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Thermally induced spin polarization of a two-dimensional electron gas
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Spin polarization of a two-dimensional electron gas with Rashba spin-orbit interaction, induced by a thermo-
current, is considered theoretically. It is shown that a temperature gradient gives rise to an in-plane spin polarization
of the electron gas, which is normal to the temperature gradient. The low-temperature spin polarization changes
sign when the Fermi level crosses the bottom edge of the upper electronic subband. We also compare the results
with spin polarization induced by an external electric field (current).
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I. INTRODUCTION

Spin-orbit interaction is responsible for mixing of orbital
and spin degrees of freedom. This mixing, in turn, gives rise
to a variety of interesting phenomena which are observable
experimentally.1–5 For instance, it is well known that insu-
lating materials having sufficiently low symmetry can reveal
linear magneto-electric phenomena,6 which follow from direct
coupling of magnetic and electric degrees of freedom. Such
materials can be magnetized electrically, and the induced
magnetic moment is linear in the electric field. In turn, the
magnetic field leads then to a linear electric polarization.

The situation is more complex in conducting materials,
where the electric field is inevitably associated with a charge
current. It was predicted a long time ago that the electric current
in a system with spin-orbit (SO) interaction can induce a spin
polarization of conduction electrons,7 with the polarization
vector perpendicular to the direction of the current and electric
field. This phenomenon was studied later in various systems
exhibiting SO interaction.8–13 Edelstein8 has considered the
spin polarization induced by the electric field (current) in a
two-dimensional (2D) electron gas with Rashba spin-orbit
interaction, and found that the spin polarization is in the
plane of the system and is normal to the electric field, as
shown schematically in Fig. 1 (left). The current-induced
spin polarization in a 2D electron gas for a general case of
SO interaction including both Rashba and Dresselhaus terms
has been studied theoretically in a recent paper.12 Moreover,
the current-induced spin polarization has also been proved
experimentally.1–3,14–17

On the other hand, it is well known that electric current
can also be driven by a temperature gradient, like, for
instance, in the Seebeck effect. Thus, combining the above
two phenomena, one can expect that spin polarization of a
system can be induced by the gradient of temperature (by
the thermo-current) as well, as shown schematically in Fig. 1
(right). Physical origin of spin polarization, however, is now
different, as the electric field and the temperature gradient
affect the carrier distribution in quite different ways. As the
applied electric field shifts the Fermi surface of electrons in the
momentum space, the temperature gradient makes different
“smearing” of the Fermi surface at different temperatures.
Spin polarization of a two-dimensional electron gas, induced

by a temperature gradient, was considered theoretically by
Wang et al.18 in terms of the Boltzmann kinetic equation, who
showed that the induced spin polarization is in the layer plane
and normal to the temperature gradient. It is worth noting,
that spin-related thermoelectric phenomena, like, for instance,
spin Seebeck and spin Nernst effects, are currently of great
interest.19–22

In this paper the spin polarization induced by a temperature
gradient is considered within the linear response theory and
the temperature (Matsubara) Green function formalism. We
analyze in detail variation of the induced spin polarization
with position of the Fermi level. Moreover, we analyze the
temperature dependence of the effect in the temperature regime
where the spin relaxation time can be considered as constant
(independent of temperature). As in Ref. 18, we show that
the spin polarization is in the plane of the 2D electron gas.
However, we found some new features of the spin polarization
induced by temperature gradient. More specifically, we show
that the spin polarization in the low-temperature regime
changes sign when the Fermi level crosses the bottom edge
of the upper subband. Furthermore, as the spin polarization
for the Fermi level above this edge is linear in the chemical
potential and spin-orbit parameter, this linearity does not hold
when the Fermi level is below the edge. For completeness, we
also apply the same method to spin polarization induced by
the electric field (charge current).

The paper is organized as follows. In Sec. II we present
some general considerations on the system and method used
to calculate spin polarization induced by temperature gradient.
Description of the two-dimensional electron gas with Rashba
interaction is presented in Sec. III, where also some analytical
formulas for the spin polarization are derived. Numerical
results on the spin polarization induced by a temperature
gradient are presented and discussed in Sec. IV. In turn, the
spin polarization induced by electric field is considered in
Sec. V, whereas summary and final conclusions are in Sec. VI.

II. GENERAL CONSIDERATIONS

To describe energy transport, a fictitious “gravitational”
potential has been introduced a long time ago by Luttinger.23

Gradient of this potential is a driving force for the energy
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FIG. 1. (Color online) Schematic illustration of the electric-
field-induced (left side) and thermally induced (right side) spin
polarization.

current—analogously as the gradient of electrostatic potential
is a driving force for charge current. It was shown that
the transport coefficients corresponding to the “gravitational”
potential coincide with those appropriate for the temperature
gradient.23 The concept of gravitational potential was explored
in a couple of papers.24,25 In this paper we use another
approach, similar to that developed in Refs. 26 and 27.
Instead of the “gravitational” potential, we introduce here
an auxiliary (“gravitational”) vector field, which may be
considered as an analog of the vector potential in the theory of
electromagnetism.

Thus, we consider a system that can be described by the
Hamiltonian H = H0 + V , where H0 includes kinetic and
spin-orbit interaction terms, while V is a perturbation induced
by the “gravitational” field, which we write in the form,

V = −ĵQ · A. (1)

Here, A is a vector field, which can also be understood as
an auxiliary field, response to which gives the heat current,
ĵQ = −∂H/∂A. In turn, the heat current operator ĵQ in Eq. (1)
is defined as

ĵQ = 1
2 [(H0 − μ),v]+ , (2)

where [A,B]+ = AB + BA and v is the velocity operator.
Applying the formalism to the well-known results on

the Seebeck effect, one may identify Ai(ω) as Ai(ω) =
i
ω

∇i T

T
. Thus, applying the imaginary-time (Matsubara) Green

function formalism, one can write the thermally induced spin
polarization of the system, linear in ∇T/T , in the form,

Sj (ωm) = −1

2

∇iT

T

iT

ωm

Tr
∫

d2k
(2π )2

∑
n

σj

× G0
k(εn + ωm)[(H0 − μ),vi]+G0

k(εn), (3)

where σj are the Pauli matrices, G0
k(εn) is the tempera-

ture Green’s function corresponding to the Hamiltonian H0,
the sum goes over imaginary discrete Matsubara energies
εn = (2n + 1)iπT while ωm = 2miπT for (m,n ∈ Z). Upon
calculating the sum over Matsubara energies in Eq. (3) and
making analytical continuation to the whole complex plane,
one takes the limit ω → 0, which allows one to find the
static spin polarization.28 Below we apply the above-described
approach to the thermally induced spin polarization of a 2D
electron gas with Rashba SO interaction.

III. SYSTEM AND SOLUTION

In the following we will use the units with h̄ = 1. Hamilto-
nian H0 of the 2D electron gas with Rashba interaction in the

basis of plane waves can be written in the form,

H0 = εk + α(kyσx − kxσy), (4)

where α is the Rashba SO coupling parameter, and εk =
k2/2m. We assume that the temperature gradient is along the
axis y, and calculate the spin polarization along the axis x (the
other components vanish). Let us consider first the case of a
finite temperature, when both subbands of the electron states
described by the Hamiltonian (4) are populated for arbitrary
chemical potential μ. The spin polarization can be calculated
from Eq. (3), with the Green function G0

k given by

G0
k(εn) = εn − εk + μ + α(kyσx − kxσy)

(εn − E1k + μ)(εn − E2k + μ)
. (5)

Here E1,2k = εk ± αk are the dispersion relations of the two
(upper and lower) electron subbands corresponding to the
Hamiltonian H0.

Upon inserting Eq. (5) into Eq. (3), we calculate the trace
and then calculate the sum over Matsubara energies εn by
integrating over an appropriate contour in the complex plane.
Then we make analytical continuation to the complex plane,
and take the limit ω → 0. As a result, one finds the dominant
contribution to the induced spin density Sx in the form,

Sx = ∇T

T

∫
dk

2π
τkεk(εk − μ)[f ′(E1k) − f ′(E2k)]

+ α

2

∇T

T

∫
dk

2π
τkk(2εk − μ)[f ′(E1k) + f ′(E2k)], (6)

where f ′(ε) is the first derivative of the distribution function.
In order to take into account relaxation processes, we have
also replaced δ → 1/2τk , with τk being the relevant relaxation
time (k dependence means effectively the energy dependence).
Here, δ is an infinitesimally small number which emerges from
integration over the contour in the complex plane.28 Generally,
τk also depends on temperature T , which is not indicated
explicitly.

Since α is rather small, the derivative of the distribution
functions can be expanded for α � T , which leads to the
following formula for spin density,

Sx = 2α
∇T

T

∫
dk

2π
τkkεk(εk − μ)f ′′(εk)

+ α
∇T

T

∫
dk

2π
τkk(2εk − μ)f ′(εk). (7)

This formula clearly shows that the leading term in spin
polarization for α � T is linear in α, and that the spin
polarization vanishes for α = 0.

The above expansion, however, is not valid in the limit
of low temperatures, where the derivatives of the distribution
functions are sharp. We derive now some approximate formula
for low-T spin polarization by replacing the derivatives
in Eq. (6) by the corresponding delta-Dirac functions. We
will distinguish the cases of positive and negative chemical
potentials, μ > 0 and μ < 0. In the former case both electron
subbands are then occupied with electrons, while in the later
case only the lower subband, E2k , is populated. Let us consider
first the case of μ > 0. From Eq. (6) one finds the dominant
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contribution (linear in α) in the form,

Sx = αμ
∇T

T

m

2π
τkF

. (8)

Here, τkF
is the relaxation time at the Fermi wave vector kF

corresponding to zero spin-orbit coupling, kF = √
2mμ. In

turn, when μ < 0, only the lower band, E2k , is populated, but
there are two Fermi vavectors, k±

F2 = αm ±
√

α2m2 + 2mμ.
From Eq. (6) one finds then the dominant contribution in the
form,

Sx = αμ
∇T

T

m

2π

n∗

n
τ0, (9)

where τ0 = τkF =0 and μ � −α2m/2. The latter condition
follows from the position of the lower band edge. Apart
from this, n is the electron concentration corresponding to the
Fermi level μ, while n∗ is the corresponding electron density
when μ = 0. For instance, assuming parameters typical of
GaAs-based quantum wells, i.e., α = 2 × 10−9 eV cm, kF =
107 cm−1, τ = 10−11 s, T = 6.5 K, and 
T = 5 K at the
sample of length 0.1 cm, one can estimate the spin polarization
Sx to be of an order of Sx 	 2 × 109 cm−2.

IV. NUMERICAL RESULTS

In the low-temperature regime we have found above some
approximate analytical solutions. For higher temperatures,
however, one needs to find the integrals in Eq. (6) or Eq. (7).
To do this, we need to know the explicit form of the relaxation
time τk . For simplicity, the numerical results will be presented
for a specific case, where τk is independent of k, τk = τ , at
the energy scale of the order of kT around the Fermi level.
Since the maximum temperature and chemical potential are
comparable (kT ∼ |μ|), we assume that τ is constant in the
considered range of T and μ. Such a situation takes place,
for instance, in the case when the dominant contribution
to relaxation time comes from scattering on nonionized
impurities,29 where one finds 1/τ = 4π2e4Nim/ε2

0κ
2
0 . Here,

Ni is the impurity concentration, ε0 is the dielectric constant,
and κ0 is the Thomas-Fermi momentum. For kT ∼ |μ| <

10 meV, and for sufficiently large impurity concentration, this
approximation is reasonable.

When the relaxation time is constant, τk = τ , the low-
temperature approximate solutions are then given by Eqs. (8)
and (9) with τkF

= τ and τ0 = τ , respectively. In turn, in
the finite temperature regime the integrals in Eq. (6) or (7)
can be easily calculated by changing the integration variable
from k to εk . The dependence on temperature is now more
complex as additionally the distribution functions contribute
to this dependence. Numerical results on the spin polarization
induced by temperature gradient are shown in Fig. 2. For
convenience, we normalized there the spin polarization to
τ (∇T/T ) and the normalized spin polarization is presented
as a function of the chemical potential μ for different
temperatures T . Consider first the upper part [part (a)] of this
figure, which describes the range of positive μ, μ > 0, i.e.,
the range which is most relevant experimentally. According
to Eq. (8), the spin polarization for low temperatures grows
linearly with increasing μ, i.e., with increasing electron
concentration (at constant ∇T/T ). This linear behavior does

FIG. 2. (Color online) Spin polarization induced by temperature
gradient, normalized to τ (∇T/T ) and shown as a function of
chemical potential μ for indicated values of temperature. Here, (a)
presents the situation for μ > 0, while (b) shows spin polarization for
low chemical potentials, down to values below the band edge. The
inset in (a) shows the temperature dependence of the spin polarization,
while the inset in (b) corresponds to T = 1 K. The other parameters
are α = 2 × 10−11eV m, m = 0.05m0, where m0 is free electron mass.

not hold at higher temperatures [see Fig. 2(a)]. Apart from this,
keeping constant temperature gradient one can conclude that
the spin polarization decreases with increasing temperature.
This is clearly shown in the inset in Fig. 2(a), where to
emphasize the temperature dependence, Sx is normalized to
τ∇T instead of τ (∇T/T ).

Figure 2(b), in turn, shows the normalized spin polarization
in the range of low chemical potentials—down to values below
the bottom of the lower subband (band edge). We remind
the readers that the band edge of the upper subband E2k is
shifted by spin-orbit interaction to a negative energy, indicated
in Fig. 2(b) as the band edge. The approximate solution for
the low-temperature spin polarization, given by Eqs. (8) and
(9), is also shown in Fig. 2(b). As one can easily note, the
formulas (8) and (9) describe very well the low-temperature
spin polarization, except for chemical potentials very close
to the band edge. Apart from this, spin polarization at low
temperatures changes sign at μ = 0, and becomes negative for
negative μ. When μ is below the band edge, both subbands are
empty at T = 0 (electrons are localized at the donor states), but
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for a nonzero T some electrons are excited to the 2D subbands
and a tail in the spin polarization appears for μ below the band
edge [see Fig. 2(b)].

The above numerical results clearly show that spin polariza-
tion can be induced by a temperature gradient. As mentioned
already in the introductory part, the spin polarization can also
be induced by a charge current (electric field), as shown already
by Edelstein.8 Below we calculate the current-induced spin
polarization assuming the same conditions as above. This will
allow us to compare the results on spin polarization induced
by a temperature gradient with those obtained with an electric
field.

V. SPIN POLARIZATION INDUCED BY ELECTRIC FIELD

Now we derive some formulas for spin polarization due
to electric current flowing through the system. Instead of a
temperature gradient, however, there is now an electric field
E = (0,Ey,0). Accordingly, Hamiltonian (1) is now replaced
with V = −ev · A, where A is the vector potential for the
electromagnetic field. Following the same methodology as
above, the x component of spin polarization induced by the
electric field can be written as

Sx(ωm) = −eEy

iT

ωm

Tr
∫

d2k
(2π )2

∑
n

σxG
0
k(εn + ωm)vyG

0
k(εn).

(10)

For finite temperatures and constant relaxation time τ , the
above formula leads to the following expression for static Sx :

Sx = eEyτ

∫
dk

2π
εk[f ′(E1k) − f ′(E2k)]

+ αeEy

∫
dk

2π
k[f ′(E1k) + f ′(E2k)], (11)

which can be used for numerical calculations. In turn, the spin
polarization at T = 0, can be obtained in a similar way as the
analytical formulas (8) and (9) in the case of a temperature
gradient. For positive chemical potentials one arrives then at
the following formula:

Sx = αeEy

m

2π
τ, (12)

which coincides with the known expression for spin polariza-
tion induced by electric current.8,11,13 In turn, when μ < 0 the
corresponding formula reads

Sx = αeEy

m

2π

n

n∗ τ. (13)

Numerical results for current-induced spin polarization are
shown in Fig. 3, where (a) corresponds to positive μ, while
(b) presents spin polarization for low chemical potentials,
down to values below the band edge, when the subbands
are populated for nonzero temperatures. As before, the spin
polarization increases with increasing μ. There is, however,
no sign change of the spin polarization, contrary to the case
of thermally induced spin polarization. Furthermore, the spin
polarization decreases with increasing temperature, except for
the chemical potentials in the vicinity of the band edge.

FIG. 3. (Color online) Spin polarization induced by electric field,
normalized to τeEy and shown as a function of chemical potential
for indicated temperatures. Here, (a) corresponds to positive chemical
potentials μ > 0, while (b) shows spin polarization for low chemical
potentials, down to values below the band edge. The other parameters
are as in Fig. 2.

VI. SUMMARY

We have calculated spin polarization of a 2D electron gas
with Rashba spin-orbit coupling, induced by a temperature
gradient as well as by electric field. We have shown that
the thermo-current can effectively induce spin polarization
in the plane of the electron gas and normal to the direction
of the temperature gradient. The method we applied is based
on the concept of “gravitational” potential, but we used the
Green function formalism requiring rather an auxiliary vector
potential. We have shown that the thermally induced spin
polarization changes sign when the Fermi level crosses the
band edge of the upper subband. The results also show that the
thermally induced spin polarization decreases with increasing
temperature. Additionally, we have calculated the electric-
field-induced spin polarization as a function of chemical
potential and temperature. Contrary to the case of thermally
induced spin polarization, there is now no change of the spin
polarization sign. We note that the analytical results are valid
for arbitrary dependence of the relaxation time on energy and
temperature. Numerical results, however, have been presented
for a constant relaxation time, which allows to emphasize those
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features of the spin polarization, which are independent of the
specific energy and temperature dependence of the relaxation
time.
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