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We investigate the feasibility of many candidate quantum Hall states for two-component bosons in the lowest
Landau level. We identify interactions for which spin-singlet incompressible states occur at filling factors ν = 2/3,
4/5, and 4/3, and partially spin-polarized states at filling factors 3/4 and 3/2, where “spin” serves as a generic
label for the two components. We study ground states, excitations, edge states, and entanglement spectrum for
systems with up to 16 bosons and construct explicit trial wave functions to clarify the underlying physics. The
composite fermion theory very accurately describes the ground states as well as excitations at ν = 2/3, 4/5, and
3/4, although it is less satisfactory for the ν = 3/2 state. For ν = 4/3 a “non-Abelian spin-singlet” state, which
is the exact ground state of a three-body contact interaction, has been proposed to occur even for a two-body
contact interaction; our trial wave functions are very accurate for the excitations of the three-body interaction,
but they do not describe the excitations of the two-body interaction very well. Instead, we find that the ν = 4/3
state is more likely to be a spin-singlet state of reverse-flux-attached composite fermions at filling ν∗ = 4. We
also consider incompressible states at integral filling factors ν = 1 and 2. The incompressible state at ν = 1 is
shown to be well described by the parton-based Jain spin-singlet wave function, and the incompressible state at
ν = 2 as the spin-singlet state of reverse-flux-attached composite fermions at ν∗ = 2, which provides an example
of the bosonic integer topological phase.
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I. INTRODUCTION

The study of two-component fractional quantum Hall
(FQH) effect has revealed a tremendous amount of new
physics. The earlier studies were performed on GaAs
systems,1–12 where the Landé g factor is small and therefore
both components of spin can be active at relatively small
magnetic fields. More recently, the two-component FQH effect
has been studied in systems where valleys play the role of
spin, as in AlAs quantum wells13,14 and H-terminated Si(111)
surfaces15; here the Zeeman energy is large enough to freeze
the spin degree of freedom for typical experimental parame-
ters. In graphene, the two components could be either spins
or valleys, depending on parameters.16,17 Experiments have
shown that, in general, FQH states with several spin/valley
polarizations can occur at a given filling factor, and transitions
between them can be caused by tuning the Zeeman/valley split-
ting. These level crossing transitions are understood in terms
a competition between the composite fermion (CF) cyclotron
energy and the Zeeman/valley splitting. A quantitative under-
standing of this physics has been achieved through Halperin’s
multicomponent wave functions18 and more generally through
the theory of spinful composite fermions.19–22

Given a rich diversity of strongly correlated states of
fermions involving the spin physics, it is natural to ask what
new physics can be learned from the study of two-component
Bose gases, such as those made up of two hyperfine spin states
of the same atoms, in the FQH regime. Neutral bosons can in
principle be driven into the FQH regime by rapid rotation.23

Strong correlations among particles are achieved as the number
of vortices NV in a rotating Bose-Einstein condensate (BEC)
becomes comparable with the number of atoms N as quantified
by the filling factor ν = N/NV . For simplicity, we will refer to
the two components as spins, but the results apply to any two-
component bosons for which the interaction is (approximately)
independent of the component index. There has been much
recent study of bosonic quantum Hall states.24–39 It has been

shown that the vortex lattice that forms at large ν melts and that
a series of FQH states appear at various filling factors, which
include, for appropriately chosen interactions, Laughlin,40

Jain,41 Moore-Read,42 and Read-Rezayi43 states. While FQH
effect in cold atom systems has not yet been observed in
a convincing manner, substantial progress in that direction
has been reported.44 Other ingenious methods to simulate the
effect of magnetic field have also been explored.45–47

We consider below two-component bosons in the FQH
regime. Aside from the experimental interest, a motivation for
studying this problem is the possibility of realization of new
structures that are not available in electronic FQH effect. In
particular, we will see that some FQH states require a tuning of
the interaction, which is more easily accomplished in ultracold
atomic systems.

The theoretical study of the FQH effect has relied on
the notion of the formation of emergent quasiparticles, a
description in terms of which provides a tangible way to
understand the physical properties of an inherently hard quan-
tum N -body problem. The physics of emergent quasiparticles
is captured by appropriate wave functions, which, in turn,
represent topological phases. To fully classify all topological
phases is a formidable task, but progress has been made in
the context of topological insulators and superconductors.48,49

However, one can take specific examples and ask if they occur
for models with realistic interactions. We consider in this
article several bosonic spin-singlet and partially spin-polarized
states, and ask for what kinds of interactions they would
be realized. Some of these support excitations with Abelian
braid statistics, whereas there are some with non-Abelian braid
statistics.

The outline of this paper is as follows. In Sec. II we
introduce all of the trial wave functions that we study in the
subsequent sections. Section III describes our model and our
methods for evaluating the wave functions, exact diagonaliza-
tion, and entanglement spectra. Section IV presents the results
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for bosons at fractional fillings and Sec. V for integral fillings.
Section VI summarizes the conclusions of our study.

II. TRIAL WAVE FUNCTIONS

In this section, we shall use the symmetric gauge on disk
geometry where the lowest Landau level (LLL) wave functions
are particularly simple as given by

φm(z) = zm exp(−|z|2/4)√
2π2mm!

, (1)

where z = x + iy is the complex coordinate of particles on
the disk. The ubiquitous exponential factor will be omitted in
the rest of this paper. A bosonic Fock state is represented
using symmetric monomials and a many-body state is the
superposition of all monomials with appropriate quantum
numbers. We use the convention that the coordinates {z↑}
and {z↓} denote, respectively, spin-up and spin-down particles,
whereas {z} denote all particles.

The general wave function of two-component bosons (with
N↑ spin-up and N↓ spin-down bosons) at filling factor ν has
the form

χν = S[�ν({z})u1 · · · uN↑d1 · · · dN↓ ], (2)

where �ν({z} is the spatial part, u and d refer to the two
components, and S denotes symmerization. It is sufficient to
consider �ν({z}) provided it satisfies appropriate symmetries.
An acceptable wave function with spin S = Sz must satisfy
Fock’s cyclic condition, which means that the state χν is
annihilated by an attempt to antisymmetrize a spin-down
particle with respect to the spin-up particles. This condition is
satisfied for the wave functions considered below.

(i) The Halperin 221 state at ν = 2/3 state is given by

�221
2
3

({z}) =
∏
i<j

(z↑
i − z

↑
j )2(z↓

i − z
↓
j )2

∏
i,j

(z↑
i − z

↓
j ). (3)

This form of multicomponent wave functions were introduced
by Halperin for electronic FQH states.18 The Halperin 221
wave function vanishes as the third power of distance between
particles when two particles are brought together, regardless
of their spin configuration. It is the exact ground state for the
contact interaction

∑
i<j δ(zi − zj ).

(ii) The Jain’s CF (JCF) states at ν = n/(n±1) are given by

�
[n↑,n↓]

n
n+1

({z}) = PLLL[�n↑({z↑})�n↓({z↓})J ({z})], (4)

�
[−n↑,−n↓]

n
n−1

({z}) = PLLL[�−n↑ ({z↑})�−n↓ ({z↓})J ({z})], (5)

where �−n↑ ≡ �∗
n↑ , �−n↓ ≡ �∗

n↓ , and J ({z}) = ∏
i<j (zi − zj )

is the Jastrow factor for all particles; �n↑ and �n↓ are two
Slater determinants for the spin-up and spin-down particles at
fillings n↑ and n↓, respectively, and their complex conjugates
�−n↑ and �−n↓ represent filled LL states in opposite magnetic
field; n = n↑ + n↓; and the symbol PLLL represents the LLL
projection operator. The spin polarization is given by

P = n↑ − n↓
n↑ + n↓

. (6)

Those with n↑ = n↓ are spin-singlet, while those with n↑ �= n↓
(i.e., odd n) are partially spin polarized (or spin polarized).

These wave functions are closely related to those studied
previously for electronic FQH effect,19,20 where they represent
the physics of electrons capturing two vortices to turn into
composite fermions, which then form integer quantum Hall
(IQH) states. In the present case, the bosons capture one
vortex each to form composite fermions, which experience
a reduced effective magnetic field B∗ = B − ρhc/e (B is the
external field and ρ is the density) and condense into IQH states
(with filling factor denoted as ν∗) to produce incompressibility.
An intuitive reason for why bosons convert into composite
fermions is because this builds good correlations that keep
the particles away from one another and, thus, reduce the
interaction energy. For n↓ = 0 these wave functions reduce
to fully spin-polarized bosons which have been considered
previously.30,32 The wave functions in Eq. (4) and Eq. (5) are
interpreted as the states in which composite fermions fill n↑
spin-up and n↓ spin-down 
 levels (
Ls), where 
Ls are
Landau-like levels of composite fermions.

A noteworthy aspect of the analogy to the IQH effect is that
it goes beyond the ground state and also allows construction of
wave functions for the excitations of the ν = n/(n ± 1) state
in terms of the known excitations of the IQH states. In fact,
the CF theory implies a one-to-one correspondence between
the excitations at ν∗ = n and those at ν, because an IQH wave
function with a given spin and angular-momentum quantum
number produces, through Eqs. (4) or (5), a wave function at
ν with the same quantum numbers. In particular, neutral and
charged excitations of the IQH state at ν∗ = n produce neutral
and charged excitations of the state at ν. In what follows, the
JCF wave function �

[±n↑,±n↓]
n/(n±1) will collectively represent wave

functions for the ground state as well as neutral and charged
excitations.

We study below �
[1,1]
2/3 , �

[2,2]
4/5 , �

[−2,−2]
4/3 , �

[2,1]
3/4 , �

[−2,−1]
3/2 ,

and �
[−1,−1]
2 , including the ground state and excitations. We

note that for n↑ = n↓ = 1 the ground-state wave function is
given by

�
[1,1]
2
3 ,G.S.

({z}) = PLLL[�1({z↑})�1({z↓})J ({z})]

=
∏
i<j

(z↑
i − z

↑
j )(z↓

i − z
↓
j )

∏
i,j

(zi − zj ) (7)

(no LLL projection is required in this case), which is identical
to the Halperin 221 wave function. In other words, the
Halperin-221 state is interpreted as the ν∗ = 2 spin-singlet
state of composite fermions. This interpretation also allows a
construction of the excitations of the 2/3 state by correspon-
dence with the excitations of the ν∗ = 2 spin-singlet IQH state
�1({z↑})�1({z↓}).

(iii) The simplest non-Abelian spin-singlet (NASS)
state50,51 at filling factor ν = 2k/3 can be written as a
symmetrized product of k copies of the Halperin-221 state,

�NASS
2k
3

({z}) = S↑↓
[
�221

2
3

({zα})�221
2
3

({zβ}) · · ·�221
2
3

({zk})
]
,

(8)

where the particles are divided into k groups with
coordinates {zα},{zβ}, . . . ,{zk} and S↑↓ denotes the separate
symmetrization of the spin-up and spin-down particles. It may
be viewed as a spin-singlet generalization of the Read-Rezayi
Zk states43 whose excitations obey non-Abelian braiding
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statistics.50,51 It is the exact zero-energy ground state of a
model (k + 1)-body contact interaction. It has recently been
suggested52,53 that the 4/3 NASS state may be realized even
for the two-body contact interaction.

We will also study excitations of this state. The quasihole
excitations, obtained by adding flux quanta, also have zero
energy for the (k + 1)-body interaction and can be explicitly
constructed.54,55 The neutral excitations and the quasiparticles
of the (k + 1)-body Hamiltonian are nontrivial and do not
have zero energy. To construct trial wave functions for them,
we generalize Eq. (8) to

�NASS
2k
3

({z}) = S↑↓
[
�

[1,1]
2
3

({zα})�[1,1]
2
3

({zβ}) · · · �[1,1]
2
3

({zk})].
(9)

This reproduces the wave function of Eq. (8) when all factors
�

[1,1]
2/3 are chosen as the ground states (i.e., the Halperin 221

state) but also produces excitations by appropriate choice
of excited states on the right-hand side. For example, the
lowest-energy neutral excitations correspond to a CF exciton
in a single factor �

[1,1]
2/3 . This approach for constructing exci-

tations follows a “multipartite CF” representation investigated
recently to study the excitations of the Moore-Read state56–58

and the Read-Rezayi Z3 state.59 The NASS state can also be
generalized to produce other candidate incompressible states
by replacing the Halperin-221 state with �

[±n↑,±n↓]
n/(n±1) .

(iv) Moran et al.60 recently studied the Jain spin-singlet
(JSS) wave function for fermions, which they argued contains
topological d-wave pairing structure. We consider here its
bosonic analog at ν = 1,

�JSS
1 ({z}) = PLLL

⎡
⎣�2({z})

∏
i<j

(z↑
i − z

↑
j )(z↓

i − z
↓
j )

⎤
⎦ , (10)

where �2 is the wave function of two filled Landau levels. This
does not belong to the �

[±n↑,±n↓]
n/(n±1) states considered above but

follows from the parton construction of FQH states.61 In this
construction, each boson is viewed as the bound states of two
fictitious species of fermions (partons), one of which carries
spin while the other is spinless. The spinful fermions occupy
the spin-singlet state at ν = 2, whereas the spinless ones
occupy the fully spin-polarized state at ν = 2. The fermionic
version of this state (obtained by multiplication by another full
Jastrow factor) describes a spin-singlet incompressible state at
ν = 1/2; it was introduced in Ref. 61 and considered as a
possible candidate for the spin-singlet 5/2 FQH state,62,63 but
was abandoned when it was realized that the Coulomb 5/2
state is fully spin polarized.

We will see below in Sec. V that this state is realizable
for a two-body interaction. This result is of interest because
�JSS

1 is the simplest “parton” state that goes beyond the CF
interpretation (all states of composite fermions admit a parton
construction but the converse is not true). The excitations
of this state are more complicated. One may naively expect
that the low-lying energy levels can be obtained by creating
excitations in either �2 or

∏
i<j (z↑

i − z
↑
j )(z↓

i − z
↓
j ) in Eq. (10).

However, it turns out that neither of them gives a very accurate
description of the excitations, as we shall see in Sec. V.

Many of the above wave functions involve �n, the Slater
determinant wave function of n filled LLs, on the right-hand
side. While �n is uniquely defined for a compact geometry,
where the number of single-particle states in each Landau level
is finite, that is not the case in the disk geometry. For example,
in the disk geometry �2 can be defined with N1 particles in the
lowest Landau level and N2 particles in the second Landau with
the constraints that N = N1 + N2. Different possible choices
of N1,N2 complicate the analysis of the edge excitations of
the states involving �2, as has been found to be the case for
spin-polarized fermions at 2/5.64,65

III. MODELS AND METHODS

We consider a bosonic system with two internal states
in a rapidly rotating harmonic trap. These neutral particles
experience forces in the rotating reference frame which
mathematically have the same description as charged particles
moving in a uniform magnetic field. We specialize to the case
where single-particle cyclotron energy is much larger than the
many-body gap, so the bosons can be treated as in the lowest
Landau level only and effects due to Landau levels mixing
are neglected. The number of particles, the number of spin-up
particles, and the number of spin-down particles are denoted
using N , N↑, and N↓, respectively.

A. Spherical and disk geometry

We will use the spherical geometry66 for most of our
calculations. The flux enclosed by the sphere is denoted as
2Q, which is related to the numbers of particles N and the
filling factor ν via 2Q = N/ν − Sh. The quantity Sh is called
the “shift.” Sometimes there is an ambiguity when two states
at different fillings “alias,” i.e., occur at the same flux. In such
cases, it is important to study several values of N to draw
unambiguous information. The compact spherical geometry
is very convenient for studying the bulk properties of a FQH
state, due to absence of edges. For studying the structure of
edge excitations, there are two ways of proceeding. One can
study either the states in the disk geometry or the entanglement
spectrum in the spherical geometry67 (see Sec. III D).

The single-particle eigenstates on a sphere are the so-called
monopole harmonics,68

YQlm = NQlm(−1)l−muQ+mvQ−m

l−m∑
s=0

(−1)s
(

l − Q

s

)

×
(

l + Q

l − m − s

)
(u∗u)s(v∗v)l−Q−s , (11)

where l = Q + n (n is the Landau level index) is the angular
momentum, m is the z component of the angular momentum,
and θ and φ are the azimuthal and radial angles. The spinor
coordinates u = cos(θ/2)eiφ/2, v = sin(θ/2)e−iφ/2 and the
normalization coefficient NQlm is

NQlm =
(

2l + 1

4π

(l − m)!(l + m)!

(l − Q)!(l + Q)!

)1/2

. (12)
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B. Lowest Landau level projection

When Eq. (4) and Eq. (5) are constructed on a sphere,
the flux 2Q∗ experienced by composite fermions, that is,
the flux of the IQH states �±n↑ ({z↑})�±n↓ ({z↓}), is related
to the actual flux by 2Q = 2Q∗ + (N − 1). Once the IQH
states are constructed using the above single-particle wave
functions, we multiply them by the Jastrow factor J and then
project the products to the LLL. An efficient Jain-Kamilla
method69 has been developed that applies to states of the
form PLLLJ 2p�n, where the projected wave function can
be constructed for rather large N without the need for
expanding it in basis functions. This method requires an
even exponent of J for technical reasons. In Ref. 32 this
method was applied to spinless bosons by writing PLLLJ�n

as J−1PLLLJ 2�n. Unfortunately, this method does not work
for spin-singlet sates, because J−1PLLLJ 2�n↑,n↓ is a singular,
non-normalizable wave function, as PLLLJ 2�n↑,n↓ does not
vanish when two particles with opposite spins coincide.
Therefore, we must evaluate the LLL projection by using
its expansion in terms of the symmetric monomials for the
spin-singlet states.19,70 The following identity of monopole
harmonics discovered by Wu and Yang68 are useful in the
LLL projection,

YQ1l1m1YQ2l2m2 = (−1)m3−Q3
∑
l3

S({Qi,li ,mi})YQ3,l3,m3 , (13)

where we have defined the following quantities:

S({Qi,li ,mi}) = (−1)l1+l2+l3

[
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

]1/2

×F
l1l2l3−m1−m2m3

F
l1l2l3
Q1Q2−Q3

, (14)

F l1l2l3
m1m2m3

= (−1)l1−l2−m3

√
2l3 + 1

〈l1,m1; l2,m2|l3, − m3〉. (15)

Here Q3 = Q1 + Q2, m3 = m1 + m2, and 〈l1,m1;
l2,m2|l3,m3〉 is the Clebsch-Gordon coefficient.

The computational time to perform the LLL projection
grows factorially with the number of particles, since one must
consider all possible permutations of the indices. As a result,
N = 14 or 16 is the maximum number of particles that we can
study in a reasonable amount of time.

C. Exact diagonalization

Interaction between particles can be parametrized by the
Haldane pseudopotential in the two-body case and their gen-
eralizations in the three-body case.71,72 We study Hamiltonians
containing two-body and three-body interactions, denoted as
H2 and H3, respectively,

H2 =
∑

α

∑
ij

cα[Pij (α,1) + Pij (α,0)], (16)

H3 =
∑
ijk

[Pijk(0,3/2) + Pijk(0,1/2)], (17)

where Pij (L,S) projects out a pair of
particles i,j with relative angular momen-
tum L and total spin S, and Pijk(L,S) projects out a
triple of particles i,j,k with relative angular momentum L and
total spin S. The natural interaction for bosons is the contact

interaction, which corresponds, in units of c0, to

H con
2 =

∑
ij

[Pij (0,1) + Pij (0,0)]. (18)

This will be the interaction used unless otherwise stated.
Nonzero values for c1 and c2 in H2 will be used, and the
three-body Hamiltonian H3 will also be used sometimes, to
stabilize certain interesting states. Since the interaction is
rotationally invariant and spin independent, the energy eigen-
states are also eigenstates of orbital angular momentum L̂2

[with eigenvalue L(L + 1)] and spin angular momentum Ŝ2

[with eigenvalue S(S + 1)]. In the figures shown below, the
energy levels are labeled by their angular momentum and spin
quantum numbers L and S and are also shifted horizontally
according to their S values for clarity.

To study edge excitations, we use the disk geometry. The
Hamiltonian can also be represented using two-body Haldane
pseudopotentials,

H̃2 =
∑

α

∑
ij

c̃α[Pij (α,1) + Pij (α,0)] + ωc(L̂z − L0), (19)

where L̂z is the z-component angular-momentum operator
and the term ωc(L̂z − L0) is due to a parabolic confinement
potential whose strength is controlled by the parameter ωc.
We choose the coefficients c̃α to have the same values as
their counterparts in the spherical geometry Hamiltonian and
tune the coefficient ωc to make sure that the state at angular
momentum L0 has the lowest energy, where the counting of
edge excitations starts.

D. Entanglement spectrum

In addition to comparing the wave functions with exact
eigenstates obtained in finite systems, we also study the
entanglement spectrum67 in some cases, because it can provide
additional insight into the physics of the FQH states. In
particular, it has been found that the entanglement spectrum
contains information about the edge excitations; specifically,
the entanglement spectrum can reproduce the counting of the
edge states (which provides a method of study edge excitations
in the spherical geometry). To obtain the entanglement
spectrum for an incompressible ground state |�〉, one divides
the Hilbert space into two parts labeled as A and B and then
decomposes the ground state as

|�〉 =
∑
αβ

Cαβ

∣∣�A
α

〉 ⊗ ∣∣�B
β

〉 =
∑

i

e−ξi/2
∣∣�A

i

〉 ⊗ ∣∣�B
i

〉
,

(20)

where |�A
α 〉 and |�B

β 〉 are two sets of basis states for
A and B, respectively. The second step is achieved through
a singular value decomposition (SVD) of the matrix Cαβ ,
which also changes the basis states to |�A

i 〉 and |�B
i 〉. A

plot of the “eigenvalues” ξi versus the conserved quantum
numbers in region A comprises the entanglement spectrum. We
shall calculate the “real-space entanglement spectrum”65,73,74

(RSES), where the cut is made along the equator and the
southern hemisphere is chosen as A, with NA

↑ (NA
↓ ) spin-up

(spin-down) particles. Due to the choice of cut, the levels in the
RSES can be labeled by the z component of the total angular
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momentum LA
z and the total spin quantum number SA of the

particles in A. To compare the edge excitations with the RSES,
we will calculate energy spectra on disk geometry when the
edge counting cannot be predicted exactly. For example, the
counting of edge excitations of the NASS state can be predicted
in several ways and does not require exact diagonalization, but
the counting of the edge excitations of JCF state and JSS state
are more complicated.

IV. BOSONS AT FRACTIONAL FILLINGS

A. ν = 2/3 and 4/5

(i) The Halperin-221 state is the unique exact zero-energy
state of the hard-core interaction H con

2 at flux 2Q = 3N/2 − 2.
The quasihole states, obtained by adding flux, are also exact
zero-energy states of H con

2 , whose counting can be predicted
in several ways and the wave functions are also known
exactly.54,55

Exact solutions are not known for the neutral excitations
and the quasiparticles, which do not have zero energy with
respect to H con

2 . For these we use the trial wave functions
�

[1,1]
2/3 = PLLL[�1({z↑})�1({z↓})J ({z})]. The lowest-energy

neutral excitations correspond to a particle-hole excitation
in one of the �1 factors. When the flux is reduced by one
unit, each �1 factor on the right-hand side contains one
particle in the second LL. We construct L and S eigenstates
by taking appropriate linear combinations. Figure 1 gives
the energies (shown by crosses) of the trial wave functions
of the neutral excitations in Figs. 1(a) and 1(b) and of
quasiparticle excitations in Fig. 1(c). The overlaps between
the trial wave functions and the exact eigenstates are shown
in Table I. These comparisons show that the CF theory
provides an excellent description of the excitations of the 2/3
spin-singlet state.

(ii) The incompressible �
[2,2]
4/5 state occurs at 2Q =

5N/4 − 3. We find that the system at this flux value is
incompressible for up to 12 particles as shown in Figs. 2(a)
and 2(b). We have explicitly constructed the wave function
�

[2,2]
4/5 = PLLL[�2({z↑

i })�2({z↓
i })J ({z})] for the ground states

and excitations. Their energies are shown by crosses in Fig. 2,
and their overlaps with the corresponding exact states are
shown in Table I, which have excellent agreement. We note
in passing that another candidate at ν = 4/5 is a spin-singlet
Gaffnian state,75 but it is likely to describe a gapless or critical
state rather than an incompressible state since it is given by
the conformal blocks of a nonunitary conformal field theory.

For the 2/3 state, the edge energy spectrum is trivial and it
has been found that the counting of levels in RSES matches
predictions.54,55 In contrast, the edge spectrum of the 4/5 state
is expected to be complicated, containing several branches,
because composite fermions occupy two 
 levels. The studies
of fermionic 2/5 state tell us that such structures can be seen
only for a rather large number of particles.59,65 The systems
studied here are too small to bring out the edge physics.

B. ν = 3/4 and 3/2

The 3/4 state �
[1,2]
3/4 occurs at 2Q = 4N/3 − 8/3 and the

3/2 state �
[−1,−2]
3/2 occurs at 2Q = 2N/3 + 2/3. These are
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E
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1
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L+0.3*S

E
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0.95

1.1

1.25

1.4

1.55

(c)

E

L+0.3*S

FIG. 1. (Color online) Energy spectra (lines) of the ν = 2/3 state
for the two-body contact Hamiltonian H con

2 . The lines are colored
according to their spin quantum numbers and are also shifted in the
horizontal direction for clarity. The same conventions are used in all
other figures. The crosses represent the energies of the wave functions
�

[1,1]
2/3 for the ground and excited states. The panels correspond to

(a) N↑ = 4, N↓ = 4, and 2Q = 10; (b) N↑ = 5, N↓ = 5, and 2Q =
13; and (c) N↑ = 5, N↓ = 5, and 2Q = 12. The inset in panel (a)
shows the color scheme for all panels. Panels (a) and (b) correspond
to incompressible states where the uniform ground state has L =
0 and S = 0, and the excitations are neutral particle-hole pairs of
composite fermions. Panel (c) corresponds to a system containing
two quasiparticles; the low-energy band contains all possible states
of these quasiparticles.

partially spin-polarized states. They are both derived from the
partially spin-polarized IQH state at ν∗ = 3, one with parallel
flux attachment and the other with reverse flux attachment.
Figure 3 shows the energy spectra for the contact interaction
H con

2 at these two filling factors and their comparison with
the trial wave functions for the ground state as well as neutral
excitations. Table II gives the overlaps of the trial states and
exact states shown in Fig. 3. In some orbital and spin angular-
momentum sectors, there are two trial states and we define the

overlap as
√∑

ij [〈�E
i |�T

j 〉]2, where the summation is over

the lowest two exact states |�E
i 〉 and trial states |�T

j 〉. These
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TABLE I. Overlaps between the trial states �
[1,1]
2/3 and �

[2,2]
4/5 and corresponding exact eigenstates shown in Figs. 1 and 2. L is the orbital

angular momentum, S is the spin quantum number, and “−” denotes that there is no trial state in that (L,S) sector. The total number of linearly
independent (L,S) multiplets is given below each overlap. The same conventions are used in all other tables.

(L,S)

Figure (0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1) (4,0) (4,1) (5,0) (5,1)

1(a) 1 – – 0.994 0.994 0.998 0.997 0.997 0.997 0.997 – –
49 203 161 302 180 438 261 518

1(b) 1 – – 0.993 0.992 0.997 0.996 0.997 0.997 0.997 0.996 0.996
713 4324 3122 6901 4099 9745 5375 12 101 6216 14 651

1(c) – 0.992 0.992 – – 0.988 0.983 – 0.988 0.988 – 0.990
969 1220 4476 2684 3234 7713 9026

2(a) 0.997 – – 0.973 0.974 0.953 0.980 0.972 – – – –
16 53 41 70 39 107

2(b) 0.992 – – 0.984 0.987 0.968 0.947 0.971 0.983 0.983 – –
2186 14 764 10 046 23 908 13 479 33 359 17 422 41 880

2(c) – 0.978 0.965 – – 0.993 0.990 – – – – –
363 447 1615 961

results show that the actual 3/4 state is very well described by
the CF theory, whereas this theory is less accurate for 3/2.

Note that the number of particles in each spin component
is fixed (because the Hamiltonian H con

2 conserves the z com-
ponent of spin), so only states with total spin S�|N↑ − N↓|/2
may occur. (Should we allow the spins to flip, these partially
spin-polarized states will not be ground states.) It is interesting
to note that the low-energy part of the spectrum contains
states with S = |N↑ − N↓|/2, with the states with higher
values of S appearing at much higher energies. This feature
is nicely explained by the CF theory as follows. The 3/4
and 3/2 states map into [1,2] and [−1, − 2] of composite
fermions, and the lowest energy excitations (without changing
Sz) contain a single CF exciton either in the spin-up sector
or in the spin-down sector. The resulting states satisfy the
Fock condition (all occupied states in the spin-up sector are
definitely occupied in the spin-down sector, and therefore the
wave function is annihilated upon further antisymmetrization)
and, thus, represent states with S = |Sz| = |N↑ − N↓|/2. To
produce a state with S > |N↑ − N↓|/2 one must consider CF
configurations containing at least two CF excitons, which are
expected to lie at higher energies.

C. ν = 4/3

The filling factor 4/3 has been considered52,53 because it
may provide a realization of the simplest NASS state �NASS

4/3 .
At the same time, the CF theory provides another candidate
�

[−2,−2]
4/3 here. It is therefore of interest to ask what kinds

of interaction would favor these states. The states �
[−2,−2]
4/3

and �NASS
4/3 occur at different shifts with 2Q = 3N/4 + 1 and

2Q = 3N/4 − 2, respectively, on the spherical geometry.
Let us first consider the two-body interaction. For the

contact interaction H con
2 , the spectrum for 12 particles at

2Q = 3N/4 + 1 is shown in Fig. 4(a) and for 2Q = 3N/4 − 2
in Fig. 6(a). The overlaps of trial states and exact eigenstates
are shown in Tables III and IV, respectively. Given that
the JCF ground state has a higher overlap (0.985) than the
NASS ground state (0.918) in spite of a larger Hilbert space

(646 independent L = S = 0 multiplets as opposed to 79 for
NASS), these comparisons suggest that the state �

[−2,−2]
4/3 is

favored for the contact interaction. Comparison is also shown
for excitations.

To test the stability of the JCF and NASS states at filling
factor ν = 4/3, we further test their performances when
changing the coefficients cα for α = 1,2 in the Hamiltonian
H2. The results are shown in Tables V. Both states remain
good approximations for small values of c1 and c2 but are
destroyed at large-enough values for these parameters. We
should emphasize that these numbers are not to be compared
directly since the two states occur at different shifts, and the
dimensions of the subspaces with fixed L and S quantum
numbers differ.

As mentioned previously, the NASS is the exact ground
state for the three-body contact interaction H3. The energy
spectra corresponding to the NASS shift are shown in Fig. 6
for this three-body interaction. From the energy comparisons
shown in this figure, and the overlaps shown in Table IV, the
excitations are very well described by the trial wave functions
which create CF excitations in individual factors of Eq. (9).

We have also compared the RSES of the exact NASS state
and the two-body ground state in Fig. 7. The RSES are similar,
as would be expected from the reasonably high overlaps.
We also show the energy spectrum in the disk geometry,
which, however, does not have a structure very similar to
that of the RSES. In fact, the energy spectrum in Fig. 7(c)
is better understood as a reverse-flux-attached CF state, as
described below in Sec. V A. We have not studied the RSES
for �

[−2,−2]
4/3 or the corresponding exact ground state. Since

composite fermions occupy two 
 levels in both spin sectors
in the 4/3 state, we do not expect the RSES to give very
useful information using the system sizes that are accessible
to exact diagonalization or for which �

[−2,−2]
4/3 can be explicitly

generated.
We note that any spectrum in Figs. 4 and 5 can be interpreted

in two different ways. For example, the N↑ = 6, N↓ = 6, and
2Q = 7 state in Fig. 4(a) can be thought of as excitations of
�

[−2,−2]
4/3 , but here the NASS gives a satisfactory account of the
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FIG. 2. (Color online) Energy spectra of the ν = 4/5 state for
the Hamiltonian H con

2 . The crosses represent the energies of the
wave functions �

[2,2]
4/5 . (a) N↑ = 4, N↓ = 4, and 2Q = 7; (b) N↑ = 6,

N↓ = 6, and 2Q = 12; (c) N↑ = 5, N↓ = 5, and 2Q = 10. The inset
in panel (a) shows the color scheme for all panels. Panels (a) and (b)
correspond to incompressible states where the uniform ground state
has L = 0 and S = 0, and the excitations are neutral particle-hole
pairs of composite fermions. Panel (c) corresponds to a system
containing two quasiholes; the low-energy band contains all possible
states of these quasiholes.

exact spectrum. On the other hand, for Figs. 4(b) and 5(b), both
interpretations work comparably well (although they predict
different numbers of states), as seen from the overlaps in
Tables III and IV.

Taking all of these results into account, while our studies do
not rule out the NASS state, they suggest that the 4/3 ground
state for the contact interaction is likely to be �

[−2,−2]
4/3 with

Abelian excitations.
It would be useful to compare these two candidate states in

the torus geometry where they compete directly. Recently,
composite fermion wave functions have been successfully
constructed in the torus geometry76 for the spin-polarized
state at filling factors 2/3 (for 10 bosons) and 2/5 (for 6
fermions). Generalizing this method to spinful cases could
be very interesting, although the numerical implementation of
such schemes is expected to be very difficult.

TABLE II. Overlaps between the trial states �
[1,2]
3/4 and �

[−1,−2]
3/2

and corresponding exact eigenstates shown in Fig. 3. The stars
mark (L,S) quantum numbers where the CF theory produces two
independent states; the overlaps in these cases are defined as√∑

ij [〈�E
i |�T

j 〉]2 where the summation is over the lowest two exact

states |�E
i 〉 and trial states |�T

j 〉 in the same (L,S) sector. The total
number of linearly independent (L,S) multiplets is given below each
overlap.

(L,S)

Figure (0,2.5) (1,2.5) (2,2.5)* (3,2.5)* (4,2.5) (5,2.5)

3(a) 0.995 0.984 1.390 1.371 0.954 0.977
1889 5628 9304 12 857 16 251 19 432

(L,S)

Figure (0,3) (1,3) (2,3)* (3,3)* (4,3)* (5,3) (6,3)

3(b) 0.794 0.856 0.783 0.468 0.801 0.731 0.767
5153 14 812 24 855 34 029 43 334 51 546 59 696

V. BOSONS AT INTEGRAL FILLINGS

A. ν = 2 state

We consider the state �
[−1,−1]
2 =

PLLL[�−1({z↑})�−1({z↓})J ({z})], obtained from the ν∗ = 2
spin-singlet state with reverse flux attachment. This state
is analogous to the spin-singlet 2/3 state of fermions.19

It has attracted special interest recently as an example of
symmetry protected bosonic integer topological states,77–79

which refer to states with no topological order (i.e., Abelian or

0 1 2 3 4 5 6 7 8 9 10
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2.6

2.8

3

(a)

L+0.3*S
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S=2.5

1 2 3 4 5 6 7 8

8.4

8.7

9

9.3

9.6

9.9

(b)

L+0.3*S

E

S=3

FIG. 3. (Color online) (a) Energy spectrum of the ν = 3/4 state
for the Hamiltonian H con

2 with N↑ = 3, N↓ = 8, and 2Q = 12. The
crosses represent the energies of the wave functions �

[1,2]
3/4 . (b) Energy

spectrum of the ν = 3/2 state for the Hamiltonian H con
2 with N↑ = 4,

N↓ = 10, and 2Q = 10. The crosses represent the energies of the
states �

[−1,−2]
3/2 . The insets show the color schemes for the panels.
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FIG. 4. (Color online) Energy spectra of the ν = 4/3 state for the
Hamiltonian H con

2 . The crosses represent the energies of the wave
functions �

[−2,−2]
4/3 . (a) N↑ = 6, N↓ = 6, and 2Q = 10; (b) N↑ = 7,

N↓ = 7, and 2Q = 8; (c) N↑ = 7, N↓ = 7, and 2Q = 11. The inset
of panel (a) shows the color scheme for all panels.

non-Abelian fractional excitations) but are still topologically
nontrivial.

As an initial test, we find that the ground state of the two-
body contact interaction H con

2 at the 2Q values corresponding
to �

[−1,−1]
2 indeed has L = 0 and S = 0 for up to 18 particles.

Figure 8 shows the energy spectra. [For 18 particles the
dimension of the Fock space is very large (with 58 130 756

states in the Lz = Sz = 0 sector), and producing eigenstates
by the Lanczos method is computationally time-consuming;
we have obtained only the lowest few eigenstates to confirm
that the ground state has L = S = 0 and is separated from the
excitations by a reasonable gap.] The overlaps of trial states
and exact eigenstates for N↑ = N↓ = 6 and N↑ = N↓ = 7 are
shown in Table VI. For 12 (14) particles, the exact ground
state has overlap 0.943 (0.888) with �

[−1,−1]
2 ; for 16 particles

we are not able to generate the trial state as explained in
Sec. III B. We also study the stability of the state under addition
of longer-range interaction. Table VII shows the evolution of
overlaps between �

[−1,−1]
2 and exact ground state for a range

of values of c1,c2 (with c0 = 1), demonstrating that �
[−1,−1]
2

remains a good description of the ground state for a wide range
of parameters. We should point out that the trial wave functions
for excitations are not as accurate as the ground states as one
can see from Fig. 8 and Table VI.

We also study the RSES and the edge spectrum. The
CF theory implies a behavior similar to that of the ν = 2/3
spin-singlet fermionic state, which has been studied in Refs. 80
and 81. In particular, one expects a backward-moving mode
that carries spin but no charge, and a forward-moving mode
that carries charge but no spin.80,81 We show in Fig. 9 the
RSES of the ground state of a bosonic system at ν = 2 with
N↑ = N↓ = 8 particles and the edge excitations of a system
with N↑ = N↓ = 4 particles on a disk. (We add a parabolic
confinement potential of an appropriate strength in the disk
geometry to ensure that the ground state has the angular
momentum given by �

[−1,−1]
2 .) We see a strong similarity

between the RSES and the spectrum of edge excitations
on the disk. In particular, the RSES nicely captures the
backward-moving mode marked by the arrows in Fig. 9. The
counting of states for the backward-moving modes is also
consistent with that found for the ν = 2/3 spin-unpolarized
fermionic states.80,81 The forward-moving mode is not clearly
identifiable in both the RSES and the disk edge spectrum,
as was also the case for spin-singlet 2/3 state;80,81 this can
be understood by noting that the velocity of this mode is
sufficiently large that it rapidly merges into the continuum
for the small systems accessible to our study.

The incompressibility at ν = 2 for bosons occurs because
of interactions between them and is therefore closer to the FQH
(rather than the IQH) of fermions. One may ask what is the
charge of the excitations. Identifying an isolated CF particle
or CF hole in one of the factors of �1, it is straightforward

TABLE III. Overlaps between the trial states �
[−2,−2]
4/3 and corresponding exact eigenstates shown in Fig. 4. L is the orbital angular

momentum, S is the spin quantum number, and “−” denotes that there is no trial state in that (L,S) sector. The total number of linearly
independent (L,S) multiplets is given below each overlap.

(L,S)

Figure (0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1) (4,0) (4,1) (5,0) (6,1) (7,0)

4(a) 0.985 – – 0.949 0.933 0.933 0.971 0.964 0.918 0.947 – – –
646 4117 2802 6619 3664 9258 4786 11 494

4(b) – 0.808 0.816 – – 0.638 0.839 – – 0.836 0.763 0.871 0.891
934 1064 4317 2326 7368 3407 9866 4235

4(c) 0.965 – – 0.943 0.914 – – 0.934 0.923 – – – –
4604 33 132 21 707 75 440 37 771
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TABLE IV. Overlaps between the NASS trial states �NASS
4/3 (with excitations created within a spinful bipartite CF representation) and

corresponding exact eigenstates shown in Figs. 5 and 6. L is the orbital angular momentum, S is the spin quantum number, and “−” denotes
that there is no trial state in that (L,S) sector. The total number of linearly independent (L,S) multiplets is given below each overlap.

(L,S)

Figure (0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1) (4,0) (4,1)

5(a) 0.918 – – 0.590 0.701 0.927 0.928 0.835 – –
79 412 277 619 327 888 – –

5(b) – 0.696 0.871 – – 0.737 0.647 – – 0.417
934 1064 4317 2326 7368

5(c) 0.897 – – 0.534 0.610 0.738 0.727 0.782 0.622 0.795
6708 50 057 31 815 82 111 43 273 114 205 55 460 143 987

6(a) 1 – – 0.936 0.969 0.995 0.993 0.992 – –
79 412 277 619 327 888 – –

6(b) – 0.988 0.989 – – 0.970 0.956 – – 0.457
934 1064 4317 2326 7368

to see that the charge excess associated with it is equal to a
unit charge.
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FIG. 5. (Color online) Energy spectra of the ν = 4/3 state for
the Hamiltonian H con

2 . The crosses represent the energies of the
wave functions �NASS

4/3 obtained from the spinful bipartite CF theory.
(a) N↑ = 6, N↓ = 6, and 2Q = 7; (b) N↑ = 7, N↓ = 7, and 2Q = 8;
(c) N↑ = 8, N↓ = 8, and 2Q = 10. The inset of panel (a) shows the
color scheme for all panels.

B. ν = 1 state

We now explore the validity of �JSS
1 ({z}). This state is an

excellent description of the ground state at filling factor ν = 1
with 2Q = N − 4 if some amount of c2 interaction is turned
on, as shown Fig. 10. The evolution of overlap between trial
states and exact ground states with the coefficients c1 and c2

of the Hamiltonian H2 is shown in Table VII.
It is natural to construct wave functions for the excitations of

�JSS
1 ({z}) = PLLL[�2({z}) ∏

i<j (z↑
i − z

↑
j )

∏
i<j (z↓

i − z
↓
j )] by

analogy to excitations of either the factor �2 or one of the two
Jastrow factors on the right-hand side. We have constructed
such wave functions for the excited states, but neither of them
gives very accurate description of the excitations.

We also study the RSES at ν = 1. Figure 11 shows the RSES
of the JSS wave function and the exact ground-state wave
function for a certain choice of parameters (c0 = 1, c2 = 0.3

TABLE V. Comparing the JCF and NASS trial states at 4/3
(� [−2,−2]

4/3 and �NASS
4/3 , respectively) with the exact ground states at

the corresponding flux (2Q) values as a function of interaction. The
calculations are for N↑ = 6 and N↓ = 6 with respect to c1 (columns)
and c2 (rows); we set c0 = 1. The upper number in each block gives
the overlap of �

[−2,−2]
4/3 with the corresponding exact ground state.

The lower number in each block gives the overlap of �NASS
4/3 with the

corresponding exact ground state.

c1

c2 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.985 0.977 0.939 0.000 0.000 0.000
0.918 0.916 0.898 0.000 0.000 0.000

0.1 0.980 0.981 0.972 0.917 0.000 0.000
0.926 0.939 0.948 0.944 0.873 0.000

0.2 0.956 0.961 0.960 0.938 0.723 0.000
0.912 0.932 0.955 0.976 0.964 0.157

0.3 0.908 0.907 0.898 0.860 0.120 0.004
0.871 0.889 0.916 0.931 0.811 0.124

0.4 0.793 0.737 0.567 0.247 0.033 0.008
0.796 0.794 0.774 0.650 0.129 0.048

0.5 0.491 0.339 0.204 0.107 0.027 0.000
0.685 0.638 0.527 0.303 0.107 0.029
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FIG. 6. (Color online) Energy spectra of the ν = 4/3 state for the
three-body Hamiltonian H3. The crosses represent the energies of the
wave functions �NASS

4/3 obtained from the spinful bipartite CF theory.
(a) N↑ = 6, N↓ = 6, and 2Q = 7; (b) N↑ = 7, N↓ = 7, and 2Q = 8.
The inset of panel (a) shows the color scheme for both panels.

and all other c’s are set to zero) for 14 particles. The two have
similar low-lying levels. For many trial wave functions that are
exact zero-energy solutions of certain simple pseudopotential
Hamiltonians, such as the Laughlin or Moore-Read wave
functions, the entanglement spectrum contains only universal
levels, i.e., all levels represent edge excitations. That, however,
is not true in general. For electronic systems, the RSES
of the exact Coulomb eigenstates at 1/3 or 5/2 contain
“nonuniversal” levels, as is also true of either the exact states
at n/(2n + 1) or the JCF wave functions for those states. The
trial state �JSS

1 ({z}) also has many nonuniversal levels as it
is not the exact zero-energy state of a simple pseudopotential
Hamiltonian and its construction requires LLL projection. The
RSES of the exact state contains even more “nonuniversal”
levels. We also show the edge excitation spectrum on disk
geometry in Fig. 11, and some similarities between the RSES
and edge spectrum can be seen even for such a small system.
A noteworthy feature is that there are several branches of
edge excitations, and the starting points of these branches
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FIG. 7. (Color online) RSES and edge excitations of the ν = 4/3
NASS state. (a) N↑ = 8, N↓ = 8, NA

↑ = 4, and NA
↓ = 4, using the

exact NASS state; (b) N↑ = 8, N↓ = 8, NA
↑ = 4, and NA

↓ = 4, using
the ground state of the two-body Hamiltonian H2; (c) N↑ = 4 and
N↓ = 4, energy spectrum on disk geometry of the Hamiltonian H̃2

with confinement potential parameter ωc = 0.4. The inset of panel (a)
shows the color scheme for all panels. The arrow in panel (c) indicates
the ground state and the arrows in panel (a) and panel (b) show the
corresponding levels in the RSES.

(indicated by arrows in Fig. 11) match nicely in both the
RSES and the edge spectrum. [Note that the minimum value
of angular momentum in Figs. 11(a) and 11(b) is −33 while
the minimum value in Fig. 11(c) is 0, so the positions of

TABLE VI. Overlaps between the trial states �
[−1,−1]
2 and corresponding exact eigenstates shown in Fig. 8. L is the orbital angular

momentum, S is the spin quantum number, and “−” means that there is no trial state in that (L,S) sector. The total number of linearly
independent (L,S) multiplets is given below each overlap.

(L,S)

Figure (0,0) (1,1) (2,0) (2,1) (3,0) (3,1) (4,0) (4,1) (5,0) (5,1) (6,0) (6,1) (7,0) (7,1)

8(a) 0.943 0.765 0.503 0.847 0.838 0.881 0.683 0.682 0.902 0.720 0.754 0.834 – –
36 163 111 240 122 345 175 401 173 479 216 507

8(b) 0.888 0.812 0.517 0.867 0.622 0.808 0.433 0.866 0.862 0.555 0.761 0.833 0.815 0.771
164 989 639 1526 791 2169 1061 2620 1165 3149 1386 3471 1435 3850
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FIG. 8. (Color online) Energy spectra of the ν = 2 ground states
for the two-body Hamiltonian H con

2 . The cross represents the energy
of the wave functions �

[−1,−1]
2 . (a) N↑ = 6, N↓ = 6, and 2Q = 6;

(b) N↑ = 7, N↓ = 7, and 2Q = 7; (c) N↑ = 8, N↓ = 8, and 2Q = 8.
The inset of panel (a) shows the color scheme for all panels.

the arrows in Figs. 11(a) and 11(b) match exactly with those
in Fig. 11(c) if the angular momentum values in Figs. 11(a)
and 11(b) are relabeled by adding 33.] The starting points
of edge excitations can be simply predicted using the parton
method: They correspond to different choices for the number
of particles [N1,N2] in the two 
 levels in the �2 part of
Eq. (10), given in the figure caption. (While the starting points
of the edge branches are identifiable, they quickly spread and
merge into the nonuniversal part, making an identification of
the edge states difficult.) The existence of multiple branches in
the edge excitation spectrum and the RSES have been observed
before for spin-polarized fermionic 2/5 state,59,65 which is
also due to the appearance of a �2 factor in the trial wave
functions. In short, the RSES and edge studies provide support
to the identification of the exact state with �JSS

1 ({z}), and, in
particular, bring out features that can be understood by analogy
to two filled 
Ls of composite fermions.

VI. CONCLUSION

We have carried out an extensive study of quantum Hall
effect for two-component bosons, studying a number of
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FIG. 9. (Color online) RSES and edge excitations of the ν = 2
state. (a) RSES for the exact ground state of the two-body Hamiltonian
H con

2 for N↑ = 8, N↓ = 8, NA
↑ = 4, and NA

↓ = 4. (b) Energy spectrum
on disk geometry of the Hamiltonian H̃2 for N↑ = 4 and N↓ = 4; the
confinement potential parameter is taken to be ωc = 0.4. The inset of
panel (a) shows the color scheme for both panels. The arrows in panel
(b) indicate the ground state and backward-moving edge modes and
the arrows in panel (a) show the corresponding levels in the RSES.
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FIG. 10. (Color online) Energy spectra of the ν = 1 ground states
for the two-body Hamiltonian H2 with c0 = 1, c2 = 0.3 and all other
cα = 0 for α �= 0,2. The crosses represent the energies of the wave
functions �JSS

1 . (a) N↑ = 6, N↓ = 6, and 2Q = 9; (b) N↑ = 7, N↓ =
7, and 2Q = 11. The inset of panel (a) shows the color scheme for
both panels.
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FIG. 11. (Color online) RSES and edge excitations of the ν = 1
state. (a) RSES for �JSS

1 for N↑ = 7, N↓ = 7, NA
↑ = 3, and NA

↓ =
3. (b) RSES for the ground state of the two-body Hamiltonian H2

for N↑ = 7, N↓ = 7, NA
↑ = 3, and NA

↓ = 3; the parameters of the
Hamiltonian are c0 = 1, c2 = 0.3 and all other cα = 0 for α �= 0,2. (c)
Energy spectrum on disk for N↑ = 3 and N↓ = 3 for the Hamiltonian
H̃2 with c̃2 = 0.3 and the confinement potential parameter ωc = 0.4.
The inset of panel (a) shows the color scheme for all panels. The
arrows in (c) indicate the states obtained with four different choices
for �2 in the wave function Eq. (10), which are [3,3], [4,2], [5,1],
and [6,0] (from left to right). The arrows in (a) and (b) show the
corresponding levels in the RSES, which nicely match the starting
points of various edge branches.

candidate states at fractional as well as integral fillings. Here
is a summary of our findings:

1. We have shown that for 2/3 and 4/5, the wave functions
�

[1,1]
2/3 and �

[2,2]
4/5 provide an accurate representation of the spin

singlet states of the contact interaction, for the ground state as
well as excitations.

2. We have also considered partially polarized states at
3/4 and 3/2. For the former the state �

[2,1]
3/4 provides an

accurate description of the ground state and excitations. For
3/2, �

[−2,−1]
3/2 is not accurate.

3. For ν = 4/3 we consider two candidates, �
[−2,−2]
4/3 and

�NASS
4/3 , which have Abelian and non-Abelian excitations,

respectively. Previous works52,53 suggested that the NASS

TABLE VII. Comparison of �
[−1,−1]
2 at ν = 2 and �JSS

1 at ν = 1
for N↑ = N↓ = 7 with the corresponding exact ground states as a
function of pseudopotential parameters. We set c0 = 1 and vary c1

(columns) and c2 (rows). The upper number in each block gives the
overlap of �

[−1,−1]
2 with the corresponding exact ground state and the

lower number of �JSS
1 with the corresponding exact ground state.

c1

c2 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.888 0.915 0.939 0.950 0.000 0.000
0.161 0.168 0.069 0.002 0.000 0.000

0.1 0.843 0.877 0.914 0.948 0.949 0.000
0.825 0.750 0.640 0.387 0.053 0.000

0.2 0.767 0.000 0.849 0.908 0.952 0.007
0.916 0.897 0.847 0.709 0.363 0.032

0.3 0.652 0.000 0.687 0.681 0.151 0.028
0.940 0.942 0.934 0.897 0.609 0.003

0.4 0.000 0.000 0.431 0.268 0.071 0.011
0.925 0.922 0.894 0.774 0.479 0.035

0.5 0.000 0.000 0.256 0.144 0.053 0.019
0.876 0.852 0.774 0.602 0.364 0.001

state is realized at this filling factor. We find, from a direct
comparison with the exact solution, that �[−2,−2]

4/3 is more likely
for the two-body contact interaction.

4. For ν = 4/3, the NASS state has been known to be the
exact ground state for a three-body interaction. We find that the
exact excited states of this three-body interaction correspond
to CF excitations in the individual factors, confirming a spinful
bipartite CF structure for this state.

5. For ν = 2, �
[−1,−1]
2 provides an accurate representation

of the exact ground state for in certain parameter range of
the two-body Hamiltonian. The trial wave functions for the
excitations are less accurate. The RSES and the disk energy
spectrum provide a consistent description of the edge structure,
both nicely displaying a backward-moving edge mode (which
is similar to that found previously for the fermionic 2/3 spin-
singlet state80,81).

6. For ν = 1, the JSS state accurately represents the ground
state for a two-body interaction that contains terms beyond
contact interaction. The RSES and edge excitation studies
provide further confirmation of the validity of �JSS

1 , and, in
particular, demonstrate the existene of several edge branches,
which are fully consistent with the expectation from an
underlying two-filled 
L state. Our trial wave functions are
not very accurate for the excitations.

7. We note a systematic effect as a function of the filling
factor: the agreement between the CF and the exact spectra
becomes worse with increasing filling factor. There are two
possible reasons for that. One, the JCF wave functions of the
states with large fillings, e.g., ν = 3/2, 4/3, and 2, namely
�

[−2,−1]
3/2 , �

[−2,−2]
4/3 , and �

[−1,−1]
2 , all require reverse flux

attachment. We have found that for spinful particles, the wave
functions involving reverse flux attachment are less accurate
than those with parallel flux attachment. Two, from general
arguments one expects that bosons at very high fillings are
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not in the FQH regime, because vortex lattice or other weakly
interacting states may be preferred energetically.

Note added. We recently noticed a preprint82 which also
studies the ν = 2 state and has some overlap with Sec. V A
of our paper. Another preprint about the ν = 2 state has also
appeared since then.83 These studies complement one another
to an extent, as we briefly describe. All three works provide
evidence for an incompressible state at filling factor ν = 2 for
two-component bosons. References 82 and 83 report finite-size
scaling of gaps and consider the cases where the interaction
is not SU(2) invariant. Reference 82 uses Chern-Simon field
theory to interpret the counting of the RSES; we compare
the RSES with the edge spectrum on the disk geometry, and
also find that edge excitations can be understood using CF
theory. Reference 83 studies the ground-state degeneracy on
a torus to rule out a competing non-Abelian state, whereas

our observation that incompressible states occur for all cases
with N↑ = N↓ in the spherical geometry also rules out the
non-Abelian state. We have also constructed and studied
explicit trial wave functions for the ground states as well as
excitations.
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