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We show the model wave functions for the neutral collective modes in fractional quantum Hall (FQH) states
have simple analytic forms obtained from judicially reducing the powers of selected pairs in the ground state
Jastrow factor. This scheme of “pair excitations”works for the magnetoroton modes of single-component Abelian
and non-Abelian FQH states, as well as the neutral fermion mode for the Moore-Read state. The analytic wave
functions allow us to compute the “quadrupole gap” of the magnetoroton mode in the thermodynamic limit,
which was previously inaccessible to the numerics. The quadrupole gap is related to the fusion of the charges in
the two-dimensional plasma picture, extending the plasma analogy to neutral excitations. A lattice diagrammatic
method of representing these many-body wave functions and FQH elementary excitations is also presented.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE)1 is one of the
prime examples where the strong interaction between electrons
dictates the dynamics. A very fruitful approach for such a
strongly correlated system is to look for model wave functions
and model Hamiltonians that are adiabatically connected
to experimentally accessible systems. For the ground states
and charged excitations of FQHE at several filling factors,
wave functions have compact analytic forms.2–4 We can
thus infer the properties of FQHE in the thermodynamic
limit by reinterpreting the wave functions in analogy to
two-dimensional plasmas,2 or as conformal blocks of some
special conformal field theories (CFT).3,5 In general for these
approaches, incompressibility of FQHE is always assumed,
and the dynamics of the bulk gapped excitations is not
explicitly addressed.

Incompressibility of FQHE is defined by the neutral bulk
collective excitations. Such excitations are important for
understanding which topological phases of the FQHE can be
stabilized, and are also very relevant to the recent development
in fractional Chern insulator, where the issue of incompress-
ibility and its mapping to the FQHE6–12 are areas of active
research. The first formal treatment of the neutral excitations
came from the single mode approximation (SMA) for the
magnetoroton13 mode, where good model wave functions of
density wave excitations can be constructed numerically up
to the momentum of roton minimum, beyond which SMA
is no longer valid.14 Following the experimental studies of
the neutral excitations by several groups,15–19 more recently
the model wave functions are constructed numerically both
for the magnetoroton modes in the Read-Rezayi (RR) series,
and the neutral fermion mode20 in the Moore-Read (MR) state,
the latter reflecting its non-Abelian nature. One approach in
constructing the model wave functions is to treat the neutral
excitations as excitons of the composite fermions.21–23 Another
approach is to apply the formalism of Jack polynomials24 with
appropriate root configurations and clustering properties.14,25

These wave functions are in principle good for the entire range
of momenta. In practice, however, the long wavelength limit
is not accessible due to the limitation by the system size.
Interestingly, even though the underlying phenomenological

pictures of the neutral excitations can be different, it is found
numerically that both approaches mentioned above produce
exactly the same set of model wave functions with very
rich algebraic structures. Just like the ground states and bulk
charged excitations of many FQH fluids, where model wave
functions have natural forms with no variational parameters,
in this paper we show how the model wave functions for the
bulk neutral excitations can be formulated analytically, thereby
unifying previous numerical works on this issue.

This paper is organized as follows. In Sec. II the model
wave functions for both the magnetoroton mode and the
neutral fermion mode are constructed explicitly, generalizing
the Jastrow factor in the Laughlin wave function both at
odd and even filling. In Sec. III a diagrammatic scheme is
introduced to represent the bulk neutral many-body wave
functions in an intuitive way, which also shed light on the
way these neutral excitations can be interpreted as “elementary
excitations” of the FQH fluid. In Sec. IV the compact analytic
form of the model wave functions is exploited to calculate the
thermodynamic energy gap of the neutral excitations in the
long wavelength limit, which lies in the region inaccessible
to numerical calculation. This also leads to an interesting
connection of the FQHE bulk dynamics to the free energy
cost of particle fusion in the plasma analogy. Section V gives
the conclusion and discussion of the paper.

II. WAVE FUNCTION CONSTRUCTION

Previous works on the numerical generation of the neutral
excitation model wave functions are done mostly on spherical
geometry, where only gapped bulk excitations are present
for the incompressible phases. The bulk neutral excitations
are also present on disk geometry, though the spectrum is
more complicated due to the presence of edge excitations
(more comments on it in Sec. V). In the thermodynamic limit
the bulk excitations should be insensitive to the geometry
of the Hall manifold. In fact, even for finite systems, we can go
to the “conformal limit”26 on either spherical or disk geometry,
by removing the single particle wave function normalization
constant from the many-body wave functions; the resulting
model wave functions are identical. For example, the Laughlin
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wave function of the two fermions at filling factor ν = 1/3 on
the sphere is given by ψs = 1√

2
(|1001〉 − |0110〉), and on the

disk it is given by ψd = 1
2 |1001〉 −

√
3

2 |0110〉. The string of
binary numbers represents the orbital basis,14 where the 1s
denote occupied orbitals and 0s denote unoccupied orbitals.
On the sphere, the leftmost orbital is at the north pole, and
the rightmost orbital is at the south pole; on the disk, the
leftmost orbital is at the center of the disk, while the rightmost
orbital is at the edge. For two electrons, the proper number
of orbitals is four to account for the shift on the sphere.27

When the single particle normalization is removed, both wave
functions lead to the familiar Laughlin wave function in the
conformal limit ψc = |1001〉 − 3|0110〉, where the coefficient
of the root configuration |1001〉 is normalized to unity. It is
thus convenient to unambiguously rewrite the wave function
with the un-normalized single particle wave function on the
disk in the lowest Landau level (LLL), where the nth orbital
is given by zn−1

i (the Gaussian factor is omitted since it does
not play any role here for FQHE), with holomorphic variables
zi = 1√

2lB
(xi + iyi). Here xi and yi are the coordinates in the

Hall manifold, lB = √
h̄/eB is the magnetic length, and i is

the particle index. Explicitly we have

|1001〉 ∼ z3
1 − z3

2, |0110〉 ∼ z1z
2
2 − z2

1z2, (1)

and ψc=(z1 − z2)3.
Having identified the relationship between many-body

wave functions on different geometries, in this paper all
analytic wave functions are presented as polynomials of zi .
Thus in principle these model wave functions are for neutral
excitations on the disk, but they can be easily converted into
model wave functions on the sphere by multiplying appropriate
spherical single particle normalization factors. In particular,
after the conversion the model wave functions in this paper are
identical to those generated numerically in Refs. 14,21–23. On
the disk each model wave function is labeled by its total angular
momentum about the z axis perpendicular to the disk, i.e., δLz,
measured from the ground state (with the ground state having
δLz = 0). The neutral excitations are states with negative
δLz = −N (states with positive δLz contain gapless edge
excitations). When the highest weight condition is imposed,28

these states correspond to the highest weight state on the sphere
in the total angular momentum sector L = N , with all the
quasiparticles piled at the north pole.14 Since the mapping
from the disk wave functions to the sphere wave functions
is unambiguous, in this paper all model wave functions
are labeled by L instead of δLz, to facilitate comparison
with numerical works on the spherical geometry in the
literature.

On the sphere the ground state is the Laughlin wave
function in the total angular momentum L = 0 sector. The
corresponding model Hamiltonian on the disk made of
Haldane pseudopotentials29 is given by V = ∑

i<j Vij , with

Vij =
∫

d2q l2
B

2π

m−1∑
n=0

Ln

(
q2l2

B

)
e− 1

2 q2l2
B ei �q·( �Ri− �Rj ), (2)

where Ln(x) is the nth Laguerre polynomial and �Ri is the
guiding center coordinate of the ith particle. Physically, Vij

is the short range interaction that projects into the two-body
Hilbert space with the relative angular momentum smaller
than m.

We now present the wave functions of the neutral excita-
tions for the fermionic Laughlin state at filling factor ν = 1/m

in the lowest Landau level (LLL), where m is odd. The family
of the neutral excitations at different angular momentum
sectors is as follows:

A
[

(z1 − z2)m−2
′∏

i<j

(zi − zj )m
]
, L = 2,

A
[

(z1 − z2)m−2(z1 − z3)m−1
′∏

i<j

(zi − zj )m
]
, L = 3, (3)

A
[

(z1 − z2)m−2(z1 − z3)m−1(z1 − z4)m−1
′∏

i<j

(zi − zj )m
]
,

L = 4,

...

Here A indicates antisymmetrization over all particle indices,
and the prime sign on

∏′
i<j indicates the product of only pairs

{ij} that do not appear in the prefactors to the left of it. For
example, in Eq. (3) the product in the L = 2 wave function
does not contain (z1 − z2)m.

An explanation of Eq. (3) is in order here. The L = 2
state, which is the quadrupole excitation in the thermodynamic
limit,14 is obtained from the ground state by reducing the
power of one pair of particles (which we can choose arbitrarily
as particle 1 and 2 because of antisymmetrization) by two,
followed by antisymmetrizing over all particles. This scheme
naturally forbids an L = 1 state by the pair excitation,
since if we reduce the power of one pair of particles by
one, antisymmetrization kills the state. The L = 3 state is
generated by pairing particle 1 with another particle (which
we can arbitrarily choose as particle 3) and reducing their
pair power by one. It is now clear how the modes in other
momentum sectors L = 4,5, . . . are generated. Naturally for a
total of Ne particles, the family of neutral excitation modes
ends at L = Ne, agreeing with the numerical schemes in
the literature. We have numerically checked for different
system sizes that all wave functions in Eq. (3) agree exactly
with those generated in Refs. 14,21–23. Indeed, all wave
functions here satisfy the highest weight condition, and the
states relax to the ground state far away from the excited
pairs; these are exactly the conditions we used to numerically
generate the unique model wave function in each momentum
sector.14

The same scheme applies to the MR state. It is instructive
to first see how the MR ground state is obtained. The Laughlin
wave function at half filling is given by the Jack polynomial24

J−2
1010101...(zi) = ∏

i<j (zi − zj )2. For fermions this is not a valid
state; instead the ground state was constructed by a pairing
mechanism,3 which is also a Jack polynomial J−3

1100110011....
Explicitly in the wave function, the pairing reduces the
power of each pair of particles by one. For 2n particles, the
antisymmetrization reproduces the Pfaffian up to a constant as
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follows:

Pf

(
1

zi − zj

) ∏
i<j

(zi − zj )2

∼ A
[

(z1 − z2)(z3 − z4) · · · (z2n−1 − z2n)
′∏

i<j

(zi − zj )2

]
.

(4)

Again the prime sign in the second line indicates products
of only pairs {ij} other than {1,2},{3,4}, . . . ,{2n − 1,2n} ap-
pearing in the prefactor. The explicit use of antisymmetrization
instead of the Pfaffian allows us to naturally extend to the case
with an odd number of particles: starting from the bosonic
Laughlin wave function at half filling, every two particles form
a pair except for just one particle. Naturally the “ground state”
of the neutral fermion mode is given by

A
[

(z1 − z2)(z3 − z4) · · · (z2n−1 − z2n)
′∏

i<j

(zi − zj )2

]
. (5)

Note both i,j in
∏′

i<j runs from 1 up to 2n + 1, with pairs
appearing before

∏′
i<j excluded. Though we can no longer

represent Eq. (5) as a Pfaffian, comparing the antisymmetrized
products we can see Eq. (5) is really the same as that of Eq. (4),
only with an odd number of particles. For the model three-
body Hamiltonian, this is a zero-energy Abelian quasihole
state J−3

1100110011...0011001 in the angular momentum sector L =
1
2 (Ne − 1). The magnetoroton mode and the neutral fermion
mode are obtained from Eq. (4) and Eq. (5), respectively, by
reducing the powers in the Jastrow factor the same way as
what is done for the Laughlin state.

To write down all the analytic wave functions shown above
in a more formal way, we define Pij = 1

zi−zj
. Notice the

Pfaffian for 2n particles can be written as Pf( 1
zi−zj

) ∼ A[P (2n)],

where P (2n) = P12P34 · · ·P2n−1,2n. The magnetoroton mode
for the Laughlin state in the L = k + 2 sector is given by

ψL=k+2
l =

Ne∏
i<j

(zi − zj )mS
[
P2

12P13 · · ·P1,2+k

]
, (6)

where S is the symmetrization over all the particle indices.
From the bosonic Laughlin wave function at filling factor 1/2
we can impose pairing to obtain

ψmr =
Ne∏
i<j

(zi − zj )2A[P (2n)]. (7)

For an even number of electrons we have Ne = 2n and Eq. (7)
is the MR ground state. The magnetoroton mode for the MR
state in the L = k + 2 sector is given by

ψL=k+2
mr =

Ne∏
i<j

(zi − zj )2A
[
P (2n)P2

13P15 · · ·P1,3+2k

]
. (8)

For an odd number of electrons we have Ne = 2n + 1 and
Eq. (7) is the MR quasihole state of Eq. (5). The neutral fermion

FIG. 1. For Ne particles, the lattice can be viewed as an N -gon,
with three bonds connecting every pair of vertices.

mode in the L = 3/2 + k sector is given by

ψ
L= 3

2 +k
mr =

Ne∏
i<j

(zi − zj )2A
[
P (2n)P2

Ne,1PNe,3 · · ·PNe,1+2k

]
.

(9)

All the model wave functions shown so far satisfy the highest
weight condition. On the disk these states describe neutral sys-
tems with no center of mass rotation, of which the ground states
are just special cases with no symmetrized/antisymmetrized
singular factors multiplying to the Jastrow factor.

III. DIAGRAMMATIC REPRESENTATION

An intuitive way to visualize the family of neutral excita-
tions is to map the particles onto a lattice, where each lattice
site represents a particle. Since for FQHE we have a quantum
fluid instead of a solid, every two lattice sites interact with
each other. The number of bonds between each pair of lattice
sites is equal to the power of the pair of particles in the wave
function. As an example we consider the simplest Laughlin
state at ν = 1/3, so for the ground state every two lattice sites
are connected by three bonds, as shown in Fig. 1.

The neutral excitations are obtained by breaking the bonds
between lattice sites, as shown in Fig. 2. We can view the entire
family of the neutral excitations as the elementary excitations
centered around a single red lattice site. Note the lattice
pattern uniquely defines the many-body wave function, and
different types of “elementary excitations” can be identified
with different patterns of bond breaking around a single lattice
site with the red color (and also circled).

The neutral excitations in the MR states can be represented
similarly. For the MR ground state with even number of

FIG. 2. (Color online) Collective modes from L = 2 to L = 5,
where the change of bonds are highlighted with red color and the
involved lattice cite is circled.
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FIG. 3. (Color online) Lattice configuration of the ground state
L = 0 and the first collective mode L = 2. Consecutive collective
modes can be obtained by breaking one of the double bonds
connecting the red (circled) lattice site to some other site.

particles, every paired particle corresponds to a pair of lattice
sites with only one bond connecting them. This can be seen
in the first line of Eq. (4), as the paired coordinates only have
power 1 in the Jastrow factor. All other pairs of lattice sites
have two bonds connecting them (see the left diagram of Fig. 3,
where only four sites are explicitly shown). For an odd number
of particles, the zero-energy quasihole state is obtained from
the MR ground state lattice by adding one more lattice site that
connects every other lattice site with two bonds [see the first
line of Eq. (5), and the top diagram of Fig. 4].

The lattice representations of the magnetoroton modes for
the MR state are given in Fig. 3 and those of the neutral fermion
mode are given in Fig. 4.

The lattice diagrams give a one-to-one mapping to the
many-body wave functions; one would also conjecture the
diagrams are useful in determining the many-body wave
functions of multiroton excitations, with the same bond-
breaking pattern around more than one lattice site. One
should note, however, the different many-body wave functions
corresponding to different lattice diagrams may not be linearly
independent, and this is a subject requiring further research.

FIG. 4. (Color online) Lattice configuration of the zero mode
quasihole state L = 1

2 (Ne − 1) and the first two neutral fermion
modes at L = 3

2 and L = 5
2 . Consecutive collective modes can be

obtained by breaking one of the double bonds connecting the red
lattice site to some other site.

All the wave functions presented in this paper are linearly
independent because they are in different angular momentum
sectors.

IV. ENERGY GAP OF QUADRUPOLE EXCITATIONS

For systems with a finite number of particles, the analytic
wave functions presented in the previous two sections do
not seem to be advantageous in calculating either the density
profile or the variational energy, unless there is an ingenious
way of implementing Monte Carlo techniques based on the
explicit analytic form. In the thermodynamic limit where the
number of particles Ne → ∞, the spherical and disk geometry
are equivalent, at least as far as the bulk neutral excitations are
concerned. One can convert the total angular momentum L

of a state on the sphere to the linear momentum k on the
disk by k = L/

√
S, where S is the monopole strength at the

center of sphere.29 In the thermodynamic limit S → ∞. Thus
any state of finite L on the sphere corresponds to a state
with linear momentum k → 0 on the plane, when we take
the limit Ne → ∞. In this way, the analytic wave functions
are useful in calculating the thermodynamic neutral excitation
gap in the long wavelength limit, or the so-called “quadrupole
gap.”Writing ψL=N

l = 〈z1, . . . ,zNe
|ψL=N

l 〉, for the Laughlin
state, the energy gap is given by

εk→0 = lim
Ne→∞

〈
ψL=N

l

∣∣V ∣∣ψL=N
l

〉
〈
ψL=N

l

∣∣ψL=N
l

〉 . (10)

Physical arguments above lead to the conjecture that
Eq. (10) is independent of N , and it would be nice to see a rigor-
ous mathematical proof. We already know14 that in the L = 2
and L = 3 sector, the single mode approximation (SMA),
which generates model wave functions via density wave exci-
tations, is exact for the magnetoroton model wave functions on
the sphere. Thus in the thermodynamic limit, the analytic wave
functions on the disk labeled by L = 2,3 are also identical to
those generated by SMA in the limit k → 0. It is thus easiest
to evaluate Eq. (10) in the sector L = 2. Defining the guiding
center ladder operators as b

†
i = zi,bi = ∂zi

, and denoting the
Laughlin wave function as ψl = ∏

i<j (zi − zj )m, we have

ψL=2
l = 1

2m(m − 1)

∑
i

(bi)
2ψl. (11)

In the thermodynamic limit, the normalization constant of the
L = 2 mode (and also for L = 3 mode) is thus related to the
long wavelength expansion of the ground state guiding center
structure factor:

Sq = 1

Nφ

(〈δρ̄qδρ̄−q〉0 − 〈δρ̄q〉0〈δρ̄−q〉0)

= − s̄

4m
(gabqaqb)2 + O(q6), (12)

where s̄ = 1−m
2 is the guiding center spin13,29 and gab is the

guiding center metric.30 We thus have〈
ψL=2

l

∣∣ψL=2
l

〉 = − s̄Ne

2m2(m − 1)2
. (13)

The numerator of Eq. (10) can be calculated with the plasma
analogy. Note in Eq. (3) each wave function only has one pair
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of particles with relative angular momentum smaller than m.
After antisymmetrization all particle indices are equivalent,
so we only need to look at the action of V12 on ψ̄

{12}
l with〈

z1, . . . ,zNe

∣∣ψ̄ {12}
l

〉
= (z1 − z2)m−2

Ne∏
2<i

(z1 − zi)
m(z2 − zi)

m

Ne∏
2<i<j

(zi − zj )m,

(14)

which is equivalent to the product within the
antisymmetrization of the L = 2 wave function in Eq. (3).
Writing z̄12 = 1√

2
(z1 + z2) ,z12 = 1√

2
(z1 − z2), with some

simple algebra we obtain〈
z1, . . . ,zNe

∣∣V12

∣∣ψ̄ {12}
l

〉
= z12

Ne∏
2<i

(
1√
2
z̄12 − zi

)2m Ne∏
2<i<j

(zi − zj )m. (15)

Treating z12 and z̄12 as independent particle variables, we
can integrate out z12 and the numerator of Eq. (10) is given by

〈
ψL=2

l

∣∣V ∣∣ψL=2
l

〉 = Ne(Ne − 1)

2

N̄ 2

N 2
, (16)

where N is the normalization constant of the Laughlin state
ψl and N̄ is the norm of the following wave function:

ψ̄ =
Ne−1∏
i=2

(
1√
2
z1 − zi

)2m ∏
1<i<j<Ne−1

(zi − zj )m (17)

obtained from Eq. (15), which can be evaluated as the free
energy of two-dimensional one-component plasma (OCP)
on a disk with radius R2 = mNe

2 and elementary charge
e = 2

√
πmkBT , where particle 1 interacts with the rest of

the particles with charge 2e. We thus obtain

εk→0 = −2mm(m − 1)2

πs̄
e
− F2−F

kB T . (18)

Both F2andF are the free energies of OCP in the thermo-
dynamic limit (Ne → ∞), where F is for Ne particles, each
with charge e with logarithmic two-body interactions together
with a neutralizing background of radius R; for F2, we have
the same neutralizing background, but with Ne − 2 particles
of charge e, and exactly one particle with charge 2e. Thus
F2 − F is the free energy cost of fusing two particles of
charge e to create a particle of charge 2e, which is an O(1)
effect. The denominator is proportional to s̄, which is negative
by convention and it determines the overall strength of the
quadrupole gap. Note for integer QH s̄ = 0, and the quadrupole
gap goes to infinity. This should be the case since the guiding
center degrees of freedom are frozen out.

Similar calculations can be carried out for the magnetoroton
mode in the MR state. Analogous to Eq. (11) we have ψL=2

mr =
1

24

∑
i b

2
i ψmr , and in the long wavelength limit we have

εmr
k→0 = − 24

πs̄mr
e
− F3−FII

kB T , (19)

where s̄mr = −2 is the guiding center spin for the MR state,
and FII is the standard two-component plasma free energy for

the MR ground state.5 The charge for the attractive interaction
between the two components is given by Q1 = ±√

3kBT ,
while the charge for the interaction between one component
and the neutralizing background is given by Q2 = 2

√
kBT .

F3 − FII is the free energy cost of fusing three particles for
each component to create one particle with charge 3Q2 but
with the same ±Q1.

The evaluation of the long wavelength gap of the neutral
fermion mode is less transparent. The difficulty lies with

evaluating the normalization constant of ψ
L= 3

2
mr . There is no

known SMA analogy for the neutral fermion mode, and it is
not known if in the thermodynamic limit the gap should be
inversely proportional to the guiding center spin. On the other

hand, 〈ψL= 3
2

mr |V3bdy|ψL= 3
2

mr 〉 can be mapped to a two-component
plasma as well, and we obtain

ε̄mr
k→0 ∼ e

− F̄3−F̄II
kB T . (20)

Here F̄II is the free energy of the two-component plasma
similar to that of FII with only one difference: there is exactly
one more particle carrying charge Q2 that interacts with the
neutralizing background, and its Q1 charge is zero. This is how
an unpaired fermion in the MR state is interpreted in the plasma
analogy. Furthermore, F̄3 − F̄II is the energy cost of fusing the
unpaired fermion with one pair of two other fermions, creating
a particle with charge Q2 = 6

√
kBT but again with zero Q1.

The calculation of the prefactor in Eq. (20) is not yet known.

V. CONCLUSION AND DISCUSSION

In conclusion, analytic wave functions for both the magne-
toroton modes and the neutral fermion modes are presented.
The energy gap of the quadrupole excitation in the ther-
modynamic limit can be related to the free energy cost of
the fusion of charges in the plasma energy, and is inversely
proportional to the guiding center spin which characterizes its
topological order. We have extended the plasma analogy to
neutral excitations of FQHE, and the analogy not only applies
to the wave functions, but also to the dynamics as well. Since
the neutral excitations in the long wavelength limit are buried
in the multiroton continuum, it is important to calculate the
decay rate of these neutral modes. Numerical calculation has
been performed to show that even in the continuum the decay
rate of the collective mode is very small. This opens up the
possibility of experimental detection of these modes. A more
detailed analysis of the decay rate of collective neutral modes
will be presented elsewhere.31

The neutral excitations in the single component FQHE
can now be understood in several coherent frameworks, at
least for the Laughlin and Moore-Read states, with possible
generalization to the entire Read-Rezayi series. The composite
fermion picture maps FQHE to the IQHE of the particle-vortex
composite, and in this framework the neutral excitations
are excitons of composite fermions. The Jack polynomial
formalism enables us to describe the wave functions of the
ground states, the quasihole and quasiparticle states, as well as
the neutral excitations in a unified way with root configurations
and squeezed basis constrained by the clustering properties. It
is now satisfactory to see that compact analytic real space
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wave functions in electron coordinates, which initiated the
theoretical understandings of FQHE, can now be extended
from ground states and charged bulk excitations to include
neutral bulk excitations. Some questions still remain on if the
neutral excitations proposed so far completely describe the
energy spectrum of FQHE. Experimental measurements on
the Laughlin state19 suggest a splitting of the collective modes
in the long wavelength limit, with theoretical explanations
proposed from a hydrodynamic point of view32 and the
composite fermion point of view.33 It would be interesting
to see if the lattice diagram introduced in Sec. III can
be generalized to produce suitable analytic wave functions
that describe multiroton excitations and the splitting of the
collective modes as well.

It is well known in the literature that the wave functions
of the gapless edge excitations on the disk can be obtained
by multiplying the ground state with symmetric polynomials.
With model Hamiltonians these are the zero energy states
in the positive δLz angular momentum sectors.34,35 For the
Moore-Read state, in addition to the charge sector generated
by the symmetric polynomials, there are also edge excitations
obtained from the statistical sectors via inserting Majorana
fermions.36 The analytic wave functions of these states are

known explicitly. One can also generate wave functions by
similar operations not only on the ground state, but also on
the bulk neutral excitations obtained in this paper. These wave
functions describe states such that each contains both bulk and
edge excitations. We call these roton-edge excitations, which
explain the gapped low-lying multitude of states below the
multiroton gap in disk geometry. Recent studies show37 that
for the Laughlin state, each bulk neutral excitation generates
a branch of quasidegenerate roton-edge excitations with the
same Virasoro counting as the zero-energy edge states. For
the Moore-Read state, however, the counting of the roton-
edge states seem different because of the lack of the linear
independence between states in the same momentum sector,
possibly due to the non-Abelian nature of the FQH fluid.
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