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Origin and transport signatures of spin-orbit interactions in one- and two-dimensional
SrTiO3-based heterostructures
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We study origin of Rashba spin-orbit interaction at SrTiO3 surfaces and LaAlO3/SrTiO3 interfaces by
considering the interplay between atomic spin-orbit coupling and inversion asymmetry at the surface or interface.
We show that in a simple tight-binding model involving 3d t2g bands of Ti ions, the induced spin-orbit coupling in
the dxz and dyz bands is cubic in momentum whereas the spin-orbit interaction in the dxy band has linear momentum
dependence. We also find that the spin-orbit interaction in one-dimensional channels at LaAlO3/SrTiO3 interfaces
is linear in momentum for all bands. We discuss implications of our results for transport experiments on SrTiO3

surfaces and LaAlO3/SrTiO3 interfaces. In particular, we analyze the effect of a given spin-orbit interaction term
on magnetotransport of LaAlO3/SrTiO3 by calculating weak antilocalization corrections to the conductance and
to universal conductance fluctuations.
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I. INTRODUCTION

The metallic interfaces1 between the insulators LaAlO3

(LAO) and SrTiO3 (STO) exhibit both superconductivity2

and magnetism3–6 and, for some carrier densities, they occur
simultaneously.5–7 Moreover, there is evidence that there is sig-
nificant spin-orbit interaction (SOI) as well.8–10 If all three of
these phenomena are present, then the ingredients are in place
for topological superconductivity that could support Majorana
zero modes in confined structures.11–16 Furthermore, strong
SOI could pave the way towards spintronics17 applications
of devices based on oxide interfaces. In this paper, we give
a simple microscopic understanding of the SOI at LAO/STO
interfaces induced by the combined effects of atomic spin-orbit
coupling and the interfacial electric field.

Caviglia et al.8,10 and Ben Shalom et al.9 made important
experimental progress towards understanding SOI effects at
LAO/STO interfaces. They found evidence that the magneto-
conductance of LAO/STO interfaces could be interpreted as
resulting from weak antilocalization (WAL). The SOI that they
deduced showed strong dependence on gate voltage, peaking
at or near the gate voltage at which the superconducting Tc is
maximized. Nakamura et al.18 measured magnetoconductance
at the surface of STO and found that it could be fitted to a cubic
Rashba SOI. Zhong et al.19 performed a density functional
theory (DFT) calculation, from which they derived an effective
tight-binding Hamiltonian. A key ingredient supplied by the
DFT calculation is the magnitude of interorbital hopping
terms. They used the resulting tight-binding Hamiltonian to
deduce a Rashba-type energy splitting between the two spin
components of ≈2 meV in the dxy band, and a much larger
splitting ≈20 meV at the crossing point of the dxy and dxz

bands. Khalsa et al.20 further elucidated this by showing that
interorbital hopping terms are due primarily to the polar lattice
displacement at the interface.

In this paper, we give a simple analysis of the Rashba SOI
in an effective tight-binding Hamiltonian for the t2g bands
of STO surfaces and LAO/STO interfaces, in order to better
understand its basic qualitative features. Within our effective

model, we find that Rashba SOI is linear in momentum in the
dxy band, in agreement with Refs. 19 and 20, and is cubic in
momentum in the dxz and dyz bands.

We also consider one-dimensional (1D) channels at the
LAO/STO interface. Cen et al.21 have fabricated such channels
by “drawing” them with an atomic force microscope (AFM)
tip. Superconductivity is observed in these 1D channels.22,23

Fidkowski et al.24 proposed a theory for magnetism and super-
conductivity in such channels in which conduction electrons in
the channels interact with localized spins to catalyze magnetic
order and interact with local superconducting fluctuations in
STO to stabilize quasi-long-ranged superconducting order.
(For other theoretical perspectives, see Refs. 25–27.) In the
presence of strong SOI, such superconductivity can support
Majorana zero modes at the ends of wires. Conduction in such
a channel will be dominated by mobile dxz or dyz electrons,
depending on the direction of the channel. We show the SOI
will be of linear-in-k Rashba form in this case due to the broken
rotational symmetry in the plane.

Based on the aforementioned conclusions regarding the
different forms of the Rashba SOI in various geometries, we
compute the WAL correction to the magnetoconductance and
show how one can distinguish different forms of Rashba SOI in
transport experiments. We discuss the relevance of these results
to understanding experiments at STO surfaces and LAO/STO
interfaces. In the latter case, the WAL signal can distinguish
between transport dominated by the dxy band, the dxz,yz bands,
or 1D channels. The 1D case should apply to channels “drawn”
with an AFM tip as well as to the 1D channels that appear to
occur in putatively two-dimensional (2D) systems28 although,
in the latter case, it will also be important to account for the
coupling between different 1D channels.

The paper is organized as follows. In Sec. II, we introduce
our effective tight-binding model. The calculation of the effec-
tive spin-orbit interaction based on this model is presented in
Sec. III. In Secs. IV and V, we calculate weak antilocalization
corrections to the conductance and discuss the manifestations
of SOI in the context of recent experiments.8–10
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FIG. 1. (Color online) Dispersion of H0 for �E = 50 meV.

II. THREE-BAND MODEL

The Fermi energy at STO surfaces or STO-based interfaces
lies in the 3d t2g bands of Ti ions near the surface/interface. The
t2g bands at the surface/interface are confined in the z direction,
which is normal to the surface/interface; consequently, they
form a two-dimensional electron gas (2DEG). Here we
consider only the top layer of STO and its t2g bands. The
Hamiltonian for these bands takes the form29,30

H = H0 + HASO + Ha. (1)

Here, H0 is composed of nearest-neighbor hopping and on-
site interaction terms that are diagonal in orbital space. In
momentum space, it can be written in the form H0 = h0 ⊗ σ 0,
where σ 0 is the identity matrix in spin space, and

h0 =

⎛
⎜⎜⎜⎝

h̄2k2
x

2mh
+ h̄2k2

y

2ml
0 0

0 h̄2k2
x

2ml
+ h̄2k2

y

2mh
0

0 0 h̄2k2
x

2ml
+ h̄2k2

y

2ml
− �E

⎞
⎟⎟⎟⎠ . (2)

Here �E is the energy difference between the dxy band and the
dxz,dyz orbitals due to the confinement along the ẑ direction.
A recent DFT calculation19 suggests ml = 0.41me and mh =
6.8me for bulk STO (see Fig. 1). The second term in Eq. (1)
corresponds to the atomic spin-orbit coupling term which can
be written in the form

HASO = ZgμBe

16mec2r3πε0

�L · �σ = VASO

Za3
0

h̄

�L · �σ
r3

, (3)

where the dimensionful prefactor VASO = gμBh̄e

16mec2πε0a
3
0
, �L =

�r × �p, and �σ = 2�S/h̄ with Z being the effective nuclear charge
on the Ti atoms. The effective nuclear charge for the d-orbital
electron in a neutral Ti atom Z ≈ 8.1.

Atomic spin-orbit coupling projected to t2g orbital bands
can be treated as an on-site orbital mixing term. Indeed, let us
consider the limit ml,mh → ∞ and compute matrix elements
of the Hamiltonian HASO between different orbital states:

〈j,dxz,σ
′|HASO |j,dxy,σ 〉

= VASO

Za3
0

h̄
〈j,dxz,σ

′|
�L · �σ
r3

|j,dxy,σ 〉, (4)

where |j,dxy,σ 〉 represents a state of an electron of spin σ in
the dxy orbital on site rj . Given that dxz and dxy orbital wave
functions are both odd in x, the matrix elements vanish by
symmetry: 〈j,dxz,σ

′|Ly |j,dxy,σ 〉 = 〈j,dxz,σ
′|Lz|j,dxy,σ 〉 =

0. The nonzero matrix element involves dxz and dxy bands:

〈j,dxz,λ
′|HASO |j,dxy,λ〉

= VASO

Za3
0

h̄
〈j,dxz,λ

′| Lxσx

r3
|j,dxy,λ〉

= VASO[σx]λ′,λ
Za3

0

h̄
〈j,dxz| ypz − zpy

r3
|j,dxy〉

= i�ASO [σx]λ′,λ. (5)

In the last line, we have introduced the energy �ASO :

�ASO = VASO f (Z), (6)

where the dimensionless form factor f (Z) is defined as

f (Z) = Za3
0

ih̄
〈j,dxz| ypz − zpy

r3
|j,dxy〉

= − 2 Z8

812π

∫ ∞

−∞
dx dy dz

xz e− Zr
3

r3

×
(

y
∂

∂z
− ∂

∂y
z

)
xy e− Zr

3 = Z4

405
. (7)

Taking the matrix elements of HASO between all three t2g

orbitals in a similar manner, an effective Hamiltonian in these
bands, H

t2g

ASO , can be written as

H
t2g

ASO = �ASO

⎛
⎜⎝

0 iσz −iσy

−iσz 0 iσx

iσy −iσx 0

⎞
⎟⎠ . (8)

Figure 2 shows the nondegenerate band structure of H0 +
HASO for �ASO = 5 meV. From the above Hamiltonian, it
may be seen that the lowest energy states and highest energy
states mix all three t2g orbitals (with selected spins), but the
middle states only contain dyz and dxz with same spin.

We now turn to interorbital nearest-neighbor hopping
Ha , which is induced primarily by polar lattice distortion
due to the external electric from inversion asymmetry. We
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FIG. 2. (Color online) Dispersion of H0 + HASO with �E = 50
meV and �ASO = 5 meV.
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FIG. 3. (Color online) Band structure corresponding to the
Hamiltonian H0 + HASO + Ha with �E = 50 meV, �z = 10 meV,
and �ASO = 5 meV.

can qualitatively understand this as Ti-O-Ti hopping process
between two neighbor Ti orbitals with different parity in z,
for example, hopping between dxy − px − dxz along the y

direction. Therefore, the effective form of Ha in the basis of
t2g orbital bands can be written as19,20

Ha = �z

⎛
⎜⎝

0 0 ikx

0 0 iky

−ikx −iky 0

⎞
⎟⎠⊗ σ 0. (9)

Notice that Ha generates hopping terms from dxy to dxz

only in the y direction and from dxy to dyz only in the x

direction. Otherwise, the hopping matrix element will be an
integral of an odd function in x (or y) and will vanish. Figure 3
shows the spin-split band structure of H0 + HASO + Ha for
�z = 10 meV and �ASO = 5 meV.

III. EFFECTIVE SPIN-ORBIT INTERACTION

A. Three-band model near k ∼ 0

For simplicity, we neglect the k2 term in the energy
dispersion in comparison to linear-in-k terms. In this limit, we
find the eigenstates of H0(�k = 0) + HASO , and then express
Ha in that basis. The result is an effective Rashba SOI, which
takes the form

HR

�za
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −β1ik− 0 β2k− 0 −β3ik+
β1ik+ 0 −β2k+ 0 β3ik− 0

0 −β2k− 0 0 0 −β4k−
β2k+ 0 0 0 β4k+ 0

0 −β3ik+ 0 β4k− 0 β1ik+
β3ik− 0 −β4k− 0 −β1ik− 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

Here k± = kx ± iky and the order of H0(�k = 0) + HASO

eigenstates is from highest energy to lowest energy. That
means (1,0,0,0,0,0) and (0,1,0,0,0,0) correspond to the
highest energy eigenstates of H0(�k = 0) + HASO . Note that
there are three energy eigenvalues for H0(�k = 0) + HASO ,
with two Kramers-degenerate eigenstates for each. From this

Hamiltonian we expect linear in momentum Rashba SOI
(linear Rashba SOI) in bottom and top bands and cubic in
momentum SOI (cubic Rashba SOI) (� ∼ α3k

3) in the middle
band. The absence of linear Rashba SOI in the middle band is
due to the fact that the middle band at k ∼ 0 contains only dxz

and dyz components and, therefore, is odd in the z direction.
The coupling coefficients βi depend on �ASO and �E .

When the band splitting �E is much larger than �ASO ,
the lowest band is primarily dxy like near k ∼ 0, and we
can estimate the size of k-linear Rashba coupling in the
lowest energy bands α1 = �z a β1 from the second-order
perturbation, i.e., first order in HASO and first order in Ha

in the orbital basis as follows:

〈k,dxy,σ
′|H (2)|k,dxy,σ 〉

=
∑
k′,σ ′′

〈k,dxy,σ
′|Ha|k′,dxz,σ

′′〉〈k′,dxz,σ
′′|HASO |k,dxy,σ 〉

Edxz
(k′) − Edxy

(k)

+ (dxz → dyz)

= �ASO�z

�BG(k)
[〈σy〉 sin(kxa) − 〈σx〉 sin(kya)]

∼ α1(�k × �σ ) · ẑ, (11)

where

�BG(k) = Edxz
(k) − Edxy

(k) ∼ �E, (12)

α1 ∼ �ASO�z

�E

a. (13)

This perturbative description of the Rashba SOI breaks down
at the band crossings of H0, and we find dramatic changes
in the strength of SOI as we will see in Sec. IV with exact
diagonalization analysis. However, we find that linear Rashba
SOI dominates cubic Rashba SOI for small k. To see this in
more detail, we restore the k2 energy dispersion in Eq. (10)
and compute HR retaining both linear and cubic terms. We
take �E = 320 meV19 and plot the strength of SOI α1 as a
function of carrier density for several values for �ASO and
�z as we can see in Fig. 4. Here α1 = �R/kx where �R is
the Rashba SOI-induced energy splitting of the bottom bands.
The linear Rashba coupling can be identified as the value of
α1 at k = 0. The slope of the plot is proportional to the cubic
Rashba effect. For various values for �ASO and �E , we see

FIG. 4. (Color online) α1 (meV Å) vs n (1012 cm−2) at STO
surfaces. Upper curve: �z = 10 meV, �ASO = 5 meV. Middle
curve: �z = 5 meV, �ASO = 15 meV. Bottom curve: �z = 10 meV,
�ASO = 10 meV.
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FIG. 5. (Color online) Band structure of 4-band model with
�ASO = 9 meV and �z = 20 meV. The first dxy subband (dashed
lines) is assumed to be localized.

that the contribution from the cubic term is dominated by the
linear term.

B. Four-band model

We can extend our theory to a four-band model in which
two dxy subbands lie below the dxz and dyz bands due to
the strong confinement along the z axis (see Fig. 5). Recent
DFT calculation19 shows that the first (second) dxy subband
has �E = 250 (50) meV for the LAO/STO interface. Most of
the electrons coming from the polar catastrophe ∼1014 cm−2

are localized in the first dxy subband as suggested in density
functional calculations of Refs. 31 and 32. The main difference
with the three-band model is that the second dxy subband has
a much smaller �z since they do not see the large electric
field that the first subband electrons see. Hence, those light
electrons do not contribute to the antilocalization effect in our
picture.

C. Effective model for quasi-one-dimensional channel

Now we will consider a quasi-one-dimensional system at
the LAO/STO interface which can be related to a nanowire
artificially drawn using an AFM tip with LAO(3 u.c.)/STO
interface.21,33 We assume there is a confinement in the y

direction such that the wave vector in the y direction is
quantized as kn

y = πn
w

, and degeneracy between dxz and dyz

bands at k = 0 is lifted. With quantized ky , dispersion relations
can be written as

Exz(kx) = h̄2k2
x

2ml

− �Ey,

Eyz(kx) = h̄2k2
x

2mh

, (14)

Exy(kx) = h̄2k2
x

2ml

− �Ez,

where �Ey (�Ez) is the energy splitting due to the y (z)
direction confinement. Since the degeneracy is lifted, the
dxz-like band also has k-linear spin-orbit coupling, and it
seems hard to distinguish it from the dxy-like band with
weak antilocalization measurement. However, we find that the

FIG. 6. (Color online) SOI strength versus chemical potential for
quasi-one-dimensional system. The inset shows dispersion of H0.
Dashed (solid) curve is dxy (dxz) like band. �Ey = 30 meV, �Ez =
50 meV, �ASO = 9 meV, and �z = 20 meV are used. SOI of dxz-like
band changes sign at crossing point of dxz and dyz band (two solid
lines in inset).

relation between chemical potential and spin-orbit coupling
strength strongly depends on the band. As may be seen in
Fig. 6, if the transport is still dominated by the dxz-like band,
we can see that the strength of SOI goes to zero at a specific
value of μ0 (or k0) because the degeneracy between the dxz and
dyz bands is recovered at the band crossing point of H0. When
the transport is dominated by the dxy-like band, the evolution
of SOI strength as increasing chemical potential does not have
any nodes.

IV. EFFECT OF SPIN-ORBIT INTERACTION
ON MAGNETOCONDUCTIVITY

A. Quantum corrections to conductivity in two dimensions

The presence of significant SOI changes the universality
class of the Hamiltonian, and results in a dramatic difference
in weak field magnetoconductance predictions.34 Indeed, it is
well known that SOI leads to a sign change of the quantum
correction to conductivity �σ . This phenomenon, known as
WAL, can be used as a diagnostic for the presence of SOI in a
conductor. In principle, modification of band structure by SOI
can be observed in Shubnikov–de Haas oscillations, but this
effect will be washed out if impurity scattering is too large.
The frequency difference between the two Fermi surfaces, �ω,
must satisfy �ω τ � 1. On the other hand, WAL is observable
under the much less stringent condition, σxx � e2

h
. From a

detailed fit of the dependence of WAL as a function of the
density, it is possible to deduce the form of SOI, i.e., in our
context whether SOI is linear or cubic in momentum and, in
the former case, whether it is due to 1D or 2D transport.

In the subsections that follow, by treating the magnetic
field as a long-distance cutoff, we derive (relatively) simple
closed forms of the WAL corrections to the conductivity in
the limits of (a) purely linear 2D Rashba SOI, (b) purely cubic
2D Rashba SOI, and (c) linear quasi-1D Rashba SOI. In the
first two regimes and in the limit of small magnetic fields, we
recover the Iordanskii, Lyanda-Geller, Pikus (ILP) theory,35

which treats the magnetic field more precisely by summing
over Landau levels. In the third regime, we obtain similar
results to those of Kettemann.36
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We argue that it is essential to use these forms to fit
WAL data for STO surfaces and LAO/STO interfaces. The
ILP theory was used by Nakamura et al.18 to deduce the
cubic k dependence of Rashba SOI at the surface of STO.
[See Eq. (S1) of Ref. 18.] However, Caviglia et al.8 used
the Maekawa-Fukuyama (MF) theory,37 which incorporates
the SOI simply as a spin relaxation time, following Hikami,
Larkin, Nagaoka (HLN) theory.34 In the limit of weak SOI and
weak Zeeman splitting, the MF theory gives similar results to
the ILP theory with dominant SOI given by cubic Rashba.
Therefore, Caviglia et al.’s analysis8 could be understood as
an indication that their results fit the ILP theory with cubic
Rashba, as at the surface of STO.

However, since the MF theory and the HLN theory, on
which it was based, were clearly formulated for a physically
distinct situation that is not applicable to the LAO/STO
interface, it is necessary to compare magnetoconductance data
to an appropriate theory that takes as its starting point either
linear or cubic Rashba SOI (in 2D or 1D). We perform such an
analysis in the subsections that follow and suggest a method
for fitting WAL at LAO/STO interfaces in the low carrier
density region which lead us to distinguish the contribution
from linear and cubic Rashba effects. We discuss experimental
results from this perspective in the following section.

1. Weak antilocalization due to linear Rashba
spin-orbit interaction

Assuming that the dominant contribution to current trans-
port is coming from the dxy band, we only need to consider
k-linear Rashba SOI for small carrier density. Therefore, the
effective Hamiltonian reads

H = h̄2k2

2ml

+ h̄σσσ · ���R1, (15)

where σσσ = (σx,σy) is a vector of Pauli spin matrices, ���R1 =
�R1(sin θ,− cos θ ) is an effective magnetic field of linear
Rashba SOI, k =

√
k2
x + k2

y , �R1 = α1k/h̄, and tan θ = kx/ky .
We now consider scattering on short-range impurities. For
uncorrelated Gaussian disorder potential V (x), characterized
by the correlation function 〈V (x)V (x ′)〉 = 1

2πντ0
δ(x − x ′),

quantum corrections to the dc conductivity are given by34

�σ = −2e2

h
D
∑
α,β

∫
d2q

(2π )2
2πντ 2

0 Cαββα(q). (16)

Here D, ν, and τ0 are the diffusion constant, 2D density of
states, and elastic mean-free time, respectively; Cαββα(q) is the
disorder-averaged Cooperon propagator with α,β being spin
indices. Following ILP’s approach,35,38 the matrix equation for
the zeroth harmonic of the Cooperon propagator which gives
the dominant contribution to WAL in the diffusive limit reads

L̂Ĉ0(q) = 1

2πντ 2
0

. (17)

It is convenient to rewrite the Cooperon propagator in the
angular momentum basis, in which the singlet J = 0 and
triplet J = 1 sectors are decoupled. The eigenvalue for the
singlet contribution can be readily obtained E0 = D(q2 + q2

φ)
where q2

φ = 1/Dτφ with τφ being the inelastic scattering time.
Henceforth, we consider the triplet J = 1 sector, and find the

corresponding eigenvalues. The latter requires diagonalizing
L̂J=1:

L̂J=1 = Dq2 + 1

τφ

+ 2�2
R1τ1

(
Ĵ 2 − Ĵ 2

z

)
+ ivF τ1�R1(Ĵ+q− − Ĵ−q+),

(18)
1

τ0
=
∫

W (ϕ)dϕ,
1

τn

=
∫

W (ϕ)[1 − cos(nϕ)]dϕ,

Ĵ± = Ĵx ± iĴy, q± = qx ± iqy.

Here D = v2
F τ1/2 is the 2D diffusion constant, W (ϕ) is the

scattering rate for an angle ϕ, and Ĵi are vector components
of the total angular momentum operator. The SOI mixes
different components of the J = 1 manifold of the Cooperon
propagator. By diagonalizing L̂, one finds

E0

D
= q2 + q2

φ,
E1

0

D
= q2 + q2

φ + q2
so,

E1
−

D
= q2 + q2

φ + 3

2
q2

so −
√

4q2q2
so + q4

so

4
, (19)

E1
+

D
= q2 + q2

φ + 3

2
q2

so +
√

4q2q2
so + q4

so

4
,

where E0 and E1
m are eigenvalues of L̂ corresponding to

total angular momentum J = 0 and J = 1 sectors, and q2
so =

2�2
R1τ1/D = 2α2k2

F τ1/h̄
2D characterizes the strength of SOI.

Using these results, one can obtain the WAL correction to
conductivity:

�σ = −2e2

h
D

∫ qmax

qmin

d2q

(2π )2
2πντ 2

0 Tr[Ĉ(q)]

= −2e2

h
D

∫ qmax

qmin

d2q

(2π )2

(
− 1

E0
+

1∑
m=−1

1

E1
m

)
. (20)

Here qmax and qmin are ultraviolet and infrared cutoffs,
respectively, with qmax = 1/vF τ1. If magnetic field is weak,
one can simplify the calculation by including magnetic field
as IR cutoff given by qmin = qB . (If magnetic field is large,
one has to perform the summation over the Landau levels.35)
In this paper, we focus on the weak magnetic field limit, in
which case one can obtain the analytical expression for the
quantum correction to magnetoconductivity:

�σ (B) − �σ (0) = − e2

2πh

(−�I 0 + �I 1
0 + �I 1

− + �I 1
+
)
,

�I 0 = ln

[
q2

φ

q2
φ + q2

B

]
,

�I 1
0 = ln

[
q2

φ + q2
so

q2
φ + q2

so + q2
B

]
, (21)

�I 1
− = ln

[
q2

φ + q2
so

q2
φ + q2

so + q2
B

]
+ F−(qso,qB,qφ),

�I 1
+ = ln

[
q2

φ + 2q2
so

q2
φ + 2q2

so + q2
B

]
+ F+(qso,qB,qφ).
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Here q2
B ∼ eB/h̄, and the functions F−(qso,qB,qφ) and

F+(qso,qB,qφ) are defined as

F−(qso,qB,qφ)

= −4πqso

qF

[
1 − 1√

1 + 16(qB/qF )2

]

−8qso

qF

⎡
⎣arctan

(
3qso

qF

)
−

arctan
( 3qso√

q2
F +16q2

B

)
√

1 + 16(qB/qF )2

⎤
⎦ ,

F+(qso,qB,qφ)

= 4πqso

qF

[
1 − 1√

1 + 16(qB/qF )2

]

−8qso

qF

⎡
⎣arctan

(
5qso

qF

)
−

arctan
( 5qso√

q2
F +16q2

B

)
√

1 + 16(qB/qF )2

⎤
⎦ ,

with q2
F = 7q2

so + 16q2
φ . The magnetic field cutoff q2

B depends
on an arbitrary coefficient a1 that enters the definition q2

B =
a1eB/h̄. By comparing Eq. (21) with the ILP theory in the
limit q2

φ  q2
B  q2

so, we find that our results coincide if one
takes a1 = e−γ with γ being Euler’s constant.

2. Weak antilocalization due to cubic Rashba
spin-orbit interaction

According to our four-band model, there are two types of
carriers contributing to the transport. One is the second-level
dxy band electrons with negligible SOI, which we therefore
neglect, and the other is middle (dxz + dyz) band electrons with
k-cubic Rashba SOI. In this case, the effective Hamiltonian for
middle band derived from Eq. (10) can be written as

H = h̄2k2

2m∗ + h̄σσσ · ���R3, (22)

where ���R3 = �R3(sin 3θ,− cos 3θ ) with �R3 = α3k
3
F /h̄ now

gives correction to the third harmonic of Cooperon, and the
resulting matrix equation for Cooperon in the triplet sector can
be written as Eq. (17) with

L̂J=1 = Dq2 + 1

τφ

+ 2�2
R3τ3

(
J 2 − J 2

z

)
. (23)

Now L̂J=1 is readily diagonal in the original basis of J and Jz,
and its eigenvalues are

E0

D
= q2 + q2

φ,
E1

−1

D
= q2 + q2

φ + q2
so3,

E1
0

D
= q2 + q2

φ + 2q2
so3,

E1
1

D
= q2 + q2

φ + q2
so3,

where q2
so3 = 2�2

R3τ3/D = 2α2
3k

6
F τ3/h̄

2D. Then the magne-
toconductivity can be written as

�σ (B) − �σ (0) = − e2

2πh

(−�I 0 + �I 1
0 + �I 1

− + �I 1
+
)
,

�I 0 = ln

[
q2

φ

q2
φ + q2

B

]
,

�I 1
0 = ln

[
q2

φ + 2q2
so3

q2
φ + 2q2

so3 + q2
B

]
, (24)

�I 1
− = ln

[
q2

φ + q2
so

q2
φ + q2

so3 + q2
B

]
,

�I 1
+ = ln

[
q2

φ + q2
so3

q2
φ + q2

so3 + q2
B

]
.

Again, taking q2
B = e−γ Be/h̄ reproduces HLN theory34 for

strong SOI and small magnetic field.
Clearly, WAL corrections to the magnetoconductance are

different for linear and cubic Rashba SOI. Therefore, by com-
paring fits of the experimental data to the above expressions,
one can try to distinguish between the two scenarios. This, in
turn, can shed light on the origin of superconductivity at the
LAO/STO interface.

B. Universal conductance fluctuations in two dimensions

Another transport signature of the spin-orbit interaction
is its effect on universal conductance fluctuations (UCF)
in small systems (see Ref. 39 and references therein). The
variance of the conductivity in a mesoscopic system, δσ 2,
has dominant contributions from the two types of connected
diagrams shown in Fig. 7. We assume that our system has size
L in each direction so that its area V is given by V = L2. The
contributions from those diagrams can written in the form

δσ 2 ∼
(

e2

h

)2
D2

V

∫ qmax

qmin

d2q

(2π )2
(Tr[D̂(q)]2 + Tr[Ĉ(q)]2),

(25)

where Dαβ(q) = δαβ/D(q2 + q2
IR) is a diffuson propagator,

and Ĉ(q) is a Cooperon propagator derived in the pre-
vious section. We will assume qmax = 1/l → ∞, qIR =
max[1/L,1/lφ]; the cutoff qmin = 0 and qmin = qB for dif-
fuson and Cooperon propagators, respectively.

FIG. 7. Diagrams corresponding to two dominant contributions
to UCF: (a) particle-hole channel, (b) particle-particle channel.
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1. UCF for linear Rashba spin-orbit coupling

Taking into account finite-size effects in Eq. (18), one finds Cooperon propagators for linear Rashba SOI:

C0
0 = 1

D
(
q2 + q2

IR

) , C1
0 = 1

D
(
q2 + q2

IR + q2
so

) ,
C1

1 = 1

D
(
q2 + q2

IR + 3
2q2

so +√4q2q2
so + q4

so

) , (26)

C1
−1 = 1

D
(
q2 + q2

IR + 3
2q2

so −√4q2q2
so + q4

so

) .
By integrating over momenta in Eq. (25), one finds

δσ 2 ∼
⎧⎨
⎩
(

e2

h

)2[
4 + 1

1+L2q2
B

+ 1
1+L2(q2

B+q2
so)

+ F1(L) + F2(L)
]
, lφ � L,(

e2

h

)2 l2
φ

L2

[
4 + 1

1+l2
φq2

B

+ 1
1+l2

φ (q2
B+q2

so)
+ F1(lφ) + F2(lφ)

]
, lφ  L,

(27)

where

F1(l) = − 1

3
[
1 + l2

(
q2

B + q2
so

)] + 64

3
[
16 + l2

(
16q2

B + 7q2
so

)] +
64lqso arctan

( 3lqso√
16+l2(16q2

B+7q2
so)

)
[
16 + l2

(
16q2

B + 7q2
so

)]3/2 ,

F2(l) = 1

5
[
1 + l2

(
q2

B + q2
so

)] + 64

5
[
16 + l2

(
16q2

B + 7q2
so

)] +
64lqso arctan

( 5lqso√
16+l2(16q2

B+7q2
so)

)
[
16 + l2

(
16q2

B + 7q2
so

)]3/2 .

The dependence of UCF as a function of SOI and magnetic field is shown in Fig. 8. One can notice a suppression of
δσ 2(qB = 0,qso) by factor of 5/8 for large SOI due to the suppression of the triplet contributions in the Cooper channel. The
magnetic field suppresses the singlet Cooperon contribution, and δσ 2(qB,qso)/δσ 2(0,0) converges to 1/2 under strong magnetic
field.

2. UCF with cubic Rashba SOI

Following similar steps as in the previous subsection, we compute Cooperon propagators with cubic Rashba SOI in a finite
system:

C0
0 = 1

D
(
q2 + q2

IR

) , C1
0 = 1

D
(
q2 + q2

IR + 2q2
so3

) ,
C1

1 = 1

D
(
q2 + q2

IR + q2
so3

) , C1
−1 = 1

D
(
q2 + q2

IR + q2
so3

) .
By integrating over momenta in Eq. (25), one obtains

δσ 2 ∼
⎧⎨
⎩
(

e2

h

)2[
4 + 1

1+L2q2
B

+ 2
1+L2(q2

B+q2
so3)

+ 1
1+L2(q2

B+2q2
so3)

]
, lφ � L,(

e2

h

)2 l2
φ

L2

[
4 + 1

1+l2
φq2

B

+ 2
1+l2

φ (q2
B+q2

so3)
+ 1

1+l2
φ (q2

B+2q2
so3)

]
, lφ  L.

(28)

The dependence of UCF on magnetic field and SO coupling
is plotted in Fig. 9. The suppression of the triplet channel
contribution is steeper for cubic Rashba SOI than for linear
Rashba coupling, as may be seen by comparing Figs. 9 to 8.

C. Quantum corrections to conductivity in
quasi-one-dimensional structures

In this section, we consider a quasi-one-dimensional sys-
tem confined along the y direction (−W

2 < y < W
2 ). In this

geometry, as previously discussed, the SOI in dxy and dxz

bands at small carrier density is dominated by linear Rashba
contribution. We, therefore, concentrate on this situation.
Given the confinement along the y direction, we need to

solve Eq. (17) in real space and impose appropriate boundary
conditions. The singlet component of the Cooperon is not
affected by SOI, and, thus, the corresponding eigenvalue is
E0 taken at qy = 0. We now concentrate below on J = 1
subspace. The matrix equation for the J = 1 components of
the Cooperon reads

L̂J=1(r)Ĉ0(r,r ′) = 1

2πh̄ντ 2
0

δ̂(r,r ′),

L̂J=1(r) = 1

τφ

+ D[(−i∂x − qsoĴy)2 (29)

+ (−i∂y + qsoĴx)2].
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FIG. 8. (Color online) Plot of UCF strength versus qSO and qB

with linear Rashba SOI at lφ � L limit.

Here r = (x,y). The solution of the above equation is given
by

Ĉ (r,r ′) = 1

2πh̄ντ 2
0

1∑
m=−1

|ψm(r)〉〈ψm(r ′)|
Em

, (30)

L̂J=1 (r)|ψm(r)〉 = Em|ψm(r)〉, (31)

with boundary conditions

(−i∂y + qsoĴx)|ψm(r)〉|y=± W
2

= 0, (32)

implying zero current in the direction normal to the boundary
for each spin eigenstate. We note that qy = 0 does not satisfy
the boundary conditions. To find the Cooperon propagator in
this case, we first perform a gauge transformation36,40 and
simplify boundary conditions. Let us perform the canon-
ical transformation defined by Û (y) = eiqsoĴxy and intro-
duce |ψ̃m(r)〉 = U (y)|ψm(r)〉 and L̃(r) = Û (y)L̂J=1(r)Û †(y),

FIG. 9. (Color online) Dependence of UCF on magnetic field and
cubic Rashba SOI in lφ � L limit.

where

L̃(r) = 1

τφ

+ D[(−i∂x)2 + (−i∂y)2]

−2Dqso[eiqsoĴxy Ĵye
−iqsoĴxy](−i∂x)

+Dq2
so

[
eiqsoĴxy Ĵ 2

y e−iqsoĴxy
]
. (33)

In terms of the new eigenstates, the boundary condition reads

(−i∂y)|ψ̃m(r)〉|y=± W
2

= 0 (34)

and, thus, the zero mode qy = 0 now satisfies the above
boundary condition. If the width satisfies W  1/qφ as 1/qφ

being dephasing length, one can neglect higher harmonics,
ny � 1, because they are suppressed by a factor of Wqφ .
In this regime, the dominant contribution comes from the
qy ∝ ny = 0 mode. Furthermore, in the limit W  1/qso, L̃(r)
is a slowly varying function of y, and can be approximated by
its average over the ŷ direction. Then, we find that

L̃(qx,0)

D

= 1

DW

∫ W/2

−W/2
dyL̃(qx,y) = q2

φ + q2
x + Ĝ1 + Ĝ2,

Ĝ1 = −2qsoqx

2 sin
(

qsoW

2

)
qsoW

Ĵy,

Ĝ2 = q2
so

4

⎛
⎜⎝

3 − sin(qsoW )
qsoW

0 −1 + sin(qsoW )
qsoW

0 2 + 2 sin(qsoW )
qsoW

0

−1 + sin(qsoW )
qsoW

0 3 − sin(qsoW )
qsoW

⎞
⎟⎠ .

The eigenvalues of L̃(qx,0)/D are given by

E1
0/D = q2

φ + q2
x + q2

so

2
tso,

E1
±/D = q2

φ + q2
x + q2

so

4

(
4 − tso ±

√
t2
so + 64q2

x

q2
so

(1 − cso)2

)
,

tso = 1 − sin(qsoW )

qsoW
∼ (qsoW )2

6
,

cso = 1 − 2 sin
(

qsoW

2

)
qsoW

∼ (qsoW )2

24
.

With the Cooperon propagator in hand, we can now compute
quantum corrections to the conductivity

�σ1D = −2e2D

h

∫ qmax

qmin

dqx

2π

(
− 1

E0
+

1∑
m=−1

1

E1
m

)
. (35)

At nonzero magnetic field, this expression is modified by
introducing an additional cutoff q2

B :

�σ1D(B) = −e2

h

⎡
⎣− 1√

q2
φ + q2

B

+ 1√
q2

φ + q2
B + 2rq2

so

+ 2√
q2

φ + q2
B + rq2

so

⎤
⎦ , (36)
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where r is a width-dependent coefficient that characterizes the
effective strength of the spin-orbit coupling, r = (qsoW )2/12.
The magnetic field cutoff is also modified and becomes
width dependent. For weak fields B  h/eW 2, the cutoff
q2

B ∼ e2B2W 2/h2 whereas for large fields B � h/eW 2, it
remains the same as in 2D; i.e., q2

B ∼ eB/h.
Throughout this section, we have assumed that the system

is in the diffusive regime (i.e., all lengths are longer than
the elastic mean-free path) and have derived the Cooperon
propagator in a quasi-1D system in this limit, i.e., assuming
that q−1

so � W � le, where le is the mean-free path. The results
of our calculation can be extended to a quasi-1D nanowire
whose width is comparable with the mean-free path le; see, for
example, Ref. 41. In this regime, the magnetic field cutoff
should be modified due to the flux cancellation effect. In
the weak (B  h̄/eWle) and strong (B � h̄/eWle) magnetic
field limit, the cutoff qB becomes q2

B = 2e2B2W 3/(C1h̄
2le)

and q2
B = 2eBW 2/(C2h̄l2

e ), respectively. Here, the coefficients
C1 = 9.5 and C2 = 4.8 are obtained for specular boundary
condition.

D. Universal conductance fluctuations in a
quasi-one-dimensional system

Using the expressions for Cooperon propagators derived
in the previous section, we now evaluate UCF in a quasi-
one-dimensional system with width W  1/qφ , 1/qso and
L � lφ . For a mesoscopic system with length L  lφ , we
need to change qφ → 1/L in the expressions for the Cooperon
propagator. Then, we find that the quasi-one-dimensional
conductivity variance is given by

δσ 2
1D ∼

(
e2

h

)2
D2

L

∫ qmax

qmin

dq

2π
(Tr[D̂(q)]2 + Tr[Ĉ(q)]2).

(37)

We evaluate the momentum integral numerically, assuming
a fixed ratio of W and L. The dependence of the variance
of the conductivity on SO coupling and magnetic field for
L = 30W is shown in Fig. 10. We find that UCF in a quasi-1D
system depends on the magnetic field in a manner similar to
its dependence in 2D; i.e., δσ 2

1D(qB,qso)/δσ 2
1D(0,0) converges

to the same value 1/2 under strong magnetic field.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.6

0.7

0.8

0.9

1.0

qBW

δσ1 D2 qB, qso
δσ1 D2 0, 0

qsoW 0.8

qsoW 0.6

qsoW 0.4

qsoW 0.2

qsoW 0

FIG. 10. (Color online) Plot of δσ 2
1D(qB,qso)/δσ 2

1D(0,0) versus
magnetic field for various SOI strength at L = 30W .

FIG. 11. (Color online) Dependence of spin-orbit coupling
α3 (eV Å3) and spin-orbit energy �R (meV) on electron density
n (×1012 cm−2) in the middle band of STO surfaces. For energy
spectrum see Fig. 3. Here we used �z = 35 meV, �ASO = 6 meV.

V. DISCUSSION OF EXPERIMENTAL RESULTS

A. Weak antilocalization measurements at STO surfaces

Nakamura et al.18 recently reported evidence of a cubic
Rashba SOI at a low carrier density (kF a < 0.3) STO surface.
They concluded that the bottom dxy -like band has cubic Rashba
SOI. However, as may be seen in Fig. 4, we found that the SOI
of bottom dxy-like band is dominated by linear Rashba SOI in
the region of small carrier density probed in the experiment.

Since this is in contradiction with the data of Nakamura
et al.,18 we assume, instead, that electrons in the bottom band
are localized (or very poorly conducting) and that the observed
transport is due to the middle band. In that case, WAL should
be due to a cubic Rashba term since the middle band has only
cubic Rashba SOI. The calculated values for the cubic Rashba
coupling coefficient as a function of carrier density are plotted
in Fig. 11.

B. Weak antilocalization measurements at LAO/STO interface

We now discuss SOI using our model for LAO/STO inter-
faces and apply it to explain rapidly increasing Rashba SOI
observed in recent experiments.8–10 We consider a three-band
model, as we did for the surface of STO, and take the values
�E = 50 meV from x-ray absorption spectroscopy42 and
�ASO = 9 meV and �z = 20 meV from the DFT calculations
of Ref. 19. The dependence of the strength of SOI, following
from the three-band model, on chemical potential is shown in
Fig. 12. Dashed and solid curves correspond, respectively, to
bottom (linear Rashba SOI) and middle (cubic Rashba SOI)
bands. Comparison of our results with the experiment provides
two possible explanations for the rapid increase of SOI at a
specific gate voltage.

The first hypothesis is that the transport at that gate voltage
is due to the bottom dxy-like band. This band has linear
Rashba SOI at k ≈ 0 and a much larger SOI near the avoided
crossing with the dxz,yz bands. Approaching the crossing
causes reduction of the gap, which, in turn, leads to an
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FIG. 12. (Color online) Calculated α1(�R/kx) vs μ (meV).
Dashed (solid) plots correspond to bottom (middle) band.

enhancement of SOI. For this hypothesis to agree with the
observed data,8 superconductivity would have to be suppressed
once electrons start populating the middle band since the
superconducting transition temperature starts to decrease right
after the sharp increase of SOI. It is not clear why this should
be the case. Furthermore, the observed carrier density of the
bottom band, as deduced by Hall measurements, ∼1013 cm−2,
seems to be much smaller than the polar catastrophe theory
suggests, ∼1014 cm−2. Moreover, it is not easy to see why there
should be a sharp onset density at which superconductivity
starts to appear.

The other hypothesis is that these observations are domi-
nated by transport from the middle heavy electron band. We
now apply our four-band model, and assume that most of
the ∼1014 cm−2 electrons predicted by the polar catastrophe
argument are localized at the interface. A much smaller number
∼1013 cm−2 of electrons populates the middle band and
dominates transport. Electrons in the second dxy subband
may contribute to the Hall effect, but the WAL phenomena
seen in experiments would be due to cubic Rashba for small
mobile carrier density, as at the STO surfaces. This picture
also suggests that superconductivity arises as a result of the
appearance of electrons in the middle band.

Yet another possibility to consider is transport in quasi-one-
dimensional channels, as in wires “drawn” with an AFM tip21

or appearing spontaneously and are related to the formation of
tetragonal domains formed in the STO below 105 K.28 As we
discussed above, Rashba SOI is always linear in momentum
in quasi-1D geometry, regardless of the band index. There is,
however, an important feature of transport in the quasi-1D case
that does distinguish between carriers in the different bands.
At the values of the chemical potential at which the dxz and dyz

bands become degenerate, the spin-orbit interaction in these
bands vanishes, as shown in Fig. 6. Therefore, it would be
interesting to revisit WAL data and fit the magnetoconductance
having a particular scenario in mind.

VI. CONCLUSIONS

The origin of the physics underlying the ordering phenom-
ena of LAO/STO interfaces, namely magnetism and supercon-
ductivity, is still unclear and controversial. However, spin-orbit
interaction may provide a window into understanding these
properties. As we have seen, the electrons in the different
bands of the LAO/STO interface have Rashba (i.e., interface-
induced) SOI with different momentum dependencies. More-
over, this dependence is a strong function of the effective
dimensionality of the carriers. The momentum dependence
and effective dimension are, in turn, reflected in transport
measurements through the dependence of WAL effects on an
applied magnetic field. In this paper, we have given a simple
explanation for both the nature of SOI in LAO/STO and the
surface of STO and also for its WAL signature.

We find that the sharp increase in the strength of the
SOI with gate voltage is consistent with conduction that is
dominated by either the dxy or dxz,yz bands. However, the
spin-orbit energy scale is predicted to decrease at still higher
gate voltages. This decrease would be steeper in the case of
the dxy band. Therefore, if it were possible to increase the
gate voltage until the spin-orbit coupling peaks and begins
to decrease (as the superconducting transition is observed to
do), it would be possible to distinguish between these two
scenarios. In the quasi-1D case, the difference between the
dxy and dxz,yz bands may be even more dramatic since the
SOI vanishes in the latter case at one value of the chemical
potential. If nominally 2D transport is actually quasi-1D, as
suggested by recent measurements,28 then there may be a
third possible functional form against which WAL data on
LAO/STO interfaces could be measured. However, there are,
at present, too many unknowns (such as the wire width and
spacing) to make a meaningful comparison between theory
and experiment. Finally, we note that we have made concrete
predictions for the dependence of universal conductance
fluctuations on the magnetic field, spin-orbit interaction, and
device size, which could be compared to experiments if
the dependence on these parameters could be measured in
experiments similar to those reported recently in Ref. 43.
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