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Production of minimally entangled typical thermal states with the Krylov-space approach
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The minimally entangled typical thermal states algorithm is applied to fermionic systems using the Krylov-
space approach to evolve the system in imaginary time. The convergence of local observables is studied in
a tight-binding system with a site-dependent potential. The temperature dependence of the superconducting
correlations of the attractive Hubbard model is analyzed on chains, showing an exponential decay with distance
and exponents proportional to the temperature at low temperatures, as expected. In addition, the nonlocal parity
correlator is calculated at finite temperature. Other possible applications of the minimally entangled typical
thermal states algorithm to fermionic systems are also discussed.
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I. INTRODUCTION

Originally, the density matrix renormalization group1,2

(DMRG) algorithm dealt with zero temperature or ground-
state properties. The development of the algorithm at finite
temperature has been a topic of much interest,3–5 because of
the increased complexity associated with efficiently computing
temperature-dependent properties.

Recently, White6 proposed an efficient method—that he
refers to as minimally entangled typical thermal states
or METTS—to compute temperature-dependent observables
with a complexity similar to ground-state computations.
An observable Â of a quantum many-body system at
temperature T = 1/(kBβ) is expressed as 〈A〉 = Tr[ρ̂Â] =
1/ZTr[e−βĤ Â], the trace involving two kinds of integra-
tion: over quantum and thermal fluctuations. Performing
this calculation directly is intractable, even more so than
at zero temperature. One can, however, approximate the
expectation value of A by strategies based on sampling. The
METTS algorithm6 starts from classical product states, and
then entanglement is brought about by the (imaginary) time
evolution of those initial states.

In METTS, thermal fluctuations are sampled by randomly
selecting quantum states. To understand how this is done
let us first expand the trace in terms of an orthonormal
basis |i〉, such that 〈A〉 = 1

Z
∑

i P (i)〈φ(i)|A|φ(i)〉, where
|φ(i)〉 = P (i)−1/2e−βH/2|i〉 and P (i) = 〈i|e−βH/2|i〉. A choice
for the basis |i〉 is the set of classical product states (CPSs);
these are states with wave functions |i〉 = |i0〉|i1〉 · · · |iN−1〉,
where the labels 0, 1, 2, ..., refer to the sites of the lattice.
The essence of the method lies in the way 〈A〉 is estimated
by sampling the states |φ(i)〉 with probability P (i)/Z , and by
averaging the expectation values 〈φ(i)|A|φ(i)〉 computed at
each step. A proof that the ensemble {|φ(i)〉} so generated
correctly reproduces all thermodynamic measurements is
given in Ref. 6, as well as a justification for referring to the set
{|φ(i)〉} as METTS. In addition to the original reference,6 a
matrix-product-state formulation of the method can be found
in Refs. 7 and 8, as well as a viewpoint in Ref. 9.

Quantum Monte Carlo methods can also simulate strongly
correlated electron models at finite temperature. The use
of finite-temperature DMRG has, however, advantages and
disadvantages that make it an ideal complementary method.

Finite-temperature DMRG is advantageous in the case of
long chains, and even ladder geometries. Moreover, for those
strongly correlated electron models where the sign problem
hinders quantum Monte Carlo simulations, DMRG methods
can come to the rescue. They might be the only unbiased
technique applicable to models with, for example, spin flipping
terms, which are known to present serious sign problems.
This is exactly the case of iron-10 and selenide-based11

superconductors, which include J terms12,13 (as in the case of
t-J models). Thus, the METTS algorithm might be particularly
appropriate for these superconductors.

This paper explains in detail the production and use of
METTS with the Krylov-space approach for DMRG time
evolution.14–16 Section II describes the implementation of the
algorithm, including the “collapse” procedure, the ergodicity
issues, and the computational complexity. Section III focuses
on local observables in the case of a fermionic noninteracting
system with a site-dependent potential. The attractive Hubbard
model at quarter filling is then studied for a one-dimensional
open geometry (chain), and superconducting correlations are
compared to known results. The nonlocal parity correlator is
then calculated at finite temperature. Finally, Sec. IV presents
an outlook for the further applicability of METTS.

II. ALGORITHM

A. Production of METTS

Here the Krylov-space approach for time evolution is
adapted to produce minimally entangled typical thermal states,
or METTS,6,7 that is, a “thermal” evolution is produced. The
natural real-space basis of a model is defined as the set of states
in its one-site Hilbert space. For example, the natural basis is
composed of the states empty, up, down, and doubly occupied
in the case of the one-orbital Hubbard model. The notation
N |x〉 ≡ |x〉/|||x〉|| appears below to simplify the expressions.

The steps to obtain observables at any target inverse
temperature βT are as follows.

(1) Set the current inverse temperature βC = 0. Do a
standard “infinite DMRG,” and grow the N -site lattice,
choosing a random real-space basis state per site to create
a pure state. Target this pure state at each step, that is, include
it in the reduced density matrix. Proceed in this way until all
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sites have been added and end up with a pure state over the
whole lattice: |π〉 = |i0〉|i1〉 . . . |iN−1〉.

(2) Obtain the states |φ(k)〉 = N exp(−βkH/2)|π〉, 0 �
k < l, using a Krylov-space approach for the time
evolution;14–16 an implementation can be found in Ref. 17.
Here βk = kτ/(l − 1), τ = 0.1, l = 5. Collapse (the collapse
is described in Sec. II B) the last one, |φ(l − 1)〉, into a pure
state |π ′〉. Target |φ(k)〉 0 � k < l, and |π ′〉.

(3) Move the center of orthogonality by 1, as “fi-
nite” DMRG does. Wave-function transform |φ(k = 0)〉
(also denoted by |π〉) into Wf t[|φ(k = 0)〉]. Recompute
exp(−βkH/2)Wf t[|φ(k)〉]∀ 1 � k < l. Wave-function trans-
form also the collapsed state |π ′〉. Proceed sweeping the lattice
for a while, until, for example, an extreme is reached, or all
sites have been visited at least once.

(4) If βC < βT then advance in β: Set |φ(k = 0)〉 ≡ |π〉
to |φ(k = l − 1)〉. Increase βC by τ . Go to step (2). If
βC = βT then perform a measurement (for production runs,
instead of measuring in situ, save the METTS to measure
postprocessing) using the current wave-function transformed
|φ(k = 0)〉. Set the state |φ(k = 0)〉 to the wave-function
transformed collapsed |π ′〉. In other words, set |π〉 to |π ′〉.
Set βC = 0 and go to step (2).

B. Collapsing METTS

Let us consider first the collapse into the natural basis
and then into a random basis. If the collapse happens in
the real-space basis then for a Hubbard model with only
one orbital there are four states to collapse into: empty,
up, down, and doubly occupied. If |φ(k)〉 (or its wave-
function transformed form) is centered on site i then |φ(k)〉 =∑

αL,αi ,αR
AαL,αi ,αR

|αL〉|αi〉|αR〉, where αi is a state of the
natural real-space basis. This state is normalized, hence∑

αL,αi ,αR
|AαL,αi ,αR

|2 = 1.
Let |π (αi)〉 = ∑

αL,αR
AαL,αi ,αR

|αL〉|αi〉|αR〉, for each state
αi of the natural one-site basis at i. Let p(αi) = ||π (αi)〉||2.
The condition

∑
αi

p(αi) = 1 follows from the normalization
of |φ(k)〉. A state αi is selected with probability p(αi) and the
collapse occurs into the state |π ′〉 = N |π (αi)〉, which is now
to be used for step (2).

When the collapse happens in a random basis defined by
|αi〉 = ∑

ηi
Mαi,ηi

|ηi〉 we proceed as follows. First we rewrite

|φ(k)〉 =
∑

αL,αi ,αR

AαL,αi ,αR

∑
ηi

Mαi,ηi
|αL〉|ηi〉|αR〉. (1)

Defining |π̄ (ηi)〉 by |φ(k)〉 = ∑
ηi

|π̄ (ηi)〉, for each state ηi of
the random basis, yields

|π̄ (ηi)〉 =
∑

αL,αi ,α
′
i ,αR

M−1
ηi ,α

′
i
AαL,αi ,αR

Mαi,ηi
|αL〉|α′

i〉|αR〉. (2)

The new state N π̄ (ηi) is collapsed with probability p(ηi) =
||π̄(ηi)〉||2; these probabilities add up to 1 because of normal-
ization.

One important practical consequence of these collapse
equations is that they do not preserve local symmetries unless
the collapse basis does, implying that simulations, in most
cases, will have to be performed in the grand canonical
ensemble. Indeed, all METTS simulations in this paper are

done in the grand canonical ensemble, as we will see in the
next sections.

C. Ergodicity

To illustrate ergodicity issues with this technique let us
consider a tight-binding chain and a chemical potential term
such that H = ∑

i,j tij c
†
i cj + μ

∑
i ni , where tij = 1 if i and

j are nearest neighbors and 0 otherwise. As observables let us
consider the total energy and density of the system at inverse
temperature β. These observables depend on μ, but if we use
the natural basis for the collapse, the method will (incorrectly)
yield values independent of μ. To understand the reason for the
second statement I would now like to show that, if we collapse
only to the natural basis, METTS do not depend on μ. Let
us choose an initial CPS |π〉, and compute the corresponding
METTS at β. Note that |π〉 is an eigenvector of μ

∑
i ni .

The resulting METTS is exp(−βH0)|π〉/〈π | exp(−βH0)|π〉,
where H0 = ∑

i,j tij c
†
i cj does not contain μ, which canceled

out due to normalization. If we now proceed to collapse this
METTS into a CPS in the natural basis, we obtain the CPS
|π ′〉. Evolving |π ′〉 does not involve μ, as |π ′〉 is an eigenvector
of μ

∑
i ni . Therefore, all the METTS thus obtained are

independent of μ and, when measuring over them, we will
(incorrectly) obtain values independent of μ.

In this case the solution is simple: the collapse must be
carried out into a random basis and not into the natural basis.
Results are shown in Fig. 1. In general, the Hamiltonian can
be decomposed as H = ∑

x Hx where each term Hx is either
a connection

∑
i,j txijA

x
i B

x
j or an on-site term

∑
i C

x
i . (This

decomposition is unique up to a canonical transformation,
which would change accordingly the collapse basis, and thus,
the decomposition can be considered unique for our purposes.)
Therefore, a condition necessary for ergodicity is that no
Hamiltonian term be diagonal in the collapse basis.

Collapse bases can but do not have to be completely
random: Bases that do not mix states with different particle
number or bases with the spins quantized in a given direction
are examples. It has also been suggested7 that changing the
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FIG. 1. (Color online) (a) Density and (b) energy of electrons in
a tight-binding chain with a chemical potential versus the step of the
METTS algorithm. Here METTS are collapsed in a random basis,
reducing ergodicity issues, and causing the observables’ average to
tend to their exact values (horizontal lines).

245130-2



PRODUCTION OF MINIMALLY ENTANGLED TYPICAL . . . PHYSICAL REVIEW B 87, 245130 (2013)

TABLE I. Mean values, standard deviations, and exact results for both energy and density as a function of the inverse temperature β for an
eight-site open chain with U = 0 and the potential profile shown in the inset of Fig. 2(a). Approximately 150 METTS were used.

β 〈n〉 Std. Dev. Exact 〈E〉 Std. Dev. Exact

1.0 3.900 0.550 4.007 −7.1360 0.9715 −6.9774
2.0 4.278 0.362 4.027 −9.0594 0.5785 −9.3178
4.4 3.962 0.123 4.002 −10.4584 0.2169 −10.3515

collapse basis from iteration to iteration (instead of keeping it
fixed as has been assumed so far) improves ergodicity.

D. Computational complexity

The computational complexity of the Krylov-space ap-
proach for the time evolution was mentioned in Ref. 17: The er-
ror dependence of the Krylov-space approach is14 proportional
to exp[−(ρdt)2/(16n)][eρdt/(4n)]n with n � ρdt/2 and ρ the
width of the spectrum, whereas in the Suzuki-Trotter approach
the error is given by the Trotter error.15 The Krylov-space
method is independent of the form of the Hamiltonian; the
Suzuki-Trotter depends on the Hamiltonian connections. The
main disadvantage of the Krylov-space method is that it can
be computationally more expensive compared to the Suzuki-
Trotter due to the former requiring a tridiagonal decomposition
of the Hamiltonian. For the production of METTS, however,
there is no ground-state computation, and there is a single
tridiagonal decomposition needed per step. As noted in Ref. 6,
the computational complexity of the METTS algorithm is that
of ground-state DMRG multiplied by β and by the number of
measurements needed.

Parallelization was implemented in various places: in
the Hamiltonian construction, in the construction of the
density matrix, in the wave-function transformations, in the
computation of two-point correlations. Parallelization helps
decrease the prefactors in the CPU times, but does not affect
the scaling in other ways. The CPU time required for long
chains was about 12 h for 100 METTS. These CPU times
double if two-point correlations are needed. Also, sometimes
multiple series of METTS need to be produced, as will be
explained in the next section.

III. RESULTS

A. Site-dependent potential

Consider a one-orbital Hubbard model,

H =
∑
i,j,σ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓ +
∑
i,σ

Vini,σ , (3)

where tij corresponds to an open chain. First let us set U = 0
to be able to compare with the exact result. For N = 8 and a
fixed potential profile, the energy and density were obtained
by averaging over METTS. Numerical values and statistics
are shown in Table I as a function of the inverse temperature
β. Higher temperatures yield larger standard deviations, but
the differences with the exact results never exceed 8% for the
density, and 3% for the energy. Longer runs can be performed
to decrease these differences even further if necessary.

Figure 2(a) shows the resulting density profile, where only
one spin sector is considered. The observable ni differs from

the exact result more than global observables like the total
energy. As mentioned, to decrease this difference longer runs
could be performed, but it turns out to be better to produce
multiple series of METTS started from different CPSs, and
average them. The latter strategy has the advantage of com-
pletely smearing the dependence on the initial configuration,
decreasing autocorrelation times faster. Figure 2(b) shows
the density profile after averaging five series of METTS. On
the right, the inset of Fig. 2 shows the maximum difference
between the METTS result and the exact result at the highest
temperature considered (β = 1.0) as a function of the number
of series of METTS used, confirming the effectiveness of this
method even for a small number of series.

B. Attractive Hubbard model

1. Pairing correlation

Let us now study Eq. (3) at quarter filling with U < 0 and
Vi = μ ∀i. The density (〈n〉 = 0.25) is fixed on average only,
and simulations are carried out in the grand canonical ensemble
in order to collapse to completely random bases. A particle-
(but not Sz-) conserving basis would be better here were it
not for the ergodicity problems—which I have found to be too
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FIG. 2. (Color online) (a) Density at each site of the same system
as in Table I, with β as indicated. Exact results are given by
solid lines and filled symbols, METTS results by dashed lines and
open symbols. Inset: potential profile for this system. (b) Unsigned
difference between the density computed by the METTS algorithm
and the exact one, at each site of the chain. Temperatures as before. An
average over five series of METTS was performed. Inset: Maximum
difference at β = 1.0 as a function of the number of simulations, that
is, the number of series of METTS used.
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FIG. 3. (Color online) (a) Ps(R) vs R for different U values and
for two lattice sizes N = 50 and N = 20, always at quarter filling,
obtained from the ground-state DMRG calculation. (b) Ps(R) vs R for
U = −2 for a chain with N = 20 sites as a function of β. The T = 0
values scale as a power law. The T > 0 values scale exponentially.
Data points were deleted beyond a certain R; the text explains.
(c) Same as (b) for U = −4. For the values of all exponents see
Table II.

severe. The choice of model, the attractive Hubbard model, is
based on the following considerations. The METTS algorithm
has not been tested on fermionic systems before. The Hubbard
model on a periodic chain has been solved exactly,18 albeit
correlations are difficult to compute. The attractive Hubbard
model superconducting correlations are known, and can be
computed and extrapolated at moderate lattice sizes.

The s-wave pairing function (see, for example, Ref. 19)
Ps(R) = 1

N

∑
i〈
†

s(i + R)
s(i)〉 measures superconducting
correlations in this model; here 
s(i) = ci↓ci↑. We are going
to consider Ps(R) as a function of temperature T at quarter
filling. For T = 0 and a periodic system Ps(R) is known20 to
decay as a power law.

Studying this decay requires taking into account pairs of
sites at distances as large as possible, while at the same time
minimizing effects due to border sites. One possibility is to
avoid some sites next to the left and right borders of the chain,
and average over all other pairs at a given distance. Another
possibility is to take into account all pairs of sites at distance
R but restrict R to half the length of the chain, an approach
that includes as many lattice sites as possible and avoids both
sites in the pair being close to the borders for large distances.
I have estimated and compared exponents of power laws

following both approaches, and found small differences but no
change in the trends of the exponents. Therefore, consistent
with the second approach mentioned, distances R > N/2 were
discarded in order to avoid boundary effects.

Results are shown in Fig. 3(a), and exponents β̄ for
the expression Ps(R) ∝ R−β̄ in columns 2–4 of Table II,
exponents that turn out to be comparable to those of Figure
8 of reference 20 at quarter filling. (Although the standard
notation for this exponent is β, the exponent is here denoted
by β̄ to avoid confusion with the inverse temperature.) Trying
to fit these T = 0 results to an exponential always gives larger
errors than trying to fit them to a power law. For T = 0 the
power-law exponents computed here with DMRG decrease
with increasing U , as is the case in the exact thermodynamic
limit results. A value of m = 200 was used in this ground-state
DMRG calculation, where each site of the lattice was swept
three times. For T > 0 Ps(R) is known21,22 to decay with
exponential bounds.

Using the METTS algorithm to simulate finite temperature,
a faster decay can be seen than that at T = 0: Results for T > 0
in Fig. 3(b) for U = −2 and Fig. 3(c) for U = −4 depart
from the power-law scaling (represented by a straight line in
logarithmic scale), and approximate an exponential scaling
Ps(R) ∝ exp(−γR). Exponents γ for different values of U

are given in columns 5–7 of Table II. For large β, γ must be
proportional to 1/β,21,22 and for β � 4.4 this relation indeed
holds with 3% accuracy to 12% accuracy depending on U ,
as shown in the last column of Table II. Trying to fit METTS
results (at T > 0) to an exponential always gives smaller errors
than trying to fit them to a power law. The exponential law
exponents γ decrease with β, as expected.21,22 At fixed β, the
exponents first decrease from U = −2 to U = −4, and then
they increase from U = −4 to U = −8.

Several caveats regarding the way exponents were obtained
need to be noted. In these METTS simulations μ had to be
fixed to yield a density approximate to quarter filling. Actual
densities obtained were in the range 0.2–0.3 instead of exactly
at 0.25. Ps(R) at finite and, in particular, large temperatures has
large statistical errors. The first five METTS were discarded
due to convergence reasons, similar to the case in Fig. 1.
Approximately 10–20 METTS were used for measurements,
and multiple METTS series run starting from different and
random CPSs. Most results were computed with a fixed and
random collapse basis. A few controls were performed with
computational runs with the bases changed at each collapse;
discrepancies between the two collapse procedures fell within
the error bars. For the purposes of fitting to an exponential,
values beyond a certain R were discarded when either
(i) behavior became nonmonotonic, or (ii) Ps(R) became

TABLE II. Columns 2 and 3 show exponents β̄ for the power-law fit done at T = 0 in Fig. 3(a). Values of β̄ at the thermodynamic limit in
one dimension are indicated by d = 1, and obtained from Fig. 8 of Ref. 20 at quarter filling. The next three columns show exponents γ for the
exponential fit done at T > 0 for N = 20 in Figs. 3(b) and 3(c). The last column is 100 × |1 − 6.0 × γ (6.0)/(4.4 × γ (4.4)|.

U 20 × 1 50 × 1 d = 1 β = 6.0 β = 4.4 β = 3.6

−2 1.055 0.991 0.80 0.57 0.69 0.72 12%
−4 0.867 0.784 0.70 0.48 0.68 0.72 3%
−8 0.808 0.725 0.65 0.94 1.21 1.34 6%
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FIG. 4. (Color online) O
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P (r) vs r for chains of 20 sites at half

filling and (a) U = −2 and (b) U = −4.

slightly negative. These two effects are due to statistical errors:
In most cases, discarded points had errors—shown by the error
bars in Figs. 3(b) and 3(c)—larger than their average values.

2. Nonlocal correlation

Let us now consider the nonlocal parity correlator for
spin,

O
(s)
P (r) =

〈
exp

⎛
⎝2iπ

i+r∑
j=i

Sz
j

⎞
⎠

〉
, (4)

with Sz
i = 1

2 (ni↑ − ni↓), which is discussed in Ref. 23 and

references therein. Figure 4 shows O
(s)
P (r) vs r at T = 0 and at

T > 0, for chains of 20 sites at half filling, and for two values
of U , as indicated.

In the U < 0 case considered here the Luther-Emery phase
is characterized by nonzero O

(s)
P (r),23 and the transition is

known to be of Berezinskii-Kosterlitz-Thouless (BKT) type.
The nonlocal order parameter O

(s)
P (r) remains finite even at

T > 0, as seen in the figure.

IV. SUMMARY AND OUTLOOK

A procedural description for the generation of METTS
was presented, using the Krylov-space approach to perform
the imaginary time evolution of the classical product states.
The full open source code, input decks and additional

computational details have also been made available.24,25 By
averaging over 100–200 METTS, global observables can be
obtained with reasonable errors. Applied to local observables,
in the example of the density in a site-dependent potential, the
simulations converge to exact results as more series of METTS
are added.

For an attractive Hubbard model on a chain, the application
of the METTS algorithm verified the exponential decay of
correlations—as opposed to the power-law decay for the
ground state. Or, conversely, the correct behavior of the
exponents obtained with the METTS algorithm verified its
feasibility. The exponents γ are proportional to the temperature
for low enough temperatures, as expected from rigorous
bounds. A similar departure from power law at finite tem-
perature has been observed for a spinless model with nearest-
and next-nearest-neighbor interactions.26

These studies should set the stage for the further use
of METTS in fermionic systems. We should envision using
METTS to compute transition temperatures in models of
pnictides superconductors, where, as mentioned before, spin
flipping terms might preclude the use of quantum Monte Carlo
methods due to the sign problem. One difficulty will be the
vanishing of superconducting correlations in two-dimensional
systems,27–29 a difficulty that could be overcome by explicitly
breaking symmetries with an anisotropic term.30 Multiple
orbital models, as needed for pnictides superconductors, have
larger Hilbert spaces, and would require longer runs. Let
us not forget, however, that estimating exponents (as was
done in this work) has high demands in terms of accuracy.
But for multiorbital superconductors, computing transition
temperatures would be the main interest and motivation, and
computing transition temperatures—assuming a true second-
order transition is present—could be achieved with less
measurements than needed for estimating exponents.
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