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Common quantum phase transition in quasicrystals and heavy-fermion metals
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Extraordinary new materials named quasicrystals and characterized by noncrystallographic rotational
symmetry and quasiperiodic translational properties have attracted scrutiny. Study of quasicrystals may shed light
on the most basic notions related to the quantum critical state observed in heavy-fermion metals. We show that the
electronic system of some quasicrystals is located at the fermion condensation quantum phase transition without
tuning. In that case the quasicrystals possess the quantum critical state with the non-Fermi-liquid behavior which
in magnetic fields transforms into the Landau Fermi-liquid one. Remarkably, the quantum critical state is robust
despite the strong disorder experienced by the electrons. We also demonstrate for the first time that quasicrystals
exhibit the typical scaling behavior of their thermodynamic properties such as the magnetic susceptibility, and
belong to the famous family of heavy-fermion metals. Our calculated thermodynamic properties are in good
agreement with recent experimental observations.
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When encountering exciting behavior of strongly correlated
metals, we anticipate learning more about quantum critical
physics. Such an opportunity may be provided by quasicrystals
(QCs).1 These, characterized by the absence of translational
symmetry in combination with good atomic arrangement
and rotational symmetry, can be viewed as materials located
between crystalline and disordered solids. QCs, approximants,
and related complex metallic phases reveal very unusual me-
chanical, magnetic, electronic transport, and thermodynamic
properties. The aperiodicity of QCs plays an important role
in the formation of the properties since the band electronic
structure governed by the Bloch theorem cannot be well
defined. As an example, QCs exhibit a high resistivity although
the density of states (DOS) at the Fermi energy is not
small.2 One expects transport properties to be defined by a
small diffusivity of electrons which occupy a new class of
states denoted as “critical states,” neither being extended nor
localized, and making the velocity of charge carriers very
low.2 Associated with these critical states, characterized by an
extremely degenerate confined wave function, are the so-called
“spiky” DOS.3,4 These predicted DOS are corroborated by
experiments revealing that single spectra of the local DOS
demonstrate a spiky DOS.5,6 Clearly these spiky states are
associated with flat bands.7,8 On one hand, we expect the
properties related to the itinerate states governed by the
spiky states of QCs to coincide with that of heavy-fermion
metals, while on the other hand, the pseudolocalized states
may result in those of amorphous materials. Therefore, the
question of how quasicrystalline order influences the electronic
properties in quasicrystals, whether these resemble those of
heavy-fermion (HF) metals or those of amorphous materials,
is of crucial importance.

Recently, experimental measurements on the gold-
aluminium-ytterbium quasicrystal Au51Al34Yb15 with a six-
dimensional lattice parameter ad = 0.7448 nm have revealed
a quantum critical behavior with the unusual exponent α �
0.51 defining the divergency of the magnetic susceptibility

χ ∝ T −α as temperature T → 0.9 The measurements have
also exposed that the observed non-Fermi-liquid (NFL) be-
havior transforms into Landau Fermi liquid (LFL) under the
application of a tiny magnetic field H , while it exhibits
the robustness against hydrostatic pressure; the quasicrystal
shows also metallic behavior with the T -dependent part �ρ

of the resistivity, �ρ ∝ T , at low temperatures.9 All these
facts challenge theory to explain a quantum criticality of the
gold-aluminum-ytterbium QC characterized by the unusual
exponent and robust against hydrostatic pressure but destroyed
by tiny magnetic fields.

In this Rapid Communication we uncover that a quan-
tum critical point of Au51Al34Yb15, generating the NFL
behavior, is a fermion condensation quantum phase transition
(FCQPT)10,11 and also present the first explanation of the low-
temperature thermodynamics in magnetic fields. We explain
the robustness of the quantum critical behavior against the
hydrostatic pressure, and how the application of a weak
magnetic field destroys the behavior and makes the system
transit from the NFL to LFL behavior. We also demonstrate
that there is a general mechanism underlying the NFL behavior
of HF metals and quasicrystals, leading to a scaling behavior.

We start with constructing a model to explain the chal-
lenging behavior of the gold-aluminum-ytterbium QC. Taking
into account that the spiky states are associated to flat bands7

which are the generic signature of FCQPT, we safely assume
that the electronic system of the gold-aluminum-ytterbium
QC Au51Al34Yb15 is located very near FCQPT.10 Thus,
Au51Al34Yb15 turns out to be located at FCQPT without tuning
this substance with the pressure, magnetic field, etc. We expect
that the system exhibits the robustness of its critical behavior
against the hydrostatic pressure since the hydrostatic pressure
does not change the topological structure of QC leading to the
spiky DOS and, correspondingly, flat bands. As we will see,
the spiky DOS cannot prevent the field-induced Fermi liquid
state.
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To study the low-temperature thermodynamic and scaling
behavior, we use the model of homogeneous heavy-fermion
liquid.10 This model avoids the complications associated with
the anisotropy of solids and considering both the thermo-
dynamic properties and NFL behavior by calculating the
effective mass M∗(T ,H ) as a function of temperature T and
magnetic field H . To study the behavior of the effective mass
M∗(T ,H ), we use the Landau equation for the quasiparticle
effective mass. The only modification is that in our formalism
the effective mass is no longer constant but depends on
temperature and magnetic field. For the model of homogeneous
HF liquid at finite temperatures and magnetic fields, this
equation takes the form10–13

1

M∗
σ (T ,H )

= 1

M
+

∑
σ1

∫
pF p

p3
F

Fσ,σ1 (pF,p)

× ∂nσ1 (p,T ,H )

∂p

dp
(2π )3

, (1)

where M is a bare electron mass, and Fσ,σ1 (pF,p) is the
Landau interaction, which depends on Fermi momentum pF ,
momentum p, and spin σ . Here we use the units where
h̄ = kB = 1. The Landau interaction has the form13

Fσ,σ ′(p,p′) = δ2E[n]

δnσ (p)δnσ ′(p′)
, (2)

where E[n] is the system energy, which is a functional
of the quasiparticle distribution function n.10,12,13 It can be
expressed as

nσ (p,T ) =
{

1 + exp

[
ε(p,T ) − μσ

T

]}−1

, (3)

where ε(p,T ) is the single-particle spectrum. In our case, the
chemical potential μ depends on the spin due to Zeeman
splitting μσ = μ ± μBH ; μB is the Bohr magneton. The
single-particle spectrum is a variational derivative of the
system energy E[nσ (p)] with respect to the quasiparticle
distribution function or occupation numbers n,

ε(p) = δE[n(p)]

δn
. (4)

In our case F is fixed by the condition that the system is
situated at FCQPT. The variational procedure, being applied
to the functional E[nσ (p,T )], gives using the form for
ε(p,T ) = εσ (p,T ) ≡ ε[nσ (p,T )],

∂εσ (p,T )

∂p
= p

M
+

∑
σ1

∫
Fσ,σ1 (p,p1)

∂nσ1 (p1,T )

∂p
d3p1

(2π )3
.

(5)

Equations (3) and (5) constitute the closed set for self-
consistent determination of εσ (p,T ) and nσ (p,T ). The sole
role of the Landau interaction is to bring the system to
FCQPT point, where M∗ → ∞ at T = 0 and H = 0, and
the Fermi surface alters its topology so that the effective mass
acquires temperature and field dependence.10–12,14 Provided
that the Landau interaction is an analytical function, at the
Fermi surface the momentum-dependent part of the Landau
interaction can be taken in the form of truncated power series
F = aq2 + bq3 + cq4 + . . ., where q = p1 − p2; a,b, and c

are fitting parameters which are defined by the condition that
the system is at FCQPT. Close to the Fermi momentum pF ,
the electron spectrum ε(p), given by Eq. (5) with the above
interaction F , behaves as ε(p) − μ ∝ (p − pF )3.10,14 A direct
inspection of Eq. (1) shows that at T = 0 and H = 0, the sum
of the first term and the second one on the right side vanishes,
since 1/M∗(T → 0) → 0 provided that the system is located
at FCQPT.10,14 In the case of analytic Landau interaction at
finite T the right-hand side is proportional F ′(M∗)2T 2, where
F ′ is the first derivative of F with respect to q at q → 0.
Calculations of the corresponding integrals can be found in
textbooks; see, e.g., Ref. 15. Thus, we have 1/M∗ ∝ (M∗)2T 2,
and obtain10,14

M∗(T ) � aT T −2/3. (6)

At finite T , the application of magnetic field H drives the
system to the LFL region with

M∗(H ) � aHH−2/3. (7)

On the other hand, an analytic interaction F can lead to
the general topological form of the spectrum ε(p) − μ ∝
(p − pb)2(p − pF ) with (pb < pF ) and (pF − pb)/pF 	 1,
that makes M∗ ∝ T −1/2, and creates a quantum critical point.16

As we shall see below, the same critical point is generated
by the interaction F (q) represented by an integrable over
x nonanalytic function with q =

√
p2

1 + p2
2 − 2xp1p2 and

F (q → 0) → ∞.10,17 Both cases lead to M∗ ∝ T −1/2, and
Eq. (6) becomes

M∗(T ) � aT T −1/2. (8)

In the same way, we obtain

M∗(H ) � aHH−1/2, (9)

where aT and aH are parameters. Taking into account that
Eq. (8) leads to the spiky DOS with the vanishing of spiky
structure with increasing temperature,18 as it is observed in
quasicrystals,6,9 we assume that the general form of ε(p)
produces the behavior of M∗, given by Eqs. (8) and (9), and is
realized in quasicrystals which can be viewed as a generalized
form of common crystals.19 We note that the behavior
1/M∗ ∝ χ−1 ∝ T 1/2 is in good agreement with χ−1 ∝ T 0.51

observed experimentally.9 Our explanation is consistent with
the robustness of the exponent 0.51 against the hydrostatic
pressure9 since the robustness is guaranteed by the unique
singular DOS of QCs that survives under the application
of pressure.3,4,6,7,9 Then, the nonanalytic Landau interaction
can also serve as the good approximation, generating the
observed behavior of the effective mass. We speculate that the
nonanalytic interaction is generated by the nonconservation of
the quasimomentum in QCs, making the Landau interaction
F (q) a nonlocal function of momentum q. Such a function can
be approximated by a nonanalytic one.

A few remarks on the transport properties of QCs are
in order here. In calculations of low-temperature resistivity,
we employ a two-band model, one of which is occupied by
heavy quasiparticles, with the effective mass given by Eq. (8),
while the second band possesses LFL quasiparticles with a
T -independent effective mass.20 As a result, we find that the
quasiparticle width γ ∝ T and that the T -dependent part of
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FIG. 1. (Color online) Left panel: T-H phase diagram of
Au51Al34Yb15 versus magnetic field H as the control parameter.
The vertical and horizontal arrows show LFL-NFL and NFL-LFL
transitions at fixed H and T , respectively. At H = 0 and T = 0 the
system is at FCQPT shown by the solid circle. The common width of
the LFL and the transition regions W ∝ T are shown by the double
arrows. Inset shows a schematic plot of the normalized effective
mass versus the normalized temperature. Transition region, where
M∗

N reaches its maximum at T/Tmax = 1, is shown by the hatched
area. The right panel reports the dimensionless inverse effective mass
M/M∗ versus dimensionless temperature (T/TF )1/2. The line is a
linear fit.

the resistivity �ρ ∝ T . This observation is in accordance with
experimental facts.9

At finite H and T near FCQPT, the solutions of Eq. (1)
M∗(T ,H ) can be well approximated by a simple universal
interpolating function. A deeper insight into the behavior
of M∗(T ,H ) can be achieved using some “internal” scales.
Namely, near FCQPT the solutions of Eq. (1) exhibit a uni-
versal scaling behavior so that M∗(T ,H ) reaches it maximum
value M∗

M at some temperature Tmax ∝ H .10,14 It is convenient
to introduce the internal scales M∗

M and Tmax to measure
the effective mass and temperature, respectively. Thus, we
divide the effective mass M∗ and the temperature T by their
maximal values, M∗

M and Tmax, respectively. This generates the
normalized effective mass M∗

N = M∗/M∗
M and temperature

TN = T/Tmax.10 Near FCQPT the normalized solution of
Eq. (1) M∗

N (TN ) with a nonanalytic Landau interaction can
be well approximated by a simple universal interpolating
function. The interpolation occurs between the LFL (M∗ ∝
a + bT 2) and NFL (M∗ ∝ T −1/2) regimes and represents the
universal scaling behavior of M∗

N (TN ):

M∗
N (TN ) ≈ c0

1 + c1T
2
N

1 + c2T
5/2
N

. (10)

Here a and b are constants, c0 = (1 + c2)/(1 + c1), c1 and c2

are fitting parameters. The inset to the left panel of Fig. 1 shows
the scaling behavior of the normalized effective mass. It is seen
from the inset that the common width W of the LFL and the
transition region W ∝ T vanish as H → 0 since Tmax ∝ H . In
the same way, the common width of the NFL and the transition
region tends to zero as soon as T → 0.

Now we construct the schematic phase diagram of the gold-
aluminum-ytterbium QC Au51Al34Yb15. The phase diagram is
reported in Fig. 1, left panel. The magnetic field H plays the
role of the control parameter, driving the system outwards
FCQPT that occurs at H = 0 and T = 0 without tuning
since the QC critical state is formed by singular density of

states.3,4,6,7,9 It follows from Eq. (10) and is seen from the
left panel of Fig. 1 that at fixed temperatures the increase of
H drives the system along the horizontal arrow from NFL
state to LFL one. On the contrary, at fixed magnetic field and
increasing temperatures the system transits along the vertical
arrow from the LFL state to the NFL one. The inset to the left
panel demonstrates the behavior of the normalized effective
mass M∗

N versus normalized temperature TN following from
Eq. (10). The T −1/2 regime is marked as NFL since contrary
to the LFL case, where the effective mass is constant, the
effective mass depends strongly on temperature. It is seen that
the temperature region TN ∼ 1 signifies a transition regime
between the LFL behavior with almost constant effective
mass and the NFL one, given by T −1/2 dependence. Thus,
temperatures T � Tmax, shown by arrows in the inset and the
main panel, can be regarded as the transition regime between
LFL and NFL states. The common width W of the LFL
transition regions W ∝ T is shown by the heavy arrow. These
theoretical results are in good agreement with the experimental
facts.9 The right panel of Fig. 1 illustrates the behavior of
the dimensionless inverse effective mass M/M∗ versus the
dimensionless temperature (T/TF )1/2, where TF is the Fermi
temperature of electron gas. To calculate M/M∗, we use a
model Landau functional10,17

E[n(p)] =
∫

p2

2M

dp
(2π )3

+ 1

2

∫
V (p1 − p2)

× n(p1)n(p2)
dp1dp2

(2π )6
, (11)

with the Landau interaction

V (p) = g0
exp(−β0

√
q2 + γ 2)√

q2 + γ 2
, (12)

FIG. 2. (Color online) The normalized specific heat (C/T )N and
normalized magnetic susceptibility χN extracted from measurements
in magnetic fields H on YbRh2Si2 (Ref. 21) and on Au51Al34Yb15

(Ref. 9), respectively. The magnetic fields are given in the figure.
Our calculations are depicted by the solid curve tracing the scaling
behavior of (C/T )N = χN = M∗

N given by Eq. (10).
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where the parameters g0 and β0 are fixed by the requirement
that the system be located at FCQPT. The interaction at γ =
0 becomes nonanalytic. It is worthy of note that the other
nonanalytic interactions lead to the same behavior of M/M∗;
see, e.g., Ref. 17.

To demonstrate this, we apply Eq. (4) to construct ε(p)
using the functional (11). Taking into account that ε(p �
pF ) − μ � pF (p − pF ) and integrating over the angle vari-
ables, we obtain

1

M∗ = 1

M
+ ∂

∂p

∫
[(p + p1) − (|p − p1|)]

× n(p1,T )p1dp1

2p2
F π2

. (13)

Here the derivative on the right-hand side of Eq. (13) is taken
at p = pF and∫ p+p1

|p−p1|
V (z,γ = 0)zdz = (p + p1) − (|p − p1|). (14)

The derivative ∂(|p − p1|)/∂p|p→pF
= (pF − p1)/(|pF −

p1|)∂(z)/∂z becomes a discontinuous function at p1 → pF ,
provided that ∂(z)/∂z is finite (or integrable if the function
tends to infinity) at z → 0. As a result, the right-hand side of
Eq. (13) becomes proportional M∗T and (13) reads 1/M∗ ∝
M∗T , making M∗ ∝ T −1/2. Calculations of the corresponding
integrals, entering Eq. (13), can be found in textbooks; see, e.g.,
Ref. 15.

The analytic Landau interaction (12) with γ > 0 makes
M/M∗ ∝ T 0.5 at elevated temperatures, while at T → 0 the
system demonstrates the LFL behavior.10,16 This interaction
can serve as model one to describe the behavior of the
quasicrystal’s crystalline approximant Au51Al35Yb14.9 The
approximant Au51Al35Yb14 shows the LFL behavior at low
temperatures, χ−1 ∝ a + bT 0.51, with the conventional LFL
behavior of the resistivity.9 We interpret this behavior of
χ−1 through the absence of the unique electronic state of
QCs, which results in the shift of the electronic system of
the approximant from FCQPT into the LFL region. Such

FIG. 3. (Color online) (a) Temperature dependence on the double logarithmic scale of the magnetic susceptibility χN at different magnetic
fields (Ref. 9) shown in the legend. The LFL region and NFL one are shown by the solid and dashed arrows, respectively. The solid line depicts
χN ∝ T −0.5

N behavior. (b) The temperatures Tmax at which the maxima of χ (see Fig. 1) are located. The solid line represents the function
Tmax = aH ; a is a fitting parameter. (c) The maxima χmax versus magnetic field H . The solid curve is approximated by χmax = tH−1/2, see
Eq. (9); t is a fitting parameter.

245122-4



COMMON QUANTUM PHASE TRANSITION IN . . . PHYSICAL REVIEW B 87, 245122 (2013)

a behavior is achieved by making the interaction (12) an
analytic function with γ > 0 as soon as the quasicrystal
is transformed into its crystalline approximant. The finite
γ , creating the LFL behavior at T = 0, makes Tmax finite
even at H = 0. Then, it follows from Eq. (10) that 1/M∗ ∝
χ−1 ∝ a + bT 1/2 and the approximant is to demonstrate the
conventional LFL behavior: �ρ ∝ T 2. The same result is
acquired by transforming the spectrum as follows: ε(p) − μ ∝
([p − pb]2 + γ 2)(p − pF ).16

We now investigate the behavior of χ as a function of
temperature at fixed magnetic fields. The effective mass
M∗(T ,H ) can be measured in experiments for M∗(T ,H ) ∝ χ

where χ is the ac or dc magnetic susceptibility. If the
corresponding measurements are carried out at fixed magnetic
field H then, as follows from Eq. (10), χ reaches the maximum
χmax at some temperature Tmax. Upon normalizing both χ

and the specific heat C/T by their peak values at each field
H and the corresponding temperatures by Tmax, we observe
from Eq. (10) that all the curves merge into a single one,
thus demonstrating a scaling behavior typical for HF metals.10

As seen from Fig. 2, χN extracted from measurements on
Au51Al34Yb15 (Ref. 9) shows the scaling behavior given by
Eq. (10) and agrees well with our calculations shown by the
solid curve over four orders of magnitude in the normalized
temperature.

In order to validate the phase diagram Fig. 1, we focus on
the LFL, NFL, and the transition LFL-NFL regions exhibited
by the QC. To this end, we display in Fig. 3(a) the normalized
χN on the double logarithm scale. As seen from Fig. 3(a),
χN extracted from the measurements is not a constant, as
would be for a LFL. The two regions (the LFL region and

NFL one), separated by the transition region, as depicted by
the hatched area in the inset of Fig. 1, are clearly seen in
Fig. 3(a) illuminating good agreement between the theory and
measurements. The straight lines in Fig. 3(a) outline both the
LFL and NFL behaviors of χN ∝ constant and χN ∝ T

−1/2
N ,

and are in good agreement with the behavior of M∗
N displayed

in the inset of Fig. 1. In Fig. 3, panel (b), the solid squares
denote temperatures Tmax(H ) at which the maxima χmax of
χ (T ) and, panel (c), the corresponding values of the maxima
χmax(H ) occur. It is seen that the agreement between the theory
and experiment is good in the entire magnetic field domain. It
is also seen from Fig. 3(b) that Tmax ∝ H ; thus a tiny magnetic
field H destroys the NFL behavior hereby driving the system
to the LFL region. This behavior is consistent with the phase
diagram displaced in Fig. 1: At increasing temperatures (TN �
1) the LFL state first converts into the transition one and then
disrupts into the NFL state, while at given magnetic field H

the width W ∝ T .
In summary, we have established for the first time that

the Au51Al34Yb15 quasicrystal exhibits the typical scaling
behavior of its thermodynamic properties, and belongs to
the famous family of heavy-fermion metals. We have also
demonstrated that the quantum critical physics of the qua-
sicrystal is universal, and emerges regardless of the underlying
microscopic details of the quasicrystal.

This work was supported by US DOE, Division of
Chemical Sciences, Office of Basic Energy Sciences, Office
of Energy Research, AFOSR, and by Projects No. 12-Y-1-
1010 of the Ural Division of RAS and No. 12-P-1-1014
of RAS.

*vrshag@thd.pnpi.spb.ru
1D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett.
53, 1951 (1984).

2D. Mayou and G. T. de Laissardière, in Quasicrystals, Handbook of
Metal Physics, edited by T. Fujiwara and Y. Ishii (Elsevier Science,
2008), pp. 209–265.

3T. Fujiwara and T. Yokokawa, Phys. Rev. Lett. 66, 333
(1991).

4T. Fujiwara, in Physical Properties of Quasicrystals, edited by
Z. M. Stadnik (Springer-Verlag, Berlin, Heidelberg, New York,
1999).
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