eigenmode
ψ

(2N)
+,β in the right lead is given by Tβ←α = (v(2N)

β /v(0)
α )|a(2N)

β←α|2,

where v
(j )
α = 〈ψ (j )

+,α|v(j )|ψ (j )
+,α〉 is the velocity of the αth

forward propagating eigenmode in the j th segment. The zero-
temperature conductance follows from the Landauer-Büttiker

formula as

G(EF ) = e2

h

∑
α∈L,β∈R

Tβ←α, (A3)

where the sum runs over all spin-resolved forward propagating
eigenmodes in the left (L) and right (R) leads.

Now we give the explicit procedures for solving the un-
known coefficients in the scattering matrix formalism.21–25 At
the (j + 1)th interface, the continuity conditions ψ (j+1)|xj+1 =
ψ (j )|xj+1 and v(j+1)ψ (j+1)|xj+1 = v(j )ψ (j )|xj+1 give 2M equa-

tions that connect the M forward-going coefficients A(j )
α ≡

[a(j )
1←α,a

(j )
2←α, . . . ,a

(j )
M←α]T and the M backward-going coeffi-

cients B(j )
α ≡ [b(j )

1←α,b
(j )
2←α, . . . ,b

(j )
M←α]T in the j th segment to

those in the (j + 1)th segment:

[
A(j )

α

B(j )
α

]
= M(j,j + 1)

[
A(j+1)

α

B(j+1)
α

]
, (A4)

where

M(j,j + 1) =
[

γ
(j )
+ 0
0 γ

(j )
−

]−1[
P(j )

+ P(j )
−

Q(j )
+ Q(j )

−

]−1

×
[

P(j+1)
+ P(j+1)

−
Q(j+1)

+ Q(j+1)
−

]

is the 2M × 2M dimensional transfer matrix from the j th
segment to the (j + 1)th segment and γ

(j )
± , P(j )

± , Q(j )
± are all

M × M square matrices: γ
(j )
± = diag{eik

(j )
±,1Lj , . . . ,eik

(j )
±,MLj } is

diagonal with Lj ≡ xj+1 − xj being the length of the j th
segment (see Fig. 6), the βth column of P(j )

± is C(j )
±,β , and

the βth column of Q(j )
± is V(j )(k(j )

±,β)C(j )
±,β , where V(j )(k) =

diag{v(j )(k), . . . ,v(j )(k)} consists of Ncut identical 4 × 4 blocks
v(j )(k) on its diagonal, with v(j )(k) obtained from Eq. (A2) by
replacing k̂x with k.

Equation (A4) can be iterated to give

[
A(0)

α

B(0)
α

]
= M(0,2N )

[
A(2N)

α

B(2N)
α

]
,

where M(0,2N ) = M(0,1)M(1,2) · · · M(2N − 1,2N ) is the
total transfer matrix. Since (A(0)

α )β = δαβ and B(2N)
α = 0 are

known, the above equation can be rearranged to give the
reflection and transmission coefficients B(0)

α and A(2N)
α :

[
A(2N)

α

B(0)
α

]
= S(0,2N )

[
A(0)

α

B(2N)
α

]
,

where the scattering matrix

S(i,j ) =
[

S11(i,j ) S12(i,j )
S21(i,j ) S22(i,j )

]

is connected to the transfer matrix

M(i,j ) ≡
[

M11(i,j ) M12(i,j )
M21(i,j ) M22(i,j )

]

245311-6
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through [omitting the arguments (i,j ) for brevity]

S11 = M−1
11 , (A5a)

S12 = −M−1
11 M12, (A5b)

S21 = M21M−1
11 , (A5c)

S22 = −M21M−1
11 M12 + M22. (A5d)

However, in the presence of evanescent eigenmodes, the
exponentially decaying term γ

(j )
+ and the exponentially

growing term γ
(j )
− coexist in the transfer matrix formalism,

making the calculation of M(0,2N ) and hence S(0,2N ) from

Eqs. (A5) numerically unstable. An efficient way to avoid this
problem is to calculate the scattering matrix from the iterative
relations21–24 starting from S(0,0) = 1:

S11(0,i + 1) = (
1 − M−1

11 S12M21
)−1

M−1
11 S11,

S12(0,i + 1) = (
1 − M−1

11 S12M21
)−1

M−1
11 (S12M22 − M12),

S21(0,i + 1) = S22M21S11(0,i + 1) + S21,

S22(0,i + 1) = S22M21S12(0,i + 1) + S22M22,

where Sij ≡ Sij (0,i) and Mij ≡ Mij (i,i + 1) on the right-hand
side.
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