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More realistic Hamiltonians for the fractional quantum Hall regime in GaAs and graphene
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We construct an effective Hamiltonian for electrons in the fractional quantum Hall regime for GaAs and
graphene that takes into account Landau level mixing (for both GaAs and graphene) and subband mixing (for
GaAs, due to the nonzero width of the quantum well). This mixing has the important qualitative effect of breaking
particle-hole symmetry as well as renormalizing the strength of the interparticle interactions. Both effects could
have important consequences for the prospect that the fractional quantum Hall effect at ν = 5

2 is described by
states that support non-Abelian excitations such as the Moore-Read Pfaffian or anti-Pfaffian states. For GaAs,
Landau level and subband mixing break particle-hole symmetry in all Landau levels and subband mixing, due
to finite thickness, causes additional short-distance softening of the Coulomb interaction, further renormalizing
the Hamiltonian; additionally, the Landau level and subband energy spacings are comparable so it is crucial to
consider both effects simultaneously. We find that in graphene, Landau level mixing only breaks particle-hole
symmetry outside of the lowest Landau level (N �= 0). Landau level mixing is likely to be especially important
in graphene since the Landau level mixing parameter is independent of the external magnetic field and is of order
one. Our realistic Hamiltonians will serve as starting points for future numerical studies.
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I. INTRODUCTION AND MOTIVATION

One of the outstanding experimental challenges in physics
is to determine whether the fractional quantum Hall effect
supports non-Abelian anyon excitations. An affirmative an-
swer would constitute the discovery of a new type of, so far
unobserved, particle and could pave the way for topologically
protected quantum information processing.1–3

The most promising and notable system for which the
search for non-Abelian anyons is taking place is in the ν = 5

2
fractional quantum Hall effect.4–14 The search is motivated
by two conjectures. The first is that the Moore-Read Pfaffian
state15 and the anti-Pfaffian state16,17 are representatives of
universality classes that have non-Abelian anyon excitations.
This conjecture has been recently shown to be true18 (see
also Refs. 19–30). The second conjecture is that the experi-
mentally observed state of matter responsible for the ν = 5

2
fractional quantum Hall effect (FQHE) is in one of these
two universality classes. Several numerical studies31–39 have
provided evidence supporting this conjecture by showing
that the ground states of simplified model Hamiltonians are
in these two universality classes (Moore-Read Pfaffian or
anti-Pfaffian). Even though these model Hamiltonians are
physically reasonable, a number of studies32,34,35,38 highlight
the sensitivity of numerical results31–35,37–39 to the parameters
of these “toy model” Hamiltonians (and to some degree, the
system size). Experiments have found that relatively minor
modifications to the system such as transposition of the half-
filled Landau level from ν = 5

2 to ν = 9
2 , 11

2 , . . . or to ν = 1
2 , 3

2
lead to metallic states that are anisotropic40,41 or isotropic and
Fermi-liquid-like.42 Similar anisotropic or isotropic metallic
phases are also observed at ν = 5

2 upon application of,
respectively, a small43,44 or large45 in-plane magnetic field
(compared in magnitude to the perpendicular magnetic field).
Thus, there are at least four different phases (and, perhaps,
many more) which can occur at ν = 5

2 , depending on the

details of the Hamiltonian. Thus, we are encouraged to ask
basic questions which remain unanswered: Is the ground state
of a more realistic model Hamiltonian for ν = 5

2 in one of these
two non-Abelian universality classes? What is the quantum
phase diagram of a realistic Hamiltonian for ν = 5

2 ?
The sensitivity of the ν = 5

2 system to small changes in
the Hamiltonian is a cause for concern since the canonical
simplified model ignores both Landau level mixing and
the nonzero width of the quasi-two-dimensional (quasi-2D)
electron system. (The exceptions are Refs. 37 and 38, which
include Landau level mixing and Refs. 34–36, which include
nonzero width.) Landau level mixing and nonzero width
can be neglected if the Landau level mixing parameter κ =
(e2/ε�0)/h̄ωc � 1 and the nonzero width of the quantum
well d/�0 � 1, respectively. Here, e2/ε�0 is the scale of
the Coulomb energy, ωc is the cyclotron frequency, and
�0 = √

h̄c/eB is the magnetic length, so the dimensionless
parameter κ is given by κ ≈ 2.52/

√
B [T]. Therefore, for

experiments at magnetic fields in the range 1–10 T, κ is in the
range 0.8–2.5. Similarly, for most GaAs samples, d/�0 ≈ 2–3.
It is not obvious that either one of these parameters can
be considered small and, in fact, for common experimental
parameters the Landau level and subband energy spacing are
comparable. Thus, it is potentially dangerous to consider one
effect and not the other since, a priori, both effects are of
approximately equal importance. Given that the ground state
at ν = 5

2 depends sensitively on the precise Hamiltonian and
that the Hamiltonians studied in all previous numerical results
neglect potentially important effects, one may question their
connection to experiments.46,47

In fact, recently the FQHE at ν = 5
2 has been studied

experimentally in the regime of strong Landau level mixing
(κ > 2.5), and interesting nonlinear behavior of the FQHE
energy gap has been observed as a function of κ (or density).48

Thus, in order to make meaningful experimental predictions
for the FQHE in GaAs (or generally any two-dimensional
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electron gas), it is necessary to study realistic Hamiltonians
which include the effects of both Landau level mixing and
nonzero width. This is true not only at ν = 5

2 , but throughout
the N = 1 Landau level, where Landau level mixing is a factor.

The scenario described above for GaAs is potentially an
even more pressing issue when one considers the FQHE in
graphene. Due to the linear dispersion of electrons in graphene,
the cyclotron energy is sgn(N )

√
2|N |h̄vF /�0, compared to

h̄ω(N + 1/2) for GaAs. (In GaAs, N = 0,1,2, . . . , whereas
in graphene −∞ < N < ∞.) This means that the Landau
level mixing parameter in graphene κ̃ = (e2/ε�0)/(h̄vF /�0) =
e2/(εh̄vF ) is, interestingly, independent of magnetic field
strength. In addition, the spacing between Landau levels varies
as 1/

√
2N for large N ; the Landau levels get closer together in

energy the higher up, or lower down below N = 0, one goes.
Consequently, the effective Landau level mixing parameter
for the N th Landau level is ∝κ̃

√
N , which increases with

increasing Landau level.
Experimentally, the FQHE has been observed in graphene

in suspended samples49–51 (i.e., freestanding graphene) and on
a boron nitride substrate.52 In suspended graphene, the Landau
level mixing parameter is approximately κ̃ ≈ 2.2 whereas on a
boron nitride substrate it is much lower due to the reduction in
dielectric constant: κ̃ ≈ 0.5–0.8. In both cases, κ̃ is obviously
not small so it would appear that there is no experimental
observation of the FQHE in graphene for which one can ignore
Landau level mixing. Many theoretical works have considered
the FQHE in graphene,53–58 pointing out the similarities and
differences between the FQHE in GaAs and graphene, but none
have taken into account the effect of Landau level mixing.

Therefore, in this paper we construct and study a realistic
Hamiltonian for GaAs in the lowest two Landau levels (N = 0
and 1; no FQHE has been observed in N � 2) that takes
into account Landau level and subband mixing. In addition,
we construct a realistic Hamiltonian for graphene in the
N = 0, ± 1, ± 2 Landau levels which includes Landau level
mixing effects which have, so far, been totally ignored.
Although we are emphasizing the experimental systems of
GaAs and graphene in our calculations, they are appropriate
for any fermionic system with either parabolic (GaAs) or linear
(graphene) bands up to the specific experimental parameters.
Once these effective Hamiltonians are characterized, they can
be used to study a variety of problems in which subband and/or
Landau level mixing effects may play a prominent role.

Our starting point is the systematic treatment of Landau
level mixing formulated in Ref. 59. The effective Hamiltonian
for electrons in the N th Landau level can be derived by
integrating out all other Landau levels via an expansion in
powers of κ (or κ̃). This was done59 for GaAs for zero width,
but the same procedure allows us to integrate out higher
subbands in the same way as higher Landau levels and/or
consider graphene, as we discuss below.

Crucially, we find an error in the normal ordering of
the effective Hamiltonian of the previous work.59 Correcting
this error, we find that the renormalization of the two-body
interaction is significantly modified and we examine the
implications.

We emphasize that, for GaAs, we include the nonzero
width of the 2D layer, as a result of which the effective
interaction between electrons is “softened” at short distances

since the single-particle wave functions are smeared out over a
length scale d in the direction perpendicular to the plane. This
effect was found to stabilize the Moore-Read Pfaffian and
anti-Pfaffian states34,35 in the N = 1 Landau level, unlike in
the lowest Landau level, where it weakens the FQHE. A further
effect of nonzero width is that electron-electron interactions
can cause mixing with the higher quantum well subbands
corresponding to motion in the direction perpendicular to
the two-dimensional plane, in a manner analogous to Landau
level mixing. (Strictly speaking, a system with only subband
mixing could also cause a breaking of particle-hole symmetry.
However, Landau level mixing is generally a stronger effect
than subband mixing.) We take these two facets of nonzero
width (the softening of the “bare” Coulomb interaction and
mixing with higher sub-bands) into account in a systematic
manner. This has not, to the best of our knowledge, been
previously done. Of course, for graphene, the effective width
of the 2D graphene sheet is negligible, so there are no subbands
that need to be considered.

Strictly speaking, our Hamiltonian can only be justifiably
called “realistic” for small values of κ (or κ̃). For GaAs,
small κ corresponds to higher values of the magnetic field
whereas for graphene, small κ̃ corresponds to a substrate with
high dielectric constant. However, we find that the coefficients
in the expansion in powers of κ are small in GaAs (even
with the correction mentioned in the previous paragraph) and,
consequently, our Hamiltonian may even be realistic when κ is
not small. For graphene, the coefficients in the N = 0 Landau
level are small, similar to those in GaAs, but for N �= 0, this is
no longer the case. Thus, these expansions may be valid even
in the regime where most experimental observations of the
FQHE at ν = 5

2 in GaAs have taken place (0.7 < κ < 1.8), as
well as where the FQHE has been experimentally observed in
graphene49–52,60 (0.5 < κ̃ < 2.2). Our calculations might also
help explain some of the peculiarities of the graphene FQHE
observations, such as the fact that the FQHE has been observed
in only the lowest Landau level (see Refs. 49–52). This point
will be discussed further below.

Previous results for GaAs. The Landau level mixing
Hamiltonian of Ref. 59 for GaAs was studied for zero width
at ν = 5

2 by Wojs et al.38 using exact diagonalization in the
spherical geometry, and it was concluded that, over nearly
the entire range of Landau level mixing of experimental
interest 0 < κ � 3, the overlap between the ground state
and the Moore-Read Pfaffian state was larger than either the
overlap between the ground state and the composite fermion
Fermi-liquid-like wave function61 or the overlap between the
ground state and the anti-Pfaffian wave function. However,
the computation of Wojs et al.38 did not take finite thickness
of the 2D system into account; it is not clear that these
overlaps at different values of the magnetic flux track the
(extrapolated) ground-state energies, which is what determines
the true ground state; and, more importantly, the Hamiltonian
did not contain the corrected normal-ordering of the three-body
term. Rezayi and Simon37 did a similar study using the torus
geometry but they did not use the Hamiltonian of Ref. 59
and instead simulated Landau level mixing by diagonalizing
in a truncated Hilbert space. In contrast to Wojs et al.,38 they
found the anti-Pfaffian to have a higher overlap with the exact
ground state. Even though both studies used wave-function
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overlap to measure to which universality class the ground state
belonged, it is difficult to directly compare their contrasting
results since they used different Hamiltonians and different
geometries. Of course, it is possible that the previous error in
the normal ordering of the three-body term is the origin of
these apparently contradictory results.

We point out that there has been additional previous work
that considered both subband and Landau level mixing.62–64

While many insights can be gained from this work, it is not
particularly relevant to this study. For the FQHE, in particular,
the effects of both subband and Landau level mixing have been
studied, either numerically in the perturbative limit or using a
combination of perturbation theory (random phase approxima-
tion) and phenomenological models, however, our calculation
provides the crucial qualitatively important idea of the break-
ing of particle-hole symmetry through the generation of three-
body terms which were not previously taken into account.

Previous results for graphene. None of the theoretical
studies for the FQHE in graphene mentioned above included
the effects of Landau level mixing.

The plan of this paper is as follows. In Sec. II, we review
the effective action description given previously in Ref. 59.
To this we add the additional complication of a nonzero-width
quantum well. This is not as simple as just augmenting the
Coulomb interaction because it becomes necessary to integrate
out all higher quantum well subbands. We then derive the
effective Hamiltonian which follows from this effective action,
paying particular attention to the operator ordering of the
Hamiltonian. In Sec. III, we discuss the effective Hamiltonian
which includes Landau level and subband mixing to first order
in the Landau level mixing parameter κ . In Sec. IV, we consider
the effective Hamiltonian for graphene and in Sec. V we
discuss the pseudopotentials. Finally, in Sec. VI, we present
our conclusions.

II. EFFECTIVE HAMILTONIAN INCLUDING LANDAU
LEVEL AND SUBBAND MIXING APPLICABLE TO GaAs

A. Effective action

We first begin by discussing the calculation for a system
appropriate for GaAs, just to introduce the formalism, and then
in Sec. IV we discuss the calculation for a system appropriate
to graphene. Following Ref. 59, we begin with the action for
electrons in a magnetic field:

S =
∫

dω

2π

∑
snm

c̄snmα(ω)(iω − Esn + μ)csnmα(ω)

− 1

2

∫ 4∏
i=1

dωi

2π
V43;21c̄s4n4m4α(ω4)c̄s3n3m3β(ω3)

× cs2n2m2β(ω2)cs1n1m1α(ω1)

× 2πδ(ω4 + ω3 − ω2 − ω1). (1)

Here, csnmα and c̄snmα are Grassmann variables where α =
↑,↓ are the spin indices; s = 0,1, . . . is the subband index;
n = 0,1, . . . is the Landau level index; and m = 0,1, . . . labels
orbital states within a Landau level (m − n is the angular
momentum). Esn = h̄ωc(n + 1/2) + εs is the cyclotron energy
(h̄ωc = h̄eB/mc) plus the subband energy εs , and μ is
the chemical potential. Note that the Zeeman energy has

been set to zero in the above action since it is much
smaller than the other energy scales in the problem. V43;21 ≡
〈s4n4m4,s3n3m3|V̂ |s2n2m2,s1n1m1〉 is the interaction matrix
element, where V̂ is the electron-electron interaction operator
for the bare two-body Coulomb interaction for electrons in
an infinite quantum well of width d, i.e., the usual nonzero-
width augmented interaction investigated previously.34–36,65–70

Following the standard procedure,71,72 we define Gab(k) as

Gab(k) =
(

−i
k̄√
2

)a−b
√

b!

a!
La−b

b (k2/2) (2)

for integers a � b (note that if a < b, we switch k = kx +
iky with k̄ = kx − iky) with Lb

a(x) a generalized Laguerre
polynomial. We find that the interaction matrix element is

V43,21 =
∫

d2k

2π
Vs4s3s2s1 (k)e−k2

Gn4n2 (−k̄)Gn3n1 (k̄)

×Gm4m2 (−k)Gm3m1 (k), (3)

where the 4 in V43,21, for example, is short for all the internal
degrees of freedom of the fourth particle (s4, n4, and m4) and

Vs4s3s2s1 (k) = e2

2πεl0

1

k

∫
dz1dz2φs4 (z1)φs3 (z1)

×φs2 (z2)φs1 (z2)e−k|z1−z2|, (4)

where φs(z) is the wave function for the z dependence of
single-particle wave functions in the sth subband. Through-
out this work on GaAs we will consider the electrons to
be confined to an infinite square well of width d. Thus,
φs(z) = √

2/d sin[(s + 1)πz/d] with z ∈ [0,d] and εs(d) =
(s + 1)2π2h̄2/(2mzd

2) where mz is the effective electron
mass in the quantum well. The total single-particle energy
is Esn = h̄ωc(n + 1/2) + εs(d). If we assume that mz equals
the electron band mass m and write d in units of the
magnetic length �0 = √

h̄c/eB ≈ 25 nm/
√

B [T], then Esn =
h̄ωc[(n + 1/2) + (π2/2d2)(s + 1)2]. For typical quantum well
widths and magnetic fields (d/�0 ≈ 2–4), the Landau level
spacing and subband spacing are comparable. We further note
that the energy spacing between subbands gets smaller as the
inverse square of the quantum well width unlike the Landau
level spacing which is constant. Of course, the potential
corresponding to a relevant experimental system is not an
infinite square well,73,74 however, the infinite square well
captures the key feature of the real potential34–36,65–70: the
ability of electrons to avoid each other by moving in the
z direction, as reflected both by the softening of the short-
distance part of the Coulomb interaction and by the possibility
of virtual transitions to higher subbands (which have nodes
at certain values of z). We caution the reader that there is
one qualitative effect not properly captured by modeling the
quantum well with an infinite square well potential; at large
enough widths and/or densities, the single-layer quantum well
can effectively turn into a bilayer. For the purpose of this work,
however, we are not considering this situation.

Although the modeling of a more realistic potential is
possible within our framework, it is highly dependent on a
particular experimental sample. Hence, each sample would
require new calculations, which as shown in the following are
very laborious. The main purpose of this work, in this regard, is
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to make general statements and conclusions about the effects of
both subband and Landau level mixing in a model system. We
reiterate, however, that our formalism allows the consideration
of more realistic models of quantum wells, through the use of
local-density approximation, for example, in a straightforward
manner. These more specific calculations, however, will have
to await further study.

We first assume the N th Landau level to be partially
occupied by electrons and integrate out all higher/lower
Landau levels and subbands perturbatively in the Coulomb
interaction. We thereby generate an effective Hamiltonian for
the N th Landau level which incorporates the effects of virtual
transitions to the other Landau levels and subbands. This
effective Hamiltonian is computed perturbatively in powers
of κ , where κ = (e2/εl0)/(h̄ωc) is the Landau level mixing
parameter discussed above (κ ≈ 2.52 × 1 T/

√
B [T]). Thus,

κ can be varied from very small to very large by changing
the magnetic field (and the density, in order to keep the filling
fraction fixed). This is is an important distinction between
GaAs and graphene, as we discuss in more detail in the
following.

At tree level, the effective action is simply Eq. (1) with the
sums over Landau levels restricted to ni = N and the sums
over subbands restricted to si = 0. Most numerical studies
of the quantum Hall effect use the effective Hamiltonian
associated with this effective action, in which the other Landau
levels are integrated out to zeroth order in the Coulomb
interaction or, equivalently, to zeroth order in κ . However,
if we integrate out the higher Landau levels to second order,
which amounts to computing the effective action to first order
in κ , we obtain

S =
∫

dω

2π

∑
m

c̄0Nmα(ω)(iω − E0N + μ)c0Nmα(ω)

− 1

2

∫ 4∏
i=1

dωi

2π
u

(2)
43;21c̄0Nm4α(ω4)c̄0Nm3β(ω3)

× c0Nm2β(ω2)c0Nm1α(ω1)2πδ(ω4 + ω3 − ω2 − ω1)

− 1

3!

∫ 6∏
i=1

dωi

2π
u

(3)
654;321c̄0Nm6α(ω6)c̄0Nm5β(ω5)

× c̄0Nm4γ (ω4)c0Nm3γ (ω3)c0Nm2β(ω2)c0Nm1α(ω1)

× 2πδ(ω6 + ω5 + ω4 − ω3 − ω2 − ω1). (5)

As a result of the higher Landau levels which are integrated
out, the bare two-body interaction is renormalized

u
(2)
43;21 = V43;21 + κδu

(2)
43;21 (6)

and a three-body interaction u
(3)
654;321 is generated. At higher

orders in κ , four-body, five-body, etc., interactions are gener-
ated, but we will restrict ourselves here to lowest order in κ ,
so we only need to consider two- and three–body interactions.

The calculation will be presented using Feynman diagrams
and the single Coulomb vertex in the diagrammatics is
V

β ′α′,βα

43,21 = V43,21δ
αα′

δββ ′ − V34,21δ
αβ ′

δβα′
where α, β, α′, and

β ′ label spin indices (see Fig. 1).
We use the nomenclature of Shankar75 (as did Ref. 59) (see

Fig. 2) for the three diagrams which renormalize the two-body

= _

1 2

3 4 3 4 3 4

1 2 1 2

FIG. 1. The bare interaction Feynman diagram. The Coulomb
interaction (augmented or not) can not switch the spin so the first
term on the right-hand side has δαα′

δββ and the second term has
δαβ ′

δβα′
. The labels 1, 2, 3, and 4 correspond to 1 = {s1,n1,m1}, etc.

interaction as

δu
(2)
43;21 ≡ ZS + ZS′ + BCS, (7)

where ZS/ZS′ stands for “zero-sound” and BCS stands for
“Bardeen-Cooper-Schrieffer” due to their similarity to the
corresponding diagrams in Fermi liquid theory. The corre-
sponding expressions are

ZS ≡
∫ ∞

−∞

dωx

2π

∫ ∞

−∞

dωx ′

2π

∑
V

γα′,γ ′α
x3,x ′1 V

β ′γ ′,βγ

4x ′,2x

× 2πδ(ω3 + ωx − ω1 − ωx ′ )Gx ′Gx, (8)

ZS′ ≡ −
∫ ∞

−∞

dωx

2π

∫ ∞

−∞

dωx ′

2π

∑
V

γβ,γ ′α
x4,x ′1 V

α′γ ′,βγ

3x ′,2x

× 2πδ(ωx + ω4 − ω1 − ωx ′ )Gx ′Gx, (9)

and

BCS ≡ −1

2

∫ ∞

−∞

dωx

2π

∫ ∞

−∞

dωx ′

2π

∑
V

γγ ′,βα

xx ′,21 V
β ′α′,γ γ ′

43,xx ′

× 2πδ(ωx ′ + ωx − ω1 − ω2)Gx ′Gx, (10)

where the electron propagator is Gx = 1/(iωx − Ẽsxnx
) with

Ẽsxnx
= Esxnx

− μ. We assume the chemical potential to be the
energy of the partially filled Landau level μ = h̄ωc(N + 1/2),
and the above

∑
is shorthand for the sum

∑
≡

∞∑
mx,mx′=0

∞∑
sx ,sx′ =0

′ ∞∑
nx,nx′ =0

′ ∑
γ,γ ′=↓,↑

. (11)

Note the primes on the sums over subbands (sx and sx ′ )
and Landau levels (nx and nx ′ ) indicate that we do not
simultaneously include the conditions (nx = N,sx = 0) or

1 2

3 4

x x

1 2

3 4

x

x

1 2

3 4

x

x

(a) ZS

(b) ZS

(c) BCS

FIG. 2. (a) The ZS Feynman diagram: V
γα′,γ ′α
x3,x′1 V

β ′γ ′,βγ

4x′,2x
. (b) The

ZS′ Feynman diagram: V
γβ ′,γ ′α
x4,x′1 V

α′γ ′,βγ

3x′,2x
. (c) The BCS Feynman

diagram: V
β ′α′,γ γ ′

43,xx′ V
γγ ′,βα

xx′,21 .
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(nx ′ = N,sx ′ = 0)–we do not want to integrate out the N th
Landau level of the lowest subband.

We now turn to the evaluation of these expressions.
Consider the ZS term, for example, and integrate over ωx ′

using the δ function:

ZS =
∫ ∞

−∞

dωx

2π

∑
V

γα′,γ ′α
x3,x ′1 V

β ′γ ′,βγ

4x ′,2x

× 1

i(ω3 − ω1 + ωx) − Ẽsx′ nx′

1

iωx − Ẽsxnx

(12)

and we can do the remaining integral over ωx using the identity∫ ∞

−∞
dω

1

iω − A

1

iω − B
= 2π

θ [Re(A)] − θ [Re(B)]

B − A
(13)

for Re(A) �= 0 or Re(B) �= 0. Thus,

ZS =
∑

V
γα′,γ ′α
x3,x ′1 V

β ′γ ′,βγ

4x ′,2x

θ (Ẽsxnx
) − θ (Esx′nx′ )

i(ω1 − ω3) + Ẽsx′nx′ − Ẽsxnx

.

(14)

In a similar fashion, we have

ZS′ = −
∑

V
γβ,γ ′α
x4,x ′1 V

α′γ ′,βγ

3x ′,2x

θ (Ẽsxnx
) − θ (Ẽsx′nx′ )

i(ω1 − ω4) + Ẽsx′ nx′ − Ẽsxnx

(15)

and

BCS = 1

2

∑
V

γγ ′,βα

xx ′,21 V
β ′α′,γ γ ′

43,xx ′
θ (Ẽsxnx

) − θ (−Ẽsx′nx′ )

i(ω1 + ω2) − Ẽsx′nx′ − Ẽsxnx

.

(16)

We then approximate the denominators as, for example,
i(ω1 − ω3) + Ẽsx′ nx′ − Ẽsxnx

≈ Ẽsx′ nx′ − Ẽsxnx
since h̄ωc is

much larger than the frequencies at which we probe the system.
In principle, however, these effective interactions become
retarded if we do not drop the frequency dependence. This
approximation eventually yields

ZS ≈
∑

V
γα′,γ ′α
x3,x ′1 V

β ′γ ′,βγ

4x ′,2x

θ (Ẽsxnx
) − θ (Ẽsx′nx′ )

Ẽsx′nx′ − Ẽsxnx

, (17)

ZS′ ≈ −
∑

V
γβ,γ ′α
x4,x ′1 V

α′γ ′,βγ

3x ′,2x

θ (Ẽsxnx
) − θ (Ẽsx′nx′ )

Ẽsx′nx′ − Ẽsxnx

, (18)

and

BCS ≈ 1

2

∑
V

γγ ′,βα

xx ′,21 V
β ′α′,γ γ ′

43,xx ′
θ (Ẽsxnx

) − θ (−Ẽsx′nx′ )

−Ẽsx′ nx′ − Ẽsxnx

. (19)

We can extract some physics from these formulas without
calculating any numbers. Each interaction matrix element
(V γβ,γ ′α

x4,x ′1 from the ZS diagram, for example) comes with a
factor of e2/ε�0 according to Eq. (3). Therefore, once a factor
of h̄ωc is pulled out of the denominator, the ZS, ZS′, and
BCS contributions to u

(2)
43;21 are proportional to κ(e2/ε�0), as

expected. In the lowest Landau level (N = 0), the ZS and
ZS′ terms vanish since there can not be any hole excitations
in the internal legs (the x ′γ ′ leg) since there are no filled
Landau levels below in which to have virtual hole excitations.
Therefore, only the BCS diagram renormalizes the two-body
interactions in the lowest Landau level; incidentally, this is not

1 3

6 5

x

2

4

FIG. 3. One of the nine three-body diagrams.

the case for graphene since there all Landau levels N = 0 are
filled in which it is possible to excite virtual holes.

We now turn to the three-body interaction u
(3)
654;321. At order

κ there is a three-body term that is generated in our expansion
of the action. Figure 3 shows one of the nine diagrams that
contribute to the three-body term. The expression for the sum
of all nine diagrams can be written compactly59,76 as

∞∑
nx,sx=0

′ ∞∑
mx=0

∑
γ=↑,↓

∑
cyc. perm.

V
α′λ,βα

6x,21 V
β ′γ ′,λγ

54,x3

iωx − Ẽsx ,nx

. (20)

At low frequencies, this leads to a three-body term

u
(3)
654:321 = −

∞∑
nx,sx=0

′ ∞∑
mx=0

∑
γ=↑,↓

∑
cyc. perm.

V
α′λ,βα

6x,21 V
β ′γ ′,λγ

54,x3

Ẽsx ,nx

,

(21)

where we sum over all cyclic permutations of the indices
labeled with (1,2,3) and (4,5,6). The prime on the summation
over nx and sx indicates that we do not include cases where
sx = 0 and nx = N simultaneously.

B. Normal ordering the three-body interaction

There is one important subtlety that we now discuss. When
we compute the three-body term, just discussed, that is induced
at order κ , we evaluate diagrams that correspond to the operator
expression

1

2!
[c†6c

†
x c2c1 c

†
5c

†
4 cxc3 + c

†
5c

†
4 c3 cx c†xc

†
6 c2 c1]. (22)

Here, we have subsumed spin, Landau level, subband, and
orbital indices into a single index for brevity. In the functional
integral, we do not need to be careful about the order of
Grassmann variables, apart from keeping track of signs.
However, when we pass from the functional integral to the
operator formalism, we must be careful about the order of
these operators. The order of these operators is determined by
a point-splitting regularization:∫

dω eiω0+
c†(ω)c(ω) = c†(t)c(t),

(23)∫
dω eiω0−

c†(ω)c(ω) = c(t)c†(t).

In other words, the order of operators at the same time is
determined by whether the contour must be closed in the
upper or lower half-plane. In the case of our three- body
interaction, which is actually a retarded interaction, as in
Eq. (20), this is determined by the sign of Ẽsx ,nx

. When we
make the approximation of neglecting ωx in the denominator
of Eq. (20) to pass to the low-energy limit in Eq. (21), we can
drop the ωx dependence, except that we must remember the
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operator ordering that it imposes. Therefore, the three-body
term that we have computed is not really

−
∑ V

α′λ,βα

6x,21 V
β ′γ ′,λγ

54,x3

Ẽsx ,nx

c
†
6c

†
5c

†
4c3c2c1 (24)

but is, instead,

−1

2

∑ V
α′λ,βα

6x,21 V
β ′γ ′,λγ

54,x3

Ẽsx ,nx

× [
θ
(
Ẽsx ,nx

)
c
†
6c

†
5c

†
4 c3c2c1 + θ

(−Ẽsx ,nx

)
c
†
6c2c1c

†
5c

†
4 c3

+ θ
(−Ẽsx ,nx

)
c
†
6c

†
5c

†
4 c3 c2c1 − θ

(
Ẽsx ,nx

)
c
†
5c

†
4 c3 c

†
6c2c1

]
.

(25)

After we normal order, this can be rewritten as

1

3!
u

(3)
654;321c

†
6c

†
5c

†
4c3c2c1

+
∑ V

γα′,γ ′α
x3,x01 V

β ′γ ′,βγ

4x0,2x

Ẽsx ,nx

θ
(−Ẽsx ,nx

)
c
†
4c

†
3c2c1

−
∑ V

γβ ′,γ ′α
x4,x01 V

α′γ ′,βγ

3x0,2x

Ẽsx ,nx

θ
(−Ẽsx ,nx

)
c
†
4c

†
3c2c1

− 1

2

∑ V
γγ ′,βα

xx0,21 V
β ′α′,γ γ ′

43,xx0

Ẽsx ,nx

θ
(
Ẽsx ,nx

)
c
†
4c

†
3c2c1, (26)

where the x0 indicates that nx = N . Therefore, the renormal-
ization of the two-body interaction takes the form

1

2!
[ZS + ZS′ + BCS]c†4c

†
3c2c1 + 1

2!
δũ

(2)
43;21, (27)

where 1
2!δũ

(2)
43;21 is the sum of the last three terms in Eq. (26).

Note that Eq. (26) contains the operators so when comparing
the last three terms of Eq. (26) with Eqs. (17), (18), and (19),
which do not contain the operators, there is a factor of 2 that
multiplies the former compared to the latter. Also note that, in
the N = 0 Landau level, the first and second two-body terms
in Eq. (26) vanish and only the third term contributes.

There is a simple check that shows that δũ
(2)
43;21 is necessary.

Suppose that we compute two-particle scattering to second
order in the Coulomb interaction. We can do this either in
the full theory (with all Landau levels kept) or in the low-
energy effective theory of the N th Landau level. The answers
must be the same either way. With the δũ

(2)
43;21 above, this

is the case. There is a simple physical interpretation for the
renormalization of the two-body term that results from normal
ordering the three-body term. We can think of this term as
arising by taking a three-body vertex and connecting one of
the incoming lines to one of the outgoing lines in Fig. 3. If the
two lines are connected to the same vertex (for example, 1 and 6
in Fig. 3), then we have a tadpole diagram, which vanishes.
(Two such lines should not have been connected anyway since
the operators at a single vertex are normal ordered.) If the
two lines are connected to different vertices, then the resulting
diagram is of the form of the ZS, ZS′, or BCS diagrams (see
Fig. 2), but one of the internal lines remains in the N th Landau
level, rather than one of the higher or lower Landau levels
that is being integrated out. In other words, this contribution
accounts for processes such as the following: (i) two electrons

in the N th Landau level interact, (ii) one of them is excited
virtually to a higher Landau level while the other remains in the
N th Landau level, and (iii) they interact again and the excited
electron falls back to the N th Landau level.

One might worry that the result of such a process will
depend on the couplings within the N th Landau level and its
filling factor. The two-body terms that we have generated in
this section derive from normal ordering the three-body terms,
so the dynamics within the N th Landau level does not enter
into their computation. These dynamics (and the filling of the
N th Landau level) enters only when we attempt to solve the
resulting effective Hamiltonian for the N th Landau levels.

Another way to think about this is to recall that we have
not integrated out states within the N th Landau level. Within a
Wilsonian renormalization group scheme, which is essentially
what we have adopted, all internal lines in diagrams are at high
energies and all external lines are at low energies because we
integrate out N ′ �= N Landau levels but do not do anything to
states in the N th Landau level, which will be dealt with later
(by, for instance, exact diagonalization). In our case, this means
that all internal lines are in the N ′ �= N Landau levels while all
external lines are in the N th Landau level. In such an approach,
a diagram with k external legs in which p internal lines are
in the N ′ �= N Landau levels while q are in the N th Landau
level arises in the following way. When we integrate out the
N ′ �= N Landau levels, we will generate a vertex with k + 2q

legs. One of the terms contributing to this vertex will have
p internal lines. If we were to solve the problem in the N th
Landau level perturbatively, then there would be a diagram
in which we took this (k + 2q)-leg vertex and connected q

incoming lines to q outgoing lines. Therefore, this physics
is present in the (k + 2q)-leg vertex. In our case, this means
that two-body processes in which the intermediate state has
one electron in the N th Landau level and one in an N ′ �= N

Landau level are present in our three-body vertex. However, to
correctly account for them, it is crucial to order the operators
in the three-body vertex correctly.

Note that in Fermi liquid theory for electrons with no
external magnetic field (B = 0) we never have to consider the
type of virtual process which gives this contribution because
momentum conservation does not allow processes in which
one electron is scattered to momenta far from the Fermi
surface while the other electron stays near the Fermi surface.
In low Landau levels, by contrast, there is no conservation law
precluding such processes and they are not only present but,
in fact, give a substantial contribution to the renormalization
of the two-body interaction.

C. Effective Hamiltonian

Once we have these new interactions u
(2)
43;21 and u

(3)
654;321,

we can calculate the Haldane pseudopotentials and their
three-body generalizations.77 We use V

(2)
MS(N ) to denote the

bare two-body pseudopotential for two electrons residing in
the N th Landau level with relative angular momentum M and
total spin S. The O(κ) correction (including the contribution
discussed in the previous section) to this pseudopotential is
denoted by δV

(2)
MS(N ). The three-body pseudopotential for

three electrons with relative angular momentum M (defined as

245129-6



MORE REALISTIC HAMILTONIANS FOR THE . . . PHYSICAL REVIEW B 87, 245129 (2013)

the degree of the relative wave function)77 and total spin S is
denoted by V

(3)
MS(N ):

V
(2)
MS(N ) =

∑
〈MS|m3α

′,m4β
′〉〈m1α,m2β|MS〉V43;21,

(28)

δV
(2)
MS(N ) =

∑
〈MS|m3α

′,m4β
′〉〈m1α,m2β|MS〉δu(2)

43;21,

(29)

V
(3)
MS(N ) =

∑
〈MS|m4γ

′,m5β
′,m6α

′〉
× 〈m1α,m2β,m3γ |MS〉u(3)

654;321, (30)

where
∑

indicates a sum over all mi and primed spin variables.
We will drop the spin indices from the pseudopotentials

we are considering in this work and write V
(2)
M (N ) ≡ V

(2)
MS(N ),

V
(3)
M (N ) ≡ V

(3)
MS(N ) where the spin will be S = 1

2 for M = 1
and 2 and S = 3

2 for M � 3 for the three-body case, while
for the two-body case, the spin will be S = 1(0) for spin-
polarized (-unpolarized) electrons, i.e., M = odd (even). Our
Hamiltonian is appropriate for all filling factors. Therefore, we
calculate even and odd M for the two-body terms in addition to
M = 1, 2, 3, 5, 6, 7, and 8 for the three-body terms. It should
be clear what the total spin is for those particular M’s. As
shown in Sec. III, the numerical values for V

(3)
8 (0), V (3)

8 (1) are
very small, so we ignore M > 8. This allows us to avoid the
potential complication of pseudopotential matrices, instead of
pseudopotential numbers, that arise for total relative angular
momentum M � 9 due to the multiple three-particle wave
functions.77

Starting with Eq. (2), we have chosen to calculate the
effective interactions and the resulting pseudopotentials in
the planar geometry, rather than in the spherical geometry.
For the two-body pseudopotentials, we are only reporting
the corrections due to Landau level and subband mixing
and one must consider these corrections as corrections to
the planar bare pseudopotentials. In order to calculate them
in the spherical geometry, we would have to recalculate the
corrections for each system size, which is extremely cum-
bersome and, presumably unnecessary (when we extrapolate
to the thermodynamic limit). The spherical pseudopotentials
approach the planar pseudopotentials in the thermodynamic
limit of a large sphere and it has been argued34,35 that using the
planar pseudopotentials in finite systems better approximate
the infinite system.

With these new effective pseudopotentials, we construct
a Hamiltonian for the FQHE in the N th Landau level
which includes Landau level and subband mixing effects
perturbatively to first order in κ ,

Ĥeff(κ,d/�0) = V̂
(2)

0 (d/�0) + κV̂
(2)

1 (d/�0) + κV̂
(3)

1 (d/�0),

(31)

where

V̂
(2)

0 (d/�0) =
∑
i<j

V (|ri − rj |)

=
∑
M

V
(2)
M (N,d/�0)

∑
i<j

P̂ij (M) (32)

is the bare pseudopotential with V (|ri − rj |) being the usual
finite-thickness augmented Coulomb interaction (see Refs. 34
and 35); it is a function of the quantum well thickness d/�0.
In this expression, P̂ij (M) is an operator that projects the pair
of electrons (i,j ) onto a two-body state of relative angular
momentum M . Similarly,

V̂
(2)

1 (d/�0) =
∑
M

δV
(2)
M (N,d/�0)

∑
i<j

P̂ij (M) (33)

and

V̂
(3)

1 (d/�0) =
∑
L

V
(3)
M (N,d/�0)

∑
i<j<k

P̂ijk(M), (34)

where P̂ijk(M) is a projection operator that projects onto
triplets of electrons with relative angular momentum M . The
subscripts 0 and 1 in Eq. (31) indicate the bare interaction
and the first-order corrections, respectively. We also briefly
comment about the projection operators: what is often not
explicitly written is that the m-body projection operators
P̂ij ...m(M) have normalization set by the property that their
eigenvalues must be 0 or 1.

Since every Landau level has the same number of states,
we project the N th Landau level to the N = 0 Landau level.
The difference between the N th Landau level and the zeroth
is reflected in the values of the pseudopotentials. However,
from the point of view of any calculations, our effective
Hamiltonian (31) is a Hamiltonian for electrons in the lowest
Landau level that simulates the Hamiltonian for electrons in
the N th Landau level.

III. EFFECTIVE TWO- AND THREE-BODY
PSEUDOPOTENTIALS FOR GaAs

We now discuss the numerical values of the two- and
three-body pseudopotentials in the presence of Landau level
and subband mixing appropriate to GaAs (i.e., for parabolic
B = 0 bands). For the two-body case, we calculate Eq. (27).
The result is a function of single-particle angular momenta
m1, m2, m3, and m4, denoted by δu

(2)
43:21, which depends

on the Landau level index N of the partially filled Landau
level which we retain. All other Landau levels are either
completely empty or completely full and are integrated out.
Then, δu(2)

43:21 is substituted into Eq. (29), yielding the two-body
pseudopotential correction δV

(2)
M (N ). For the three-body term

we calculate u
(3)
654;321 [Eq. (20)], which is a function of angular

momenta m6, m5, m4, m3, m2, and m1. The result, which
depends on the index N of the partially filled Landau level
which we retain, is substituted into Eq. (30), yielding the
three-body pseudopotential V

(3)
M (N ).

However, Eqs. (20) and (27) all contain infinite sums over
Landau levels and subbands and none of these sums can be
done analytically. Therefore, they must be truncated and the
resulting finite sums must be computed numerically. The infi-
nite sum is the limit of the finite sums as the truncation is taken
to infinity. We calculate our final results [δV (2)

M (N,d/�0) and
V

(3)
M (N,d/�0)] as a function of the truncation and determine

the convergence to the infinite sum by fitting to some chosen
general common function.
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TABLE I. We list the numerical values of δV
(2)
M (N,d/�0) for d/�0 = 0, 1, 2, 3, 4 and N = 0,1. Values for d/�0 = 0 were given previously

in Ref. 59 for M = 1,3 but due to the new two-body correction coming from properly normal ordering the three-body interaction, the values
have been changed (Ref. 78). All energies are given in units of e2/ε�0.

d/�0 = 0 1 2 3 4

δV
(2)

0 (0,d/�0) −0.3422 −0.1963 −0.1281 −0.0900 −0.0665
δV

(2)
1 (0,d/�0) −0.0328 −0.0300 −0.0254 −0.0211 −0.0175

δV
(2)

2 (0,d/�0) −0.0112 −0.0108 −0.0098 −0.0088 −0.0077
δV

(2)
3 (0,d/�0) −0.0055 −0.0054 −0.0051 −0.0047 −0.0043

δV
(2)

4 (0,d/�0) −0.0033 −0.0032 −0.0031 −0.0029 −0.0027
δV

(2)
5 (0,d/�0) −0.0022 −0.0022 −0.0021 −0.0020 −0.0019

δV
(2)

6 (0,d/�0) −0.0016 −0.0015 −0.0015 −0.0014 −0.0014
δV

(2)
7 (0,d/�0) −0.0012 −0.0011 −0.0011 −0.0011 −0.0010

δV
(2)

8 (0,d/�0) −0.0009 −0.0009 −0.0009 −0.0009 −0.0008
δV

(2)
9 (0,d/�0) −0.0007 −0.0007 −0.0007 −0.0007 −0.0007

δV
(2)

0 (1,d/�0) −0.3816 −0.3184 −0.2696 −0.2307 −0.1997
δV

(2)
1 (1,d/�0) −0.2143 −0.2020 −0.1815 −0.1617 −0.1442

δV
(2)

2 (1,d/�0) −0.1787 −0.1456 −0.1296 −0.1172 −0.1067
δV

(2)
3 (1,d/�0) −0.1039 −0.0986 −0.0927 −0.0868 −0.0812

δV
(2)

4 (1,d/�0) −0.0789 −0.0729 −0.0694 −0.0664 −0.0635
δV

(2)
5 (1,d/�0) −0.0353 −0.0423 −0.0458 −0.0473 −0.0476

δV
(2)

6 (1,d/�0) −0.0258 −0.0296 −0.0334 −0.0361 −0.0376
δV

(2)
7 (1,d/�0) −0.0115 −0.0181 −0.0234 −0.0272 −0.0297

δV
(2)

8 (1,d/�0) −0.0073 −0.0123 −0.0175 −0.0216 −0.0245
δV

(2)
9 (1,d/�0) −0.0023 −0.0079 −0.0133 −0.0176 −0.0209

The two-body pseudopotential corrections and three-body
pseudopotentials are given in, respectively, Tables I and II for
d/�0 = 0, 1, 2, 3, and 4 and shown graphically in Fig. 4 up
to d/�0 = 8. The most salient feature is that these corrections
are small compared to the bare pseudopotentials in the N = 0
Landau level (except for M = 0) and the N = 1 Landau level
(except for M � 3). This was already noted in Ref. 59 for
d/�0 = 0, however, without taking into account the modified
two-body contribution. (Note that the numerical values which
we find for d/�0 = 0 are different than in Ref. 59 due primarily

to the correction to the two-body term coming from the correct
normal ordering of the three-body term.) By “small compared
to the bare pseudopotential” we mean that the coefficients (for
M > 0 in the N = 0 Landau level and M � 3 for the N = 1
Landau level) are ≈10 times smaller and for increasing angular
momentum M approximately 50 times smaller. The smallness
of these coefficients means that it is conceivable that our per-
turbative calculation is valid even for κ beyond one. However,
in order to say this with certainty, we would need to compute
the order κ2, κ3, . . . terms and show that the series converges.

TABLE II. We list the numerical values of the three-body pseudopotentials V
(3)
M (N,d/�0) as a function of M for d/�0 = 0, 1, 2, 3, and 4

and N = 0,1. The values for d/�0 = 0 were given previously in Ref. 59 where again a few values have been changed very slightly due to a
more careful extrapolation. All energies are given in units of e2/ε�0.

d/�0 = 0 1 2 3 4

V
(3)

1 (0,d/�0) −0.0345 −0.0400 −0.0364 −0.0312 −0.0263
V

(3)
2 (0,d/�0) −0.0540 −0.0410 −0.0324 −0.0262 −0.0216

V
(3)

3 (0,d/�0) −0.0181 −0.0173 −0.0156 −0.0138 −0.0120
V

(3)
5 (0,d/�0) 0.0033 0.0026 0.0015 0.0006 −0.0000

V
(3)

6 (0,d/�0) −0.0107 −0.0102 −0.0093 −0.0083 −0.0073
V

(3)
7 (0,d/�0) 0.0059 0.0054 0.0043 0.0033 0.0025

V
(3)

8 (0,d/�0) −0.0047 −0.0045 −0.0041 −0.0037 −0.0033

V
(3)

1 (1,d/�0) −0.0319 −0.0280 −0.0232 −0.0192 −0.0160
V

(3)
2 (1,d/�0) −0.0305 −0.0223 −0.0174 −0.0142 −0.0117

V
(3)

3 (1,d/�0) −0.0147 −0.0136 −0.0118 −0.0101 −0.0087
V

(3)
5 (1,d/�0) −0.0054 −0.0051 −0.0047 −0.0042 −0.0038

V
(3)

6 (1,d/�0) −0.0099 −0.0093 −0.0082 −0.0071 −0.0061
V

(3)
7 (1,d/�0) 0.0005 0.0002 −0.0001 −0.0004 −0.0006

V
(3)

8 (1,d/�0) −0.0009 −0.0013 −0.0016 −0.0017 −0.0018
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FIG. 4. (Color online) The Landau level mixing induced corrections to the two-body pseudopotentials for M = 1–6 in the lowest (N = 0,
left figures) and second (N = 1, right figures) Landau levels. The top left plot in both panels shows all δV

(2)
M (N,d/�0) versus d/�0 on the same

plot for an easier comparison. Note that for the lowest Landau level (N = 0) the M = 0 plot is on a different vertical scale than all the others
since its value is so much larger. For the N = 0 Landau level, the corrections are less than 10% (for all d/�0) of the bare pseudopotential value,
discounting M = 0 which is nearly 30% (for d/�0 = 0) the bare pseudopotential. For N = 1, the corrections are much larger. For M = 0, the
correction is nearly 60% and remains near 50% for M < 3. Of course, for both Landau levels the corrections are mitigated by finite width
(increasing d/�0). All energies are given in units of e2/ε�0.

From Fig. 4, we can see the dependence of the two-body
corrections to the bare pseudopotentials on d/�0. We observe
in both the lowest and first excited Landau levels that generally
the magnitude of the corrections to the two-body pseudopo-
tentials decrease with increasing d/�0; remember that these
numbers will be multiplied by κ when constructing the full
two-body pseudopotentials. The bare Coulomb interaction is
itself also softened as d/�0 increases and the fractional change
in the bare pseudopotential and its two-body correction is
similar. This behavior begins to break down very slightly in
the N = 1 Landau level at larger values of M where some mild
nonmonotonic behavior is observed, however, we emphasize
that the relative value of the correction is quite small for higher
M’s and this nonmonotonic behavior will most likely have
little effect on the physics. The two-body corrections decrease
with increasing d/�0 and, eventually are expected to vanish,
so in essence, the effect of finite thickness is to mitigate the
effect of Landau level mixing.

In Fig. 5, we show the two-body corrections to the bare
pseudopotentials as a function of relative angular momentum
M for d/�0 = 0, 1, 2, 3, and 4 for N = 0 and 1. As in the
case of the bare pseudopotentials, we observe that the two-
body corrections decrease with both increasing M and d/�0.

However, an effect not seen in the bare pseudopotentials for
N = 1 is observed in the two-body corrections; they are larger
in magnitude than their N = 0 counterparts.

Since there is no three-body term at tree level, the
O(κ) correction is the leading three-body term. Although
the three-body interaction is numerically small, as may be
seen in Table II and Figs. 6 and 7, it is the leading term
which breaks particle-hole symmetry. The three-body term is
especially interesting for the FQHE at ν = 5

2 . In its absence,
particle-hole symmetry is a symmetry of the Hamiltonian
and, consequently, the most promising candidates to describe
the the 5

2 FQHE, the Moore-Read Pfaffian state and the
anti-Pfaffian state, would be exactly degenerate. As is well
known,79,80 the Moore-Read Pfaffian is the exact zero-energy
solution to a repulsive (positive) three-body Hamiltonian that
only contains an M = 3 term. The anti-Pfaffian, of course, is
the exact zero-energy solution to the Hamiltonian that is the
particle-hole conjugate of the one that yields the Moore-Read
Pfaffian. Under particle-hole conjugation, the positive M = 3
three-body term picks up a minus sign and becomes attractive.
Additionally, however, a two-body term is also generated
under particle-hole conjugation of the Moore-Read Pfaffian
Hamiltonian. The M = 3 three-body pseudopotential due to
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FIG. 5. (Color online) δV
(2)
M (N,d/�0) as a function of M for

d/�0 = 0, 1, 2, 3 and 4. The left panel corresponds to the lowest
Landau level (N = 0) while the right panel corresponds to the
first excited Landau level (N = 1). As in the case of the bare
pseudopotentials, the corrections to the two-body pseudopotentials
decrease with increasing M . All energies are given in units of e2/ε�0.

Landau level mixing is negative in both the N = 0 and 1
Landau levels, a sign which, naively, favors the anti-Pfaffian
state over the Moore-Read Pfaffian. However, with the M = 5,
6, 7, and 8 three-body terms being nonzero, one can not predict
the physics from the pseudopotentials alone.

To illustrate the d/�0 dependence of the three-body pseu-
dopotentials, we show V

(3)
M (N,d/�0) as a function of d/�0

and M in, respectively, the N = 0 and 1 Landau levels in
Figs. 6 and 7. Other than the M = 1, N = 0 case (discussed
below), finite width decreases V

(3)
M (N,d/�0) monotonically.

Figure 7 shows V
(3)
M (N,d/�0) as a function of M and we see

that for M � 5 the absolute values oscillate: |V (3)
5 (N,d/�0)| <

|V (3)
6 (N,d/�0)|, |V (3)

7 (N,d/�0)| < |V (3)
6 (N,d/�0)|, etc.
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FIG. 6. (Color online) The three-body pseudopotentials
V

(3)
M (N,d/�0) as a function of d/�0 for the lowest Landau level

(left panel) and the first excited Landau level (right panel). Note
that these are numerically small compared to the bare two-body
pseudopotentials. All energies are given in units of e2/ε�0.
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FIG. 7. (Color online) V
(3)
M (N,d/�0) as a function of M for

d/�0 = 0, 0.5, 1–6 for the lowest Landau level (left panel) and the first
excited Landau level (right panel). The magnitude decreases with M

except for the nontrivial oscillatory behavior for M � 5. All energies
are given in units of e2/ε�0.

We note that there is some nontrivial behavior in the M = 1
and 2 three-body pseudopotentials for small values of d/�0 for
N = 0, 1. The M = 1 pseudopotential in the lowest Landau
level is nonmonotonic and starts out smaller than the M = 2
pseudopotential. As d/�0 increases, the two cross and M = 1
is larger than M = 2 for large d/�0. In the N = 1 Landau
level, we see the same qualitative behavior except that M = 1
and 2 do not change signs.

Finally, we examine the overall structure of the effective
interaction by showing V

(p)
M (N,d/�0) for N = 0,1 (top and

bottom panels, respectively) and p = 2,3 in Fig. 8 as a function
of M for a range of κ . The two- (three-) body pseudopotentials
are color coded with “hot” (“cold”) colors going from red
to yellow (green to blue) as κ is changed from 0 to 3. The
numerical values of the corrections to the bare two-body
pseudopotentials and the three-body pseudopotentials are
also small compared to the bare two-body pseudopotentials.
However, as noted in Sec. I, small quantitative changes to
the pseudopotentials can have large qualitative effects on the
possible ground states of the effective FQHE Hamiltonian. As
noted above, naively one might expect that the negative value
of the M = 3 three-body term might favor the formation of the
anti-Pfaffian, but for values of κ > 1 there is a fair amount of
renormalization of the two-body pseudopotentials. It is known
from previous work34,35 that finite thickness stabilizes the
Moore-Read Pfaffian at ν = 5

2 , but this calculation was only
done for κ = 0 and could not distinguish between the Moore-
Read Pfaffian and anti-Pfaffian. From examining the Landau
level and subband mixing induced corrections to the Haldane
pseudopotentials, there is potentially a range of d/�0 and
κ that would favor or disfavor the Moore-Read Pfaffian
and anti-Pfaffian. In fact, a cursory look at the two-body
pseudopotentials leads one to suspect that Landau level mixing
is relatively unimportant for spin-polarized electrons in the
N = 0 Landau level, while, evidently, Landau level mixing is
much more important in the N = 1 Landau level. However,
we emphasize that the effect of the three-body terms on the
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FIG. 8. (Color online) The two-body and three-body pseudopo-
tentials V

(2)
M (N,d/�0) and V

(3)
M (N,d/�0) as functions of M for κ =

0–3 for N = 0 (top panels), N = 1 (bottom panels) for d/�0 = 0
(left), 2 (middle), and 3 (right). Obviously, V

(2)
M (N,d/�0) is a

sum of the bare two-body term plus κ times the two two-body
corrections. The two-body pseudopotentials are color coded such
that κ = 0 corresponds to red and κ = 3 corresponds to yellow, i.e.,
the color coding is “hot.” The three-body terms are color coded
“cold,” i.e., κ = 0 is green and the color changes continuously
to blue for κ = 3. Generally, increasing d/�0 and κ reduces the
two-body pseudopotentials compared to the bare values (κ = 0). The
three-body pseudopotentials are directly proportional to κ so increase
in magnitude for increasing κ , however, increasing d/�0 mitigates this
effect by decreasing the coefficients themselves, as expected. Please
note that any two-body corrections for M � 10 are expected to be
small and unimportant. From inspection of this figure, one would
expect that Landau level mixing is likely to be unimportant for the
FQHE in the N = 0 Landau level for spin-polarized electrons. For the
N = 1 Landau level, however, it is not clear what effect these changes
to the pseudopotentials will have on the physics and the answer will
have to await future exact diagonalization studies. Of course, even
in the N = 0 Landau level, the effect of the three-body terms cold
produce nontrivial effects. All energies are given in units of e2/ε�0.

physics of the FQHE in either the N = 0 or 1 Landau levels
is nontrivial and not known. We are currently undertaking a
thorough numerical study to determine the full quantum phase
diagram of this new Hamiltonian for GaAs.81

We now turn our attention to the study of an effective
Hamiltonian for graphene.

IV. EFFECTIVE HAMILTONIAN FOR GRAPHENE

The formalism for including Landau level mixing in
graphene (linear dispersion at B = 0) is similar to that of
GaAs, so we only highlight the differences, such as the
absence of finite thickness. The Landau level problem has
been investigated by many authors53–58 and we only briefly
repeat those results that are relevant to the present discussion.

The action [Eq. (1)] for graphene is of the same form as for
GaAs with three differences. The first, and most important, is
that the kinetic energy of an electron in the N th Landau level is
E

graph
n = sgn(n)

√
2|n|h̄vF /�0 where vF is the electron Fermi

velocity (∼106 m/s). Unlike in GaAs, this kinetic energy can

be positive or negative (electrons or holes) and increases as the
square root of the absolute value of the Landau level index n.
Hence, the Landau levels in graphene are not equally spaced;
the spacing between successive Landau levels decreases (as the
inverse square root) as the Landau level index is increased. The
second important difference is that there is no subband index
“s” since the thickness of a graphene monolayer is atomically
thin. The third and final difference lies in the interaction
matrix elements. We will use the notation V

graph
43,21 for the matrix

elements of the Coulomb interaction for electrons in graphene
and we will continue to use V43,21 for the corresponding matrix
elements in GaAs.

In GaAs, the electron-electron interaction matrix element
V43,21 is given in Eq. (3). In graphene, Eq. (3) is modified as

V
graph

43,21 =
∫

d2k

2π
V (k)e−k2

√
2

∑4
i=1 δni ,0

4
Gm4m2 (−k)Gm3m1 (k)

× {
sgn(n4)sgn(n2)G|n4|−1,|n2|−1(−k̄) + G|n4||n2|(−k̄)

}
× {

sgn(n3)sgn(n1)G|n3|−1,|n1|−1(k̄) + G|n3||n1|(k̄)
}
,

(35)

where we set sgn(0) = 0 in the above equation. In this
equation, V (k) = e2/(2πε�0k) is the pure (i.e., zero-thickness)
Coulomb interaction. Note that the definition of V

graph
43,21 follows

from the the single-particle energy eigenstates η
graph
nm , which are

related to the single-particle eigenstates ηnm of GaAs according
to

∣∣ηgraph
nm

〉 =
(

1√
2

)1−δ|n|,0 (−sgn(n)i|η|n|−1,m〉
|η|n|m〉

)
. (36)

Hence, if ni = 0 for i = 1,2,3,4, then V
graph

43,21 = V43,21.
Thus, the bare pseudopotentials for graphene in the N = 0 low-
est Landau level are identical to those in zero-thickness GaAs.
In the N th Landau level, the pseudopotenials in graphene are a
mixture of the N th and (N − 1)th zero-thickness GaAs Landau
levels.

Furthermore, the Landau level index N in graphene is not
bounded from below by zero but instead spans −∞ to +∞.
Hence, the sum in Eq. (11) is modified in the case of graphene
to

∑
=

∞∑
mx,mx′=0

∞∑
nx,nx′ =−∞

′ ∑
γ,γ ′=↓,↑

. (37)

Again, the prime on the sums over nx and nx ′ indicates that we
do not include nx = N or nx ′ = N in the sums.

Another difference between graphene and GaAs is the Lan-
dau level mixing parameters. The Landau level mixing parame-
ter for graphene is κ̃ = (e2/ε�0)/(h̄vF /�0) = e2/(εvFh̄) ≡ αg

where αg is the graphene fine-structure constant. Notably, κ̃

is independent of magnetic field strength B. This is in stark
contrast to GaAs where κ ∝ 1/

√
B, so that Landau level

mixing can be ignored for sufficiently large B. The Landau
level mixing parameter in graphene κ̃ is a constant that can
only be adjusted by manipulating the dielectric constant ε,
the Fermi velocity vF , or h̄! In freestanding (i.e., suspended)
graphene κ̃ ≈ 2.2,49–51 while for graphene on substrates it is
κ̃ ≈ 0.9 for a SiO2 substrate49 and κ̃ ≈ 0.5–0.8 for a boron
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nitride substrate.52,82 Thus, by adjusting the dielectric constant
of the substrate from high dielectric to vacuum, one can only
tune the Landau level mixing parameter between 0 < κ̃ � 2.2
but it can not be continuously tuned within a given device
by tuning an experimental “knob” such as the magnetic field
strength.

We also emphasize that since the spacing between Landau
levels varies, unlike in GaAs where it is constant, and we
expect the effect of Landau level mixing will depend on the
Landau level in a manner that varies approximately as ∝κ̃

√
N .

V. EFFECTIVE TWO- AND THREE-BODY
PSEUDOPOTENTIALS FOR GRAPHENE

We first investigate the three-body pseudopotentials in
graphene since the discussion will help facilitate the later
discussion of the two-body terms. The most striking feature
is that the three-body pseudopotentials vanish for N = 0.
Recall the expression for the three-body term generated in
the perturbative expansion of the action for GaAs [Eq. (20)].
For clarity, we write only the sum over Landau level index nx

(and suppress the sums over mx , spin, and cyclic permutations
since they are not relevant for this argument):

∞∑
nx=−∞,nx �=0

Ṽ
α′λ,βα

6x,21 Ṽ
β ′γ ′,λγ

54,x3

Ẽ
graph
nx

= �0

h̄vF

∞∑
nx=−∞,nx �=0

Ṽ
α′λ,βα

6x,21 Ṽ
β ′γ ′,λγ

54,x3

sgn(nx)
√

2|nx |

= �0

h̄vF

1∑
nx=−∞

Ṽ
α′λ,βα

6x,21 Ṽ
β ′γ ′,λγ

54,x3

−√
2|nx |

+
∞∑

nx=1

Ṽ
α′λ,βα

6x,21 Ṽ
β ′γ ′,λγ

54,x3√
2|nx |

= �0

h̄vF

∞∑
nx=1

(
Ṽ

α′λ,βα

6x,21 Ṽ
β ′γ ′,λγ

54,x3√
2|nx |

− Ṽ
α′λ,βα

6x,21 Ṽ
β ′γ ′,λγ

54,x3√
2|nx |

)
= 0,

where Ṽ
β ′α′,βα

43,21 = V
graph

43,21 δαα′
δββ ′ − V

graph
34,21 δαβ ′

δβα′
and Ẽ

graph
nx

=
E

graph
nx

− μ= (h̄vF /�0)[sgn(nx)
√

2|nx | − sgn(N )
√

2|N |]. The
canceling of the two terms in the second to last line above
can be seen by going back to the definition of V

graph
43,21 . Thus,

the three-body terms exactly vanish in the lowest Landau level
(N = 0). In the N = 0 Landau level in graphene, particle-hole
symmetry is an exact symmetry (in the absence of disorder)
because there are as many Landau levels below N = 0 as
above. Consequently, Landau level mixing can not generate
a three-body term because it would violate particle-hole
symmetry.

Outside of the lowest Landau level (N �= 0), the three-body
pseudopotentials are nonzero. They are equal in magnitude and
opposite in sign in the N th Landau level compared to the −N th
Landau level (see Fig. 9). This, again, follows from particle-
hole symmetry. Furthermore, they are, in general, negative for
N > 0 and, therefore, positive for N < 0.

In fact, the Hamiltonian for graphene is invariant under the
combined action of sublattice symmetry, time reversal, and
charge conjugation. The sublattice symmetry takes c → −c

on one sublattice, thereby inverting the kinetic energy in the
absence of a magnetic field. Charge conjugation transforms
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FIG. 9. (Color online) Ṽ
(3)
M (N ) as a function of M for N = 0–6.

Note that for N = 0 all three-body pseudopotentials exactly vanish.
All energies are given in units of e2/ε�0.

particles into holes, thereby inverting the kinetic energy in
the absence of a magnetic field but leaving the Coulomb
interaction energy unchanged (up to a shift of the chemical
potential). Time reversal inverts the direction of the magnetic
field. Therefore, the combination of all three transformations
leaves both the kinetic and Coulomb energies unchanged. The
combination transforms electrons in the N th Landau level
into holes in the −N th Landau level. Therefore, we only
give N � 0 results. The N < 0 values may be obtained by
symmetry, as described above.

Quantitatively, the three-body terms in graphene are similar
in magnitude to those in GaAs, small compared to the bare
two-body pseudopotentials, and decreasing in magnitude with
increasing M . For |N | = 1 there is nontrivial, nonmonotonic
M dependence, where the pseudopotentials for M = 5, 6, and
7 are opposite in sign to those for M = 1, 2, 3, and 8. Table III
lists the numerical values of Ṽ

(3)
M (N ) for |N | = 0–4 and M =

1–3, and 5–8.
Turning now to the two-body pseudopotentials, we note

first that because the energy increases with Landau level index
n as

√
n, the contribution from higher levels will be less

strongly suppressed. In fact, unlike in the case of GaAs, it is
extremely helpful to use the constraint following from angular
momentum conservation to eliminate one of the Landau level

TABLE III. We list the numerical values of the three-body
pseudopotentials Ṽ

(3)
M (N ) as a function of M for graphene. All

energies are given in units of e2/ε�0.

N = 0 1 2 3 4

Ṽ
(3)

1 (N ) 0 −0.1237 −0.0600 −0.0377 −0.0272
Ṽ

(3)
2 (N ) 0 −0.0856 −0.0556 −0.0363 −0.0271

Ṽ
(3)

3 (N ) 0 −0.0537 −0.0413 −0.0266 −0.0194
Ṽ

(3)
5 (N ) 0 0.0135 −0.0225 −0.0221 −0.0165

Ṽ
(3)

6 (N ) 0 0.0313 −0.0262 −0.0225 −0.0164
Ṽ

(3)
7 (N ) 0 0.0205 −0.0105 −0.0133 −0.0141

Ṽ
(3)

8 (N ) 0 −0.0123 0.0027 −0.0148 −0.0147
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TABLE IV. We list the numerical values of δṼ
(2)
M (N ) for N = 0,

1, and 2. The two-body correction consists of two contributions: one
is a direction calculation of the ZS, ZS′, and BCS diagrams and
the other arises from the normal ordering of the three-body term
[Eq. (27)] (please see the discussion in the text above). In the N = 0
Landau level, these corrections are similar in magnitude to the results
for GaAs. However, for N = 1 and 2, the corrections are much larger
and, in fact, it is expected that effective Landau level mixing parameter
κ̃ is really ∝κ̃

√
N (see discussion in text). We use the N = 0 values

as the first term contribution for all N since this term is so much
smaller in magnitude than the second term and expected to make
little difference to the final values or the physics. All energies are
given in units of e2/ε�0.

N = 0 1 2

δṼ
(2)

0 (N ) −0.2638 −0.4519 −0.8529
δṼ

(2)
1 (N ) −0.0633 −0.1762 −0.5240

δṼ
(2)

2 (N ) −0.0407 −0.0690 −0.3943
δṼ

(2)
3 (N ) −0.0143 −0.0290 −0.3010

δṼ
(2)

4 (N ) −0.0090 −0.0123 −0.2179
δṼ

(2)
5 (N ) −0.0052 −0.0066 −0.1510

δṼ
(2)

6 (N ) −0.0034 −0.0032 −0.0996
δṼ

(2)
7 (N ) −0.0030 −0.0022 −0.0643

δṼ
(2)

8 (N ) −0.0022 −0.0012 −0.0400
δṼ

(2)
9 (N ) −0.0016 −0.0005 −0.0242

index summations in Eqs. (14)–(16), thereby making the
convergence of the sum more apparent.

The contribution to the two-body term coming from the
normal ordering is usually an order of magnitude larger than
the term coming from the ZS, ZS′, and BCS diagrams alone.
Because of this fact, and the fact that finding the convergence
of the smaller two-body terms is laborious, we use the N = 0
values of the two-body terms for all Landau levels as an upper
limit and good approximation. Table IV lists the numerical
values of V

(2)
M (N ).

In addition, in Fig. 10 we plot the Landau level mixing
induced corrections to the two-body pseudopotentials as a
function of relative angular momentum M for N = 0, 1, and
2. The two-body corrections are universally negative and for
small M can be approximately half the value of the bare
pseudopotential. Interestingly, the corrections become larger
in higher Landau levels owing to the fact that the effective
Landau level mixing parameter is ∝κ̃

√
N .

In Fig. 11, we show the two- and three-body pseudopo-
tentials as a function of both κ̃ and M . For N = 0, Landau
level mixing has little effect on the pseudopotentials, i.e., the
corrections to the two-body term are relatively small and there
is no three-body term; this might help explain why the FQHE
is observed in the N = 0 Landau level in graphene, when the
system is spin and valley polarized, even though Landau level
mixing can not naively be ignored due to a large value of κ̃ .
This further underscores the fact that the FQHE in graphene
in the N = 0 is observed to be, and is expected to be, nearly
identical to that of GaAs (other than interesting complications
that arise when the spin and valley degeneracies remain).
However, for N �= 0, there are strong corrections in the form of
negative two-body corrections and emergent three-body terms.
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FIG. 10. (Color online) The two-body pseudopotential correc-
tions δṼ

(2)
M (N ) for N = 0, 1, and 2 for graphene as a function of

M . It is clear from this figure that the pseudopotential corrections
increase for increasing Landau level N , reflecting the conjecture that
the effective Landau level mixing parameter is actually ∝κ̃

√
N and

not simply κ̃ . All energies are given in units of e2/ε�0.

For moderate values of κ̃ , it is not at all clear that graphene
would even exhibit the FQHE according to our calculations:
the two-body terms can be of the same order of magnitude as
the three-body terms. We also emphasize that with such strong
Landau level mixing corrections to first order in κ̃ , it is possible
that higher-order corrections will be significant, however, it is
likely that these corrections (which we are ignoring) will make
the situation worse for the FQHE, not better.

Of course, it remains to be seen theoretically what effect
the three-body terms have on the FQHE. Exact diagonalization
studies using the above effective Hamiltonian are likely to shed
light on this problem.81
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FIG. 11. (Color online) Both the two- and three-body pseudopo-
tentials as functions of M for κ̃ = 0–3 for graphene, in the N = 0, 1,
and 2 Landau levels. For the lowest Landau level (N = 0) there is no
three-body term (it exactly vanishes) and the two-body corrections
are modest. Hence, one would expect, from merely studying the
pseudopotentials, that the FQHE in N = 0 Landau level for graphene
would be nearly identical to that of GaAs. However, for N �= 0, we
observe significant corrections to the two-body pseudopotentials and
significant three-body terms. It is not at all clear what these effects
will have on the FQHE. Naively, one is tempted to suggest that the
FQHE will not be observed in N �= 0 Landau levels in graphene, or
if it is observed, it will be of an exotic variety. All energies are given
in units of e2/ε�0.
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VI. CONCLUSION

Quantum electrodynamics is a paradigm of a perturbative
theory: the dimensionless expansion parameter α ≈ 1

137 is
small, so effects that occur at each order in perturbation theory
are successively less important than those that occurred at the
previous order. However, in condensed matter physics, we have
grown accustomed to perturbation theory in dimensionless
parameters that are not particularly small. Landau parameters
are typically O(1), yet Fermi liquid theory remains valid
for 3He and, often, for electrons in metals. The ratio of the
Coulomb energy to the kinetic energy in a metal rs can be
moderately large, without the metallic state being destabilized
(in favor of, say, a Wigner crystal). But, we should guard
against the possibility that we have been lulled into a false sense
of security. There is no quantum Hall experiment in which Lan-
dau level mixing is obviously negligible a priori. In the original
observation of the fractional quantum Hall effect at ν = 1

3 , the
Landau level mixing parameter is κ = 0.65. This might be
small enough that one can reach this value via an expansion in
powers of κ about κ = 0 or it might not, but it is certainly not
a very small number such as 1

137 which one a priori expects to
be negligible. In the N = 1 Landau level, 1 < κ < 2.5, so it is
even less clear that Landau level mixing is small. In the case
of graphene, 0.5 < κ̃ < 2.2, so the situation is no better.

The coefficient of O(κ) corrections to two- and three-body
pseudopotentials due to Landau level mixing are almost always
numerically small. Consequently, these corrections are small
even at κ = 1. (Most of the corrections are small even at
κ = 10.) Since we have not computed the order κ2 corrections,
this does not prove that experiments are effectively in a small-κ
regime. However, it does, at least, raise this possibility or, in
other words, the possibility that the true expansion parameter
is ∼κ/10.

Of course, for the FQHE in the N �= 0 Landau level of
graphene, the corrections are not necessarily small and it is
very possible that a perturbative treatment of Landau level
mixing is inappropriate.

Strictly speaking, our computation yields an effective
action, rather than an effective Hamiltonian, as is always the
case when integrating out high-energy states to produce a
low-energy effective theory. This effective action has retarded
interactions but, at lowest order in κ , these retarded interactions
can be neglected. Moreover, our calculation assumed fixed
chemical potential. At lowest order in κ , we can simply
take this to be the Landau level energy h̄ωc(N + 1

2 ) or
sgn(N )

√
2|N |h̄vF /�0, regardless of filling fraction within the

N th Landau level. However, in going to higher order in κ ,
we would have to tune the chemical potential to determine
the filling fraction. For these two reasons, it will be difficult
to determine the ground state of the system to order κ2. But,
it should still be possible to derive an effective action (albeit
with retarded interactions) from which it would be possible to
determine if order κ2 effects are also small even at κ = 1.

We note that, for large numbers of electrons, fixing the
chemical potential will be the same as fixing the electron
number (or, equivalently, the filling fraction). However, for
the small numbers of electrons considered in numerical exact
diagonalization studies, fixed chemical potential and fixed
electron number are not the same. For fixed chemical potential,

�n ∝ √
n (where n is the electron number) which can be large.

Thus, our effective Hamiltonian is only, strictly speaking,
correct for systems with a large number of electrons, not a
small number. However, if the goal of studying small systems
is to extrapolate their properties to larger ones to determine the
solution in the thermodynamic limit with fixed filling fraction,
then our effective Hamiltonian can be used.

Even if it is quantitatively small, Landau level mixing
could, nevertheless, have significant qualitative effects. It is
the leading effect that breaks particle-hole symmetry within a
Landau level (except for the N = 0 Landau level in graphene,
where this is an exact symmetry). This has important effects at
ν = 5

2 in GaAs, where it could break the degeneracy between
the Moore-Read Pfaffian state and the anti-Pfaffian state, as
we discuss elsewhere.81 It can also have important effects at
ν = 7

3 , 8
3 and 12

5 , 13
5 ; with particle symmetry broken, these states

may not be particle-hole conjugates of each other after all but,
instead, have very different characters. Indeed, even within the
lowest Landau level, there are obvious differences between
particle-hole conjugate plateaus, such as ν = 1

5 and ν = 4
5 .

Presumably, the underlying cause is Landau level mixing.
Finally, we note that, although the corrections to the

effective Hamiltonian due to Landau level mixing are small
compared to the bare terms, they are not small compared to
the energy gaps of quantum Hall states. So it is possible, in
principle, for three-body terms to have a non-negligible effect
on the energy gaps of some fractional quantum Hall states
while, at the same time, order κ2 terms can be neglected. In
such a case, our order κ effective Hamiltonian would be the
most promising starting point for an attempt to make a direct
quantitative comparison between experiments and numerical
simulation of quantum Hall systems.

Note added. Recently, we received a first draft of a paper
by Sodemann and MacDonald83 containing some results on
the effect of Landau level mixing on the FQHE in GaAs
in the zero-thickness limit. They reproduced the d/�0 = 0
limit of our three-body interaction (which, in turn, is equal
to the three-body interaction of Bishara and Nayak59) and
reproduced the d/�0 = 0 limit of our two-body interaction in
the N = 0 Landau level. However, our two-body interaction in
the N = 1 Landau level diverges from theirs. In contrast, the
d/�0 = 0 limit of our two- and three-body interactions in both
the N = 0 and N = 1 Landau levels are within a few percent
of the results of Rezayi and Simon.84
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