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Probing the Rashba effect via the induced magnetization around a Kondo impurity
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When a single magnetic adatom is deposited on a surface of a metal, it affects the charge and spin texture of the
electron gas surrounding it. The screening of the local moment by conduction electrons gives rise to the Kondo
effect. Here we investigate the effect of the Rashba spin-orbit coupling on the local magnetization density of
states (LMDOS) around a Cobalt impurity on an Au(111) surface in a magnetic field. We show that the in-plane
component of the LMDOS is exclusively associated with the Rashba spin-orbit interaction. This observation
can be experimentally exploited to confirm the presence of the Rashba effect on surfaces, such as Au(111), by
performing spin-polarized scanning tunneling microscopy measurements around the Kondo impurity.
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I. INTRODUCTION

In two-dimensional structures, the coupling between the
spin and angular momentum can lead to a variety of interesting
phenomena.1 Interestingly enough, the Rashba spin-orbit
(SO) interaction2 has become one of the intriguing and de-
sired ingredients of modern nanoelectronics and spintronics.3

Studying the Rashba-induced effects for atoms placed on
surfaces is especially interesting because, on one hand, it
opens up a way to probe the strength of the SO coupling, and
on the other hand, it may allow one to explore the interplay
between the Kondo screening and the SO interaction. In this
regard, the Au(111) surface is very promising since it exhibits
a measurable energy splitting of surface band states, which
was first experimentally observed by LaShell et al.4 However,
because the Friedel oscillations induced by an adatom remain
practically unaffected by the Rashba SO interaction,5 the
presence of the Rashba effect could not be verified by typical
scanning tunneling microscopy (STM) measurements, focused
mainly on the charge transport spectroscopy. Measurable local
electron density changes do appear in the case of quantum
corrals.6,7 Also, the Rashba effect of a two-dimensional (2D)
gas created by Cs atoms on p-type InSb(110) has been
experimentally quantified by STM, where it shows up as a
beating pattern as a function of applied voltage.8 The influence
of the SO interaction on the Kondo physics was also studied
in C nanotubes.9 It has been noticed only very recently that
placing a magnetic adatom on the surface can help probe
the Rashba spin-orbit effect. By treating the impurity at the
classical level and in the absence of the Kondo effect, Lounis
et al.10 have shown that the induced spin polarization of the
electron gas surrounding the magnetic adatom exhibits a spin
texture, which is a superposition of two skyrmionic waves with
opposite chirality. This has been attributed to the presence of
the Rashba SO interaction.

In the present work we pursue this problem further and
study the local texture of the spin-resolved density of states
around the magnetic adatom in the case of nontrivial many-
body interactions, such as the ones leading to the Kondo
effect,11 and in the presence of an external magnetic field
applied along the zth direction. The Kondo effect, which occurs

when a local impurity spin in a metallic host is screened by the
conduction electrons, is undoubtedly one of the fundamental
effects in condensed matter physics.12 It has been shown that
the Kondo effect survives in the presence of SO interaction.13

It was later predicted that the Rashba coupling will change
the Kondo temperature through a modification of the effective
bandwidth,14 and this analysis was continued by others.15–18

Here we investigate how the induced local magnetization
density of states (LMDOS) around a magnetic adatom in the
Kondo regime, in the presence of an external magnetic field,
is affected by the Rashba SO interaction.

In the many body formalism, the LMDOS, M(r,E), can
be expressed in terms of the retarded, single-particle Green’s
function, G(r,r′,E), as

M(r,E) = − 1

π
Im Trσ {σ G(r,r,E)} , (1)

where σ are the Pauli matrices, E is the energy measured with
respect to the Fermi energy EF , and r is the in-plane distance
from the impurity. The real-space Green’s function G(r,r,E)
shall be computed in terms of the many-body T matrix for
the conduction electrons, which describes the scattering of the
surface electrons off the impurity.

To make quantitative estimates, we focus on a Co atom
on an Au(111) surface,19,20 for which a Kondo temperature
TK of about 75 K was extracted from STM spectroscopy
measurements.20 The Au(111) surface is modeled within the
tight binding approximation (TBA), which, in spite of its
simplicity, is able to properly describe the dispersion of the Au
surface states.21 To capture the Kondo physics correctly, the
Co impurity is described in terms of the Anderson model.22

The many-body T matrix is related to the Green’s function
describing the local orbitals of the Co ion (see Sec. II B2),
which can be then computed with the aid of the numerical
renormalization group (NRG) method,23 known as the most
versatile and accurate in treating quantum impurity problems.
Moreover, to make realistic predictions, in NRG calculations
we take into account the full energy dependence of the density
of states (DOS) of the Au(111) surface. While in general
the magnetic impurity itself can have a complicated orbital
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FIG. 1. (Color online) Spatial distribution of the radial compo-
nent Mr (left panel) and of the total LMDOS M (right panel) at
energy E = −2 meV below the Fermi surface, and for a magnetic
field B = 3 T applied along the zth direction. The smaller (orange)
spheres indicate the position of the Au atoms on the Au(111) surface,
and the large (black) sphere represents the magnetic adatom. The
arrows indicate the amplitude and direction of the LMDOS.

structure, and channels with different symmetries may couple
to the surface, within the NRG approach the coupling is
assumed to have an s-wave symmetry.

One of the main results of this paper—a nonvanishing
in-plane magnetization Mr—is sketched in Fig. 1 together
with the total magnetization M in a magnetic field, B = 3 T.
Notice that at B = 0, the local polarization vanishes, M = 0.
Although the total LMDOS M = (Mx,My,Mz) is an important
quantity, we have found that the in-plane component Mr is
much more interesting, as it is strongly affected by the presence
of the SO interaction. On the other hand, the out-of-plane part,
Mz, depends weakly on the Rashba interaction and displays a
spatial behavior that is somewhat similar to the one observed
in the local density of states (LDOS).19,24–26 More than that,
Mr is a pure Rashba effect, as it vanishes if the SO interaction
is turned off.

Experimentally, it is possible to measure the radial com-
ponent of the energy-dependent LMDOS with the state-
of-the-art spin-polarized STM techniques,27 which can thus
provide an important information on the presence and strength
of the Rashba SO interaction. In this paper, using realis-
tic parameters, we study the behavior of the energy and
position-dependent LMDOS in the region around the magnetic
impurity.

The paper is organized as follows. In Sec. II we introduce
our model Hamiltonian that describes the Au surface. The
description of the magnetic impurity problem is also presented
in the same section. In Sec. III we present and discuss our
numerical results. We close with conclusions in Sec. IV, where
our main findings are reiterated.

II. THEORETICAL FRAMEWORK

A. Modeling the Au(111) surface

Let us introduce the details of the lattice under investi-
gation, the tight-binding Hamiltonian describing it, and the
corresponding band structure. The Au(111) surface presents
a hexagonal structure, with one atom per unit cell. The
basis vectors of the direct lattice are t1 = (

√
3/2,1/2) a and

t2 = (−√
3/2,1/2) a, with a the lattice constant (a = 5.75 Å).

Here we are particularly interested in the changes induced
locally by a magnetic impurity in the LMDOS. We shall

not address the so-called herringbone reconstruction,28 which
may be relevant when analyzing photoemission spectra. Also,
the external magnetic field is assumed to produce no kinetic
effects on the surface states, as its effect is marginal. In
spite of its simplicity, this tight binding description is rather
robust, and can be checked against more sophisticated ab initio
band structure calculations,29 or compared to experimentally
measured binding energies.4

1. Hamiltonian for the Au(111) surface

We model the Au(111) surface in terms of a tight binding
Hamiltonian,21 taking into account the hopping between
the nearest-neighbor pz orbitals subject to the Rashba SO
interaction

H0 =
∑
〈r,r′〉

∑
σ

(tr,r′ + Ep δr,r′ )�†
r,σ�r′,σ

+ iα
∑
〈r,r′〉

∑
σσ ′

[
σ × r − r′

|r − r′|
]z

σσ ′
�†

r,σ �r′,σ ′ . (2)

The first term describes the hopping and the on-site energies,
while the second one is due to the Rashba spin-orbit coupling.
Here, �

†
r,σ creates an electron in the Au pz orbital at position

r with spin σ , tr,r′ are the nearest-neighbor hoppings between
these orbitals, and Ep denotes their on-site energies. In the
second term, α is the strength of the Rashba interaction.

By fitting the tight binding dispersion, ετ (k), to the
experimentally measured binding energy of Ref. 4 along
the 	̄M̄ direction, one can extract the band parameters:21

t = −0.30 eV, EP = 1.41 eV, and α = 0.02 eV. We note
that the effect of the external magnetic field on the surface
electrons is rather minimal. A simple analysis of the energies
involved shows that the Zeeman splitting for a magnetic
field of about 3 T (the g factor was taken to be g = 2.5) is

EZ = 0.43 meV, i.e., five times smaller than the Rashba
energy: ER = −3α2/(2t) = 2.08 meV, and tiny as compared
to the band parameters t and Ep. Consequently, the effect of
the magnetic field on the conduction electrons is neglected.

The Hamiltonian (2) can be diagonalized in Fourier space
by expanding the field operators �r,σ as

�r,σ = 1√
�

∑
k,τ

eik r eτ,σ (k) ck,τ , (3)

where � is the number of unit cells, and ck,τ annihilates an
electron with momentum k in the chiral band τ = ±1. Then,
the dispersion isετ (k) = Ep + G(k) + τ |F (k)|, with

G(k) = 2t

[
2 cos

(√
3

2
kxa

)
cos

(
1

2
kxa

)
+ cos(kya)

]
,

F (k) = −α

[
(1 +

√
3i) sin

(√
3

2
kxa + 1

2
kya

)

+ (1 −
√

3i) sin

(−√
3

2
kxa + 1

2
kya

)
+ 2 sin kya

]
.

(4)

Here, the form factor G(k) is coming from the nearest-
neighbor hopping and F (k) is due to the Rashba SO inter-
action. The chiral band energies ετ (k), and the wave-function
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amplitudes eτ,σ (k) are determined by solving the eigenvalue
equation ∑

σ ′
Hσσ ′(k) eτ,σ ′(k) = ετ (k) eτ,σ (k), (5)

with Hσσ ′(k) the components of the Hamiltonian (2) in Fourier
space and spin basis. Its matrix form is

H (k) =
(

Ep + G(k) F (k)

F (k)∗ Ep + G(k)

)
. (6)

The corresponding eigenvectors can be evaluated analytically,

e+(k) = 1√
2

(
1,

F (k)∗

|F (k)|
)T

,

(7)

e−(k) = 1√
2

(
1, − F (k)∗

|F (k)|
)T

.

Then, in terms of the creation and annihilation operators for
electrons in the chiral basis, H0 becomes

H0 =
∑
k,τ

ετ (k) c
†
k,τ ck,τ , (8)

with the operators ck,τ satisfying the canonical anticommu-
tation relations, {ck,τ ,c

†
k′,τ ′ } = δ(k − k′)δτ,τ ′ . In this way, the

surface can be described in terms of free states, but with some
chiral band structure.

2. Noninteracting Green’s function

In the noninteracting limit, the retarded Green’s function in
the real space is defined in terms of the field operators for the
conduction electrons as

G(0)
σσ ′(ri ,t ; rj ,t

′) = −iθ (t − t ′)〈{�ri ,σ (t),�†
rj ,σ ′(t ′)}〉0, (9)

where θ (t) is the Heaviside function. Because of the spin-orbit
interaction, G(0)

σσ ′(ri ,t ; rj ,t
′) is diagonal in the chiral, but not

in the spin space. In this context, the Fourier transformed,
noninteracting retarded Green’s function for the chiral band τ

is G(0)
τ (k,ω) = [ω − ετ (k) + i0+]−1. Then, transforming back

to the spin space one gets

G(0)
σσ ′(ri ,rj ,ω) =

∑
k,τ

eτ,σ (k)e∗
τ,σ ′(k)eik(ri−rj )

ω − ετ (k) + i0+ . (10)

This expression allows us to evaluate the density of states
(DOS) for the conduction electrons as

�(0)(ω) = − 1

π
Trσ Im G(0)

σσ (ri ,ri ,ω). (11)

In Fig. 2 we show the DOS computed by using Eq. (11) for
the Au(111) surface. It displays a large van Hove feature at ω ≈
2.03 eV and two sharp singularities at the band tails, see the
insets in Fig. 2. The latter features are induced by the presence
of the Rashba SO interaction. The van Hove singularity at
high energy is due to the flattening of the upper band at the M̄

point,21 and shows up irrespective of the SO interaction. This
DOS will be the input for the NRG calculations when solving
the quantum impurity problem.

FIG. 2. The normalized DOS for the Au(111) surface obtained
within the TBA. The two insets show the singularities at the band
tails due to the Rashba SO interaction.

B. Modeling the quantum impurity

1. Impurity Hamiltonian

To carry out the quantitative analysis of our magnetic
impurity problem, we first need to establish how the magnetic
ion couples to the chiral bands. We consider here the top
configuration, in which one Co atom is located on top of an
Au atom, to which it hybridizes. The hybridization with all
the other neighboring Au atoms is neglected. We have also
considered other geometrical configurations (the results are
not presented here), where, for example, the Co atom is placed
in plane, in the middle of a hexagon, or substitutes an Au atom,
hybridizing with the nearest neighbors. Despite its simplicity,
the considered top configuration captures entirely the essential
physics. Correspondingly, the hybridization Hamiltonian is
written as

HV = V
∑

σ

(
�†

rimp,σ
dσ + H.c.

)
. (12)

Here rimp labels the Au site below the Co impurity, dσ

annihilates an electron with spin σ at the Co orbital, and V

denotes the hopping between the two orbitals. Within the NRG
approach, it is convenient to model the magnetic impurity
by a single local orbital which carries only a spin label.
Transformed to the chiral basis, Eq. (12) becomes

HV =
∑
τ=±

∑
k,σ

(Vτ,σ (k)c†k,τ dσ + H.c.). (13)

This expression is quite general, and the particular location
of the impurity atom is reflected in the k dependence of
the hybridization factor, Vτ,σ (k). For the top configura-
tion, one has Vτ,σ (k) = V e∗

τ,σ (k). Using Eq. (7) for the

eigenvectors, one then finds Vτ,↑(k) = V/
√

2 and Vτ,↓(k) =
τ V F (k)/(

√
2|F (k)|). With the hybridization Hamiltonian

(13) at hand, the total Hamiltonian that describes the Co ion
itself and the hybridization to the surface is

H = Himp + HV , (14)
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with

Himp =
∑

σ

εdσ d†
σ dσ + Un↑n↓. (15)

This Hamiltonian is similar to the single-impurity Anderson
Hamiltonian,22 but with a somewhat modified hybridization.
The first term in Eq. (15) describes the on-site energy εdσ =
εd ± 1

2gμBB of the localized orbital, where we included a
Zeeman splitting term due to the external magnetic field B

applied along the zth direction. We assume that the g factor
for the Co atom on the Au(111) surface is around g = 2.5.
In the second term, U represents the Coulomb repulsion felt
when two electrons with opposite spins occupy the orbital,
with nσ = d†

σ dσ denoting the occupation number. We take U

and εd from ab initio calculations:30 εd = −0.84 eV and U =
2.85 eV. The hybridization amplitude V is fixed by the Kondo
temperature itself. Here, we define the Kondo temperature TK

as the half width at half maximum (HWHM) of the spectral
function for the local orbital operator dσ in the absence of
an external magnetic field. Then, to get TK = 75 K, we take
V = 0.25 eV.

In the presence of an SU (2) spin symmetry, the electrons
in the spin={↑,↓} channels are scattered in the same way by
the magnetic impurity. To observe any spin-resolved signal, it
is necessary to break this symmetry by applying an external
magnetic field along the zth direction. Then, the scattering
becomes spin dependent, as the Kondo resonance is spin
split.31,32 One drawback of such a setup is due to the large
Kondo temperature:33 a relatively large magnetic field is
necessary to produce a detectable splitting of the Kondo
resonance. Here we have considered B = 3 T.

2. Calculation of the T matrix

To solve the quantum impurity problem, we employ
Wilson’s NRG method.23 NRG is a powerful tool for accurate
calculations of equilibrium properties of arbitrarily complex
quantum impurities coupled to electron reservoirs.34 The
method consists in the logarithmic discretization of the
continuum of conduction states, followed by a mapping to
a one-dimensional chain Hamiltonian (Wilson chain) with
exponentially decaying hoppings. The mapping starts with
expanding the operators ck,τ in terms of the eigenfunctions of
the angular momentum,35

ck,τ = 1√|k|
∞∑

m=−∞

1√
2π

eimφcm
k,τ (16)

and then constructing an effective impurity model by inte-
grating out the electronic angular momentum modes. The
broadening felt by the impurity is given by the imaginary
part of the hybridization function


σ (ω) =
∑

τ

∑
k

|Vτ,σ (k)|2
ω − ετ (k) + i0+ . (17)

To a first approximation, the Rashba spin-orbit coupling
is weak and does not affect the impurity spectral function

↑(ω) = 
↓(ω).

To determine the LMDOS, Eq. (1), one needs to calculate
the full Green’s function Gσσ ′(r; r; ω), which can be expressed
in terms of the T matrix by using the Dyson equation. Let

FIG. 3. (Color online) The energy dependence of the spin-
dependent spectral function Aσ (ω) of the local orbital around the
Fermi level, calculated within the NRG approach. The splitting
of the Kondo resonance is due to the external magnetic field,
B = 3 T. The inset shows the full energy dependence of Aσ (ω). The
parameters for the Anderson model are V = 0.25 eV, U = 2.85 eV,
and εd = −0.84 eV.

us now focus on the calculation of the T matrix itself. For
quantum impurity models, one of the most elegant ways to
perform this task is to relate it to some local correlation
function that can be computed numerically with the NRG. For
the Anderson model, the T matrix is related to the Green’s
function of the dσ operators.36,37 For a constant and real
coupling V , the imaginary and real parts of the spin-resolved
T matrix are then given by

ImTσ (ω) = −π V 2 Aσ (ω),
(18)

ReTσ (ω) = V 2 P
∫

dω′Aσ (ω′)
ω − ω′ ,

with Aσ (ω) the spectral function of the dσ operators and P
denoting a principal value integral. To obtain reliable results
for the spin-dependent spectral functions, we have employed
the density-matrix NRG.38 In addition, we have included in
our calculations the full energy dependence of �(0)(E) for the
Au(111) surface.

In Fig. 3 we show the energy dependence of the spin-
resolved spectral function Aσ (ω) in the vicinity of the Fermi
level, with the inset presenting its full energy dependence.
Although �(0)(E) shows a gap below E < −0.42 eV (the
bandwidth in the NRG calculations was fixed to D = 2.5 eV),
the two Hubbard satellites and the Kondo peak at the
Fermi level are clearly visible. The splitting of the Kondo
resonance for B = 3 T is visible in Aσ (ω). Within our model
	 = πV 2�(0) � TK � 
E

imp
Z , with 
E

imp
Z the Zeeman

splitting. The applied magnetic field is not strong enough
to suppress the Kondo resonance, however, it is sufficient to
produce a spin-resolved response detectable in the LMDOS.
The Aσ (ω) in Fig. 3 was computed at T = 0, but it can be
argued that our findings remain valid as long as we are in the
Kondo regime: T < min{TK,B}. If the temperature increases,
the Kondo peak becomes suppressed and eventually, at high
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(a) (b)

(d)(c)

FIG. 4. (Color online) (a) The spatial distribution of the zth
component of the LMDOS, Mz, around the Kondo impurity at energy
E = −2 meV, below EF and (c) the corresponding cuts at different
energies. The impurity is located at the center. The pattern formed
around the magnetic impurity has a hexagonal symmetry and exhibits
oscillations with distance from the impurity, with a period depending
on the energy. The bright (dark) color corresponds to maximum
(minimum) value of Mz. (b) Mz as a function of energy and distance
from the impurity along the x direction, and (d) the energy dependence
of Mz(E) calculated at the impurity site and the two nearest-neighbor
sites.

temperatures T � TK , it is completely smeared out by thermal
fluctuations.

III. LMDOS: ANALYSIS OF THE NUMERICAL RESULTS

In this section we shall describe how we compute the
LMDOS. As discussed in Sec. I, the LMDOS can be related to
the single-particle Green’s function, see Eq. (1), and satisfies
the Dyson equation, when expressed in terms of the T matrix.
While this expression is somewhat cumbersome in the chiral
basis due to the presence of different form factors, in the spin
space it simplifies considerably:

Gσσ ′(r,r′,ω) = G(0)
σσ ′(r,r′,ω) +

∑
σ ′′

G(0)
σσ ′′(r,rimp,ω)

× Tσ ′′ (rimp,ω)G(0)
σ ′′σ ′(rimp,r′,ω). (19)

The LMDOS can be calculated from δ Gσσ ′(r,r,ω) =
Gσσ ′(r,r,ω) − G(0)

σσ ′(r,r,ω), by replacing G(r,r,ω) →
δG(r,r,ω) in Eq. (1). Notice that the spin impurity acts as a
simple point scatterer, and that in the magnetic response, only
the second term in Eq. (19) gives a finite contribution.

Within the present formalism, we are able to analyze
both the spatial and the energy dependence of the local
magnetization components. Here we will focus on Mr and
the out-of-plane, Mz component of the LMDOS. The spatial
distribution of the Mz, calculated at energy E = −2 meV,

(a) (b)

(d)(c)

FIG. 5. (Color online) (a) The spatial distribution of the in-plane x
component of the LMDOS, Mx , around the Kondo impurity at energy
E = −2 meV, and (c) the corresponding cuts (in the x direction) at
different energies. (b) Mr as a function of energy and distance from
the impurity along the x direction, and (d) the energy dependence of
Mr (ω) calculated at the nearest and next-nearest neighbor sites.

is displayed in Fig. 4(a). The bright (dark) areas correspond
to the maxima (minima) of Mz. One can see that its spatial
dependence displays a hexagonal symmetry with respect to
the position of the magnetic impurity. Moreover, Mz exhibits
oscillations with an energy-dependent period. This behavior
is displayed in Fig. 4(c). When moving away from the Fermi
energy, the magnitude of Mz decreases and the period of the
oscillations becomes shorter as the energy is increased from
negative to positive values. This is presented in Fig. 4(b),
which explicitly shows the energy and spatial dependence
of Mz when E is swept across the Fermi surface. Close to
EF , the asymmetry induced by B in the spin sector, together
with the presence of the split Kondo resonance, maximizes
the amplitude of the local magnetization. However, when the
energy is detuned from EF , the LMDOS becomes suddenly
suppressed, leading to a Fano-like resonance, similar to the
LDOS.39 Moreover, the shape and magnitude of such a Fano
resonance changes as one moves away from the impurity
site, see Fig. 4(d). One should note that within the TBA,
although we have represented the spatial distributions as
continuous, the calculations are only valid at the atomic
sites.

In a finite B, the features observed in Mz are present
irrespective of the presence of the Rashba SO interaction
at the surface. On the other hand, Mr is very sensitive to
the Rashba effect. Finite α implies Mr = 0, otherwise Mr

vanishes. The spatial distribution of Mr around the magnetic
impurity together with its energy dependence are presented in
Fig. 5. First of all, one can note that in the vicinity of magnetic
impurity, the amplitude of Mr is smaller by approximately
one order of magnitude than the amplitude of Mz. In fact, Mr
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vanishes exactly at the impurity site, while Mz has a maximum
there, see, for example, Figs. 4(a), 4(c), 5(a) and 5(c). However,
with increasing distance from the impurity, x > 3–4 a, both Mr

and Mz become comparable and, in fact, for larger distances,
the radial component can overtake Mz, as its decay is much
slower than that of the zth component. The basic properties of
the spatial dependence of Mr can be deduced from Fig. 5(a).
One can see that Mr is an odd function with respect to the
radial distance, and oscillates with approximately the same
period as Mz. Again, the highest amplitude of Mr occurs for
energies around the Fermi energy due to the Kondo effect,
and as the energy increases, the period of the oscillations
decreases, see Figs. 5(b) and 5(c). The spatial and energy
dependence of Mr is shown in Fig. 5(b), while Mr at some
particular positions is displayed in Fig. 5(d). It can be seen
that the shape of the resonance at the nearest-neighbor and
the second-nearest-neighbor sites is similar to that of Mz

[cf. Fig. 4(d)]. These results around the Fermi energy are
robust with respect to the parameters of our model, the only
determining parameter being TK .

Finally, we would like to emphasize that Mr is, on one hand,
proportional to the strength of the SO interaction, and on the
other hand, to the asymmetry of the T -matrix components
for the spin-↑ and spin-↓ channels. While α is an intrinsic
feature of the surface, the asymmetry between the spin-↑ and
spin-↓ channels can be changed by simply applying an external
magnetic field. This guarantees that the topographic map of
the surface develops interference patterns in Mr if the Rashba
interaction is present. Therefore, the measurement of the in-
plane component of the LMDOS offers an alternative way
to angle-resolved photoemission spectroscopy (ARPES)4 to
identify surfaces with spin-orbit interaction.

IV. CONCLUDING REMARKS

In the present work we have investigated the behavior of
the local magnetization density of states around a magnetic
impurity in the Kondo regime, coupled to a metallic surface
with Rashba spin-orbit interaction. To make realistic estimates,
we have considered a Co impurity on top of a Au(111)
surface. This problem has been addressed using band structure
calculations and the NRG method, which allowed us to obtain
reliable predictions for the LMDOS.

In particular, we have studied the spatial and energy
dependence of the LMDOS for both the radial (in-plane)
and zth (out-of-plane) components. We have found that the
in-plane component of the LMDOS is a pure Rashba effect.
Furthermore, it turned out that the radial component displays
oscillations with the distance from the impurity, and decays
much slower than the zth component, so that at larger distances,
the in-plane component may become dominant. Since Mr

vanishes in the absence of spin-orbit interaction, measuring
the radial component using spin-polarized STM, provides a
way to confirm/infirm the presence of the Rashba effect on
surfaces. Our observations provide thus an alternative route to
investigate the spin splitting of any surface states, first observed
by angle-resolved photoemission spectroscopy4 in Au(111).
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