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Excited states in polydiacetylene chains: A density matrix renormalization group study
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We study theoretically polydiacetylene chains diluted in their monomer matrix. We employ the density matrix
renormalization group method on finite chains to calculate the ground state and low-lying excitations of the
corresponding Peierls–Hubbard-Ohno Hamiltonian which is characterized by the electron transfer amplitude t0

between nearest neighbors, by the electron-phonon coupling constant α, by the Hubbard interaction U , and by
the long-range interaction V . We treat the lattice relaxation in the adiabatic limit, i.e., we calculate the polaronic
lattice distortions for each excited state. Using chains with up to 102 lattice sites, we can safely perform the
extrapolation to the thermodynamic limit for the ground-state energy and conformation, the single-particle gap,
and the energies of the singlet exciton, the triplet ground state, and the optical excitation of the triplet ground state.
The corresponding gaps are known with high precision from experiments. We determine a coherent parameter set
(t∗

0 = 2.4 eV,α∗ = 3.4 eV/Å,U ∗ = 6 eV,V ∗ = 3 eV) from a fit of the experimental gap energies to the theoretical
values which we obtain for 81 parameter points in the four-dimensional search space (t0,α,U,V ). We identify
dark in-gap states in the singlet and triplet sectors as seen in experiments. Using a fairly stiff spring constant, the
length of our unit cell is about 1% larger than its experimental value.
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I. INTRODUCTION

Polydiacetylene (PDA) chains dispersed with low concen-
tration in their monomer single-crystal matrix are prototypical
quasi-one-dimensional materials.1–3 The structural disorder in
the chains and their surrounding matrix is tiny, the electronic
excitation energies of the diacetylene monomers are much
higher than those of the polymer, and the chains’ electronic
excitations in the energy range of visible light can be measured
with a very high accuracy.4

Exciton-polaritons have been generated that have been
shown to be coherent over tens of micrometers, i.e., several
ten thousand monomer units.5 This observation was confirmed
by weight measurements after dissolving the chains and their
monomer matrix.3 Consequently, the optoelectronic properties
of the PDA result from the electrons’ mutual interaction and
their interaction with the lattice potential, while the influence of
disorder is negligible. This makes these materials the perfect
testing ground for theoretical model studies which describe
interacting electrons on perfectly ordered chains.

The typical single-particle gap in PDA is Egap � 2.4 eV, see
Sec. II. Density functional theory band-structure calculations
in the local-density approximation for generic PDA geometries
estimate the bare band gap to be Ebare gap ≈ 1.2 eV, or less.6

Results from various methods are compiled in Table I of Ref. 7;
recent calculations using the Perdew-Burke-Ernzerhof global
hybrid density functional and the 6-311G(2d,2p) basis set
of atom-centered Gaussian functions [geometries from the
Tao-Perdew-Staroverov-Scuseria density functional and the
6-31G(d) basis set]8 give Ebare gap ≈ 1.6 eV (Ref. 9). The
comparison shows that electronic exchange and correlations
account for a substantial fraction of the single-particle gap. In
contrast to inorganic semiconductors, the exciton binding en-
ergy in PDA amounts to about 20% of the single-particle gap.
Such large binding energies suggest that the electron-electron

interaction must be treated accurately for the calculation of the
optical properties of the PDA.

To describe the optical excitations in PDA two approaches
have been taken. The first approach starts from an ab initio
density functional theory calculation of the bare band structure
in the local-density approximation (LDA), which is then
supplemented by an approximate treatment of the residual
electron-electron interaction, e.g., the GW approximation
for the single-particle bands and the Bethe-Salpeter equa-
tion (BSE) for the excitons (LDA + GW + BSE).10,11 Actual
calculations for the PDA often omit the GW step (Wannier
theory).12 Within this approach, a number of experimental
data can be reproduced, e.g., the 11Bu exciton binding energy
and its polarizability.

This approach is less successful for the triplet sector.12

Typically, the energy of the triplet ground state is too high.
Recall that, if the electron-electron interaction is absent, the
energy of the triplet ground state is identical to the single-
particle gap. Starting from a weak-coupling description of the
electron-electron interaction on the chains, it is difficult to
obtain the experimentally observed energy renormalization by
a factor of almost 3 (Ref. 13). Moreover, polaronic effects are
not considered in the LDA + BSE approach.

The second approach to a theoretical description of the
primary excitations in polymers starts from a many-particle
model Hamiltonian that describes only the π electrons and
their mutual interaction. Typically, empirical parameters are
used for the tight-binding band structure and for the Pariser-
Parr–Pople (PPP) potential.14 With the help of the density
matrix renormalization group (DMRG) method,15 the ground
state and elementary excitations for such models can be
calculated for large chains with very high accuracy. In this way,
the electron-electron interaction is treated without resorting to
any approximations.
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In a recent study,16 we used the Hubbard-Ohno potential
and the tight-binding parameters of Ref. 17 to calculate the
binding energy, polarizability, and wave function of the singlet
exciton, in good agreement with the experiment. However, in
our previous study we could not reproduce satisfactorily the
energy of the triplet ground state. Moreover, we did not take
polaronic effects into account. Here, we shall overcome these
shortcomings.

In this work, we perform an extensive DMRG study of
the Peierls–Hubbard-Ohno Hamiltonian for the π electrons
on a chain. We start from the tight-binding Peierls descrip-
tion of Race et al.,18 but replace their Ohno potential19

by the Hubbard-Ohno potential.16 The essential difference
between the two parametrizations of the Pariser-Parr–Pople
interaction14 lies in the treatment of the Coulomb interaction
for π electrons on the carbon atom. The local Hubbard re-
pulsion potential is substantially larger than the corresponding
Ohno interaction.20

Since we are mostly interested in the polaronic effects, we
ignore the energetic effects introduced by the ligands R,R′.
Some preliminary studies show that the energy difference
between the singlet and triplet ground states is not influenced
by the introduction of a local potential for the carbon atoms
which are linked to the side groups. We presume that the
dominant influence of the side groups comes from the presence
(or absence) of strain in the chains. As can be seen from the data
for poly-(butoxy-carbonyl-n methylene-urethane) for n = 3,4
(3BCMU, 4BCMU), different ligands and the resulting strain
results in small energetic differences, of about 0.1 eV for the
nBCMU family.

The outline of our work is as follows. In Sec. II, we
summarize the experimental observations on the singlet and
triplet in-gap states in PDA. In Sec. III, we define the Peierls–
Hubbard-Ohno Hamiltonian and the model parameters which
provide the basis of our numerical DMRG study. In Sec. IV,
we briefly discuss our numerical approach. In Sec. V, we
motivate the parameter regime that we choose for our study. In
Sec. VI, we present our results. In Sec. VII, we summarize and
conclude. Technical details are deferred to the Appendices.

II. EXPERIMENTAL OBSERVATIONS

We start with an overview of the experimental observations
relevant for our study.

A. Ground-state conformation

First, we collect relevant experimental data on the ground-
state properties.

1. Lewis structure

The diacetylene monomer building unit is comprised of four
carbon atoms. The four outer electrons of each carbon atom
are hybridized. Three of them form localized bonds. There
are σ bonds between neighboring carbon atoms on the chain.
Two carbon atoms on the chain share a local π bond made by
two py electrons. The other two carbon atoms share σ bonds
to covalent ligands R and R′, which are several Ångstrøm
long and differ for various members of the PDA family. In
this work, we focus on poly-(butoxy-carbonyl-nmethylene-
urethane) (poly-nBCMU) chains with n = 3,4 where the side

’

R

nR

FIG. 1. Lewis structure of a polydiacetylene unit cell.

groups are given by R = R′ = (CH2)n − OCONH − CH2 −
COO − (CH2)3CH3.

The fourth carbon electron is delocalized over the carbon
backbone in a molecular π orbital. Due to the Peierls effect,
in the ground state the π electrons dimerize the chain
into an alternating sequence of short and long bonds. After
dimerization, the four carbon atoms in the unit cell are linked
by a triple bond, a single bond, a double bond, and a single
bond. The corresponding Lewis structure of the ground state
is shown in Fig. 1.

2. Lattice parameters

For a high-quality single crystal of poly-[1,2-bis-
(p-tolylsulfonyloxymethylen)-1-buten-3-inylen] (PTS), the
atomic distances at room temperature have been measured21

as rt = 1.191(4) Å, rd = 1.356(4) Å, and rs = 1.428(4) Å [un-
certainties in the last digit in brackets] for the triple (t), double
(d), and single (s) bonds, respectively. Typical atomic distances
for other PDA polymer single crystals are22 rt = 1.20 Å,
rd = 1.36 Å, and rs = 1.43 Å. The same set of data applies for
3BCMU-PDA at low temperatures.23 The chain of atoms is not
straight; the single and double bonds alternately form angles
of ϕ1 = 120◦ and ϕ2 = 240◦, with a temperature variation of
a few degrees.23 In the comparison with our calculations we
shall assume that the bond lengths and angles given above for
the PDA single crystals are representative for chains in their
diacetylene monomer matrix.

We shall only deal with planar (“blue”) PDA chains.3 The
individual polymer chains of 4BCMU are strained in their
monomer single crystals, but are essentially unstrained in
3BCMU (Ref. 23). Strain should be the primary source for
differences in the spectra of these two PDA.

B. Excited states

Next, we summarize experimental results on the low-lying
electronic excitations. PDA are center-symmetric insulators.
Their ground state G is a spin singlet with symmetry Ag under
inversion.

1. Single-particle gap and excited singlet states

The charge gap for single-particle excitations, as de-
termined from Franz–Keldysh oscillations in electroab-
sorption experiments,24 is Egap(3BCMU) = 2.482 eV and
Egap(4BCMU) = 2.378 eV in 3BCMU and 4BCMU chains,
respectively.

The excitation energy of the primary singlet exciton S (sym-
metry 1Bu) defines the optical gap, �s

opt = ES − EG, which
amounts to �s

opt(3BCMU) = 1.896 eV and �s
opt(4BCMU) =
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FIG. 2. Energy levels of in-gap states in the spin-singlet and spin-
triplet sectors. Single-tip arrows: optical absorption spectroscopy;
double-tip arrows: two-photon absorption spectroscopy. Double
arrows: binding energies (gaps). G: singlet ground state (11Ag); S:
singlet exciton (11Bu); X1,X2, X3: singlet dark states (m1Ag); T: triplet
ground state (13Bu); T∗: optical excitation of the triplet ground state
(13Ag); Y: dark triplet state (m3Bu).

1.810 eV in 3BCMU and 4BCMU, respectively. Therefore,
the singlet exciton binding energy, defined by �s

ex = Egap −
ES, becomes �s

ex(3BCMU) = 0.586 eV in 3BCMU, and
�s

ex(4BCMU) = 0.568 eV in 4BCMU, about 24% of the band
gap. The energy levels are sketched in Fig. 2.

The singlet exciton is the energetically lowest state in
the spin-singlet sector which can be generated by a single-
photon absorption process. In addition, there are further,
optically dark states in the gap. The existence of optically
dark states X1 and X2 below the optical gap can be inferred
from nonradiative decay processes which are monitored via
pump-probe spectroscopy, see Ref. 3 for a review. The exciton
rapidly populates the states X1,2 so that they should have the
same spin quantum number.

In principle, the energy of singlet states in the gap with 1Ag

symmetry can be determined via two-photon absorption. Two-
photon absorption for a single-crystal of the polydiacetylene
paratoluene-sulfonate reveals three gap states with energies
EX3 = 1.05�s

opt, EX2 = 0.9�s
opt, and EX1 = 0.8�s

opt. These
states should exist in all PDA. Note that in the experimental
literature,3 the numbering of the states X1 and X2 is reversed.

2. Phonon energies

Raman scattering reveals vibrational energies which are
assigned to the oscillations of the double (D) and triple (T)
bonds. For 3BCMU chains in their monomer matrix they are
h̄ωD = 0.181 eV and h̄ωT = 0.261 eV (Ref. 23). In accordance
with the Raman data, the optical spectra of 3BCMU chains
show strong exciton replicas at the energies Ec = ES + h̄ωD =
2.079 eV and at Ed = ES + h̄ωT = 2.160 eV, respectively,

when the exciton is accompanied by single optical phonons
corresponding to the vibrations with frequencies ωD and ωT.

Electroabsorption measurements3,24 show that there are
more significant single-phonon replicas of the singlet exciton
at the energies Ea,b = ES + h̄ωS,D∗ with h̄ωS = 0.090 eV and
h̄ωD∗ = 0.155 eV. Due to the fact that Eb ≈ Ec, the phonon
replica at Eb appears in the low-energy flank of the replica at
energy Ec. The electroabsorption measurements also permit
the identification of multiphonon replicas, e.g., at replica ener-
gies h̄(ωD∗ + ωD), 2h̄ωD, h̄(ωD + ωT), 2h̄ωT (Refs. 24 and 25).

3. Triplet ground state and excited triplet states

The triplet sector is more difficult to access experimentally
because a transition between the spin-zero ground state G
and the lowest spin-one state T is optically forbidden. Optical
pump-probe spectroscopy3 reveals that a small fraction of
singlet excitons decays into a long-lived state which can be
optically excited by the probe pulse. Its long life-time indicates
that this in-gap state is the spin-triplet ground state T. The
probe pulse generates transitions from T to T∗in the triplet
sector. The optical gap in the triplet sector is defined as
�t

opt = ET∗ − ET, and amounts to �t
opt(3BCMU) = 1.360 eV

and �t
opt(4BCMU) = 1.345 eV, respectively.

The optical pumping above a threshold Ef ≈ 2.0 eV very
efficiently generates states which show a strong optical
absorption with energy �t

opt. This can be readily understood
if the spin-singlet excitations above Ef fission into triplet
pairs.3 In turn, these triplet pairs can recombine into singlets
and decay optically. If we ignore lattice effects (bipolaron
formation), we obtain a reasonable estimate for the energy of
the triplet state T, �st = ET − EG ≈ Ef/2. For 3BCMU and
4BCMU this estimate gives �st(3BCMU) � 1.0 ± 0.05 eV
and �st(4BCMU) �0.95 ± 0.05 eV, respectively.

The binding energy of the triplet ground state is defined
by �t

ex = Egap − ET. It amounts to �t
ex(3BCMU) ≈ 1.5 eV

and �t
ex(4BCMU) ≈ 1.4 eV in 3BCMU and 4BCMU, respec-

tively, more than 60% of the single-particle gap. The energy
of the optically excited triplet ground state T∗ is found to
be ET∗ (3BCMU) − EG = 2.36 eV and ET∗ (4BCMU) − EG =
2.30 eV above the ground state, about 0.1 eV below the
threshold Egap for single-particle excitations.

The optically dark singlet states X1 and X2 decay nonra-
diatively into a state Y. Its weak population and long life-time
indicate that it is reached via intersystem crossing so that it
ought to be a spin-triplet state which lies energetically above
the triplet ground state T. It should be of symmetry 3Bu so
that it cannot be reached via an optical excitation of the triplet
ground state.

Figure 2 shows the experimentally observed level spectrum
for PDA chains in the singlet and triplet sectors. We summarize
the corresponding values for the in-gap states in Table I,
and compare them to our theoretical results for our best pa-
rameter set, (t∗0 = 2.4 eV, α∗ = 3.4 eV/Å, U ∗ = 6 eV, V ∗ =
3 eV), see Sec. VI.

III. MODEL DESCRIPTION OF POLYDIACETYLENE
CHAINS

In this work we restrict ourselves to the description of the
π electrons because they dominate the optical response of the
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TABLE I. First and second columns: Excitation energies in
3BCMU and 4BCMU at low temperatures. All energies are measured
in eV relative to the energy of the ground state EG = 0. Bold number:
directly measured; italic number: estimate. Third column: our results,
see Sec. VI; the numbers in square brackets give the excitation energy
for the rigid-lattice transition from G (Egap, ES, EX1,2 , ET) and from
T (�t

opt).

Energy 3BCMU 4BCMU Theory

EX1 1.5 1.4 1.74 [1.94]
EX2 1.7 1.6 1.85 [1.94]a

ES = �s
opt 1.896 1.810 2.00 [2.05]

EX3 2.0 1.9
Egap 2.482 2.378 2.45 [2.47]
�s

ex = Egap − ES 0.586 0.568 0.45 [0.42]

ET = �st 1.0 ± 0.05 0.95 ± 0.05 1.00 [1.06]
ET∗ = �st + �t

opt 2.36 ± 0.05 2.30 ± 0.05 2.25
�t

opt 1.360 1.345 1.25 [1.28]
�t

ex = Egap − ET 1.5 ± 0.05 1.4 ± 0.05 1.45 [1.40]

aSeveral degenerate states are found in DMRG.

polydiacetylene chains immersed in their monomer matrix for
energies h̄ω < 3 eV. To make contact with previous work,18

we treat the other electrons as inert, i.e., they are supposed
to form the unrelaxed geometry of the carbon backbone. The
distance between two carbon atoms is R2 for a single σ bond,
and R1 < R2 for the σ -py double bond (extrinsic distortion).

A. Electronic Hamiltonian

The motion of π electrons between neighboring carbon
atoms and their mutual Coulomb interactions defines the
electronic problem

Ĥe = T̂ + V̂ , (1)

where T̂ and V̂ specify the electrons’ kinetic energy and their
mutual interaction, respectively.

1. Kinetic energy

The motion of the π electrons over the unrelaxed backbone
is described by the operator for the kinetic energy

T̂ = −
∑
l;σ

tl(ĉ
+
l,σ ĉl+1,σ + ĉ+

l+1,σ ĉl,σ ), (2)

where ĉ+
l,σ , ĉl,σ are creation and annihilation operators,

respectively, for a π electron with spin σ =↑ , ↓ on site l

with two-dimensional coordinate �rl = (xl,yl)T . The matrix
elements tl are the electron transfer amplitudes between
neighboring sites. Transfer amplitudes between next-nearest
neighbors should be included to fit better the band structure of
all carbon electrons.9 The amplitude for an electron transfer
between two carbon sites at distance r0 = 1.4 Å is given by t0
which we use as an adjustable parameter.

We consider the half-filled band exclusively, i.e., in the
ground state and for the excitations in Fig. 2 the number of π

electrons Ne equals the number of lattice sites N .

2. Coulomb interaction

The diacetylene monomer single crystals are insulators, and
also the PDA chains display a finite charge gap. Therefore, the
long-range Coulomb interaction is not dynamically screened
at the energy scale of a few electron volts.

Therefore, we start from the Pariser-Parr–Pople (PPP)
interaction14

V̂ = U

N∑
l=1

(
n̂l,↑ − 1

2

) (
n̂l,↓ − 1

2

)

+ 1

2

N∑
l 	=m=1

V PPP
l,m [(n̂l − 1) (n̂m − 1)] . (3)

Here, n̂l = n̂l,↑ + n̂l,↓ counts the number of electrons on site
l, and n̂l,σ = ĉ+

l,σ ĉl,σ is the local density operator at site l

for spin σ . The strength of the (local) Hubbard interaction
is parameterized by U , and Vl,m are the PPP parameters for
the effective Coulomb repulsion between electrons at different
positions �rl and �rm.

For the description of electrons and holes in quantum
wires and other quasi-one-dimensional structures in a vacuum,
various effective potentials have been used in the literature.26,27

For example, in our previous study16 we used the erf potential
(x = |�rl − �rm|)

V erf
l,m = V erf(x) = e2

εdR

√
π exp[(x/R)2] [1 − erf(x/R)] , (4)

where erf(x) is the error function, R is the adjustable
confinement parameter, and εd = 2.3 is the static dielectric
constant for the diacetylene monomer matrix. In general,
the PPP interaction for the π electrons on the chain in the
surrounding matrix has the form

V PPP
l,m = V PPP(x) = V erf(x)

εd

ε(x)
, (5)

where ε(x) is the static dielectric function at distance x = |�rl −
�rm| with ε(x → ∞) = εd . Unfortunately, the short-distance
behavior of ε(x) is unknown.

In this work we follow the authors of Refs. 16,17, and 20
and approximate the Pariser-Parr–Pople interaction using the
Hubbard-Ohno potential, i.e., for x = |�rl − �rm| 	= 0 we set

V PPP
l,m ≈ V Ohno

l,m = V Ohno(x) = V

εd

√
1 + β(x/Å)2

,

(6)

β =
(

V

14.397 eV

)2

.

The Ohno potential and its adjustable parameter V describe
the effective strength of the Coulomb interaction at short
distances; for large electron-electron distances, V Ohno(x →
∞) → e2/(εdx) because e2 = 14.397 eV Å. Note that U and
V are independent adjustable parameters in our theory. Later,
we shall assume that the screening of the on-site interaction is
substantially less effective than for the long-range interaction.

The eigenstates of the electronic problem follow from the
solution of the corresponding Schrödinger equation

Ĥe|
〉 = E
 |
〉. (7)

We denote expectation values of operators Â in the normalized
state |
〉 as 〈Â〉 = 〈
|Â|
〉.
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TABLE II. Quantum numbers of important in-gap states. For the
definition of the states see Fig. 2.

State

Symmetry G T S T∗

Spin (S) 0 1 0 1
Inversion (X) 1 −1 −1 1
Particle-hole (v) 1 1 −1 −1

Classification 1 1A+
g 1 3B+

u 1 1B−
u 1 3A−

g

3. Particle-hole symmetry

The Hamiltonian (8) is invariant under the particle-hole
transformation ĉl,σ �→ (−1)l ĉ+

l,−σ . At half band-filling, the
ground state |G〉 is also invariant under this transformation.

In our numerical investigation, we calculate important
excited states using the proper quantum numbers for the spin
symmetry (S = 0,1; p = 2S + 1), inversion symmetry (X =
Ag,Bu), and particle-hole symmetry (v = ±1). Therefore, we
label states in the form m pXv where m � 1 counts the states
with the same symmetry in ascending energetic order. The
quantum numbers for the most prominent in-gap states are
summarized in Table II.

B. Electron-lattice interaction

The electron-phonon coupling leads to the dimerization of
the ground-state structure (Peierls effect). Moreover, excita-
tions carry a polaron cloud, and the polaronic shifts in the
single-particle excitation energies will in general be different
from those of bound pairs. For example, the singlet exciton
fissions into a bound pair of triplet polarons. This bipolaron
has an energy which is lower than twice the energy of a triplet
polaron. Therefore, the estimates in Table I provide lower
bounds for �st.

Due to the (small) Peierls distortion, the energy increases
so that the total Hamiltonian reads

Ĥ = Ĥe +
N−1∑
l=1

δ2
l

4πt0λl

. (8)

At distance r0 = 1.4 Å, the electron transfer matrix element
is given by our adjustable parameter t0. The strength of the
electron-lattice coupling is parameterized by the coupling
constant28,29

λl = 2α2

πKlt0
, (9)

where α is the strength of the Peierls coupling and Kl are
the elastic constants for the carbon backbone, namely, K

for the σ bonds and G > K for the σ -py bonds, Kl =
K + δl mod 4,1(G − K). The parameters α, K , and G must be
adjusted. In effect, we address the region where λl < 0.1 so
that the adiabatic approximation is valid, i.e., we may treat the
lattice distortions classically.

The intrinsic Peierls distortion implies a modulation of the
bond lengths

δrl = rl − Rl = − δl

2α
. (10)

Here, R2 = r0 for a single σ bond of the carbon backbone chain
and R1 = r0 − δe/(2α) for its σ -py double bond. The size of
the extrinsic dimerization δe is calculated in Appendix A. As
a result of the intrinsic Peierls dimerization, the ground-state
unit cell of the distorted chain consists of four carbon atoms,
linked by a single bond, a double bond, a single bond, and a
triple bond, see Fig. 1.

The energies δl modulate the electron transfer amplitudes

tl = t l + δl/2, (11)

with

t l = t0 + δe/2 (undistorted σ -py double bond), (12)

t l = t0 (undistorted σ single bond). (13)

Note that, for small distortions, the transfer matrix elements
for the single, double, and triple bonds in the ground state obey

ts,d,t = t0 − α(rs,d,t − r0) , (14)

where rs, rd, and rt are the lengths of the single, double, and
triple bonds in the unit cell, see Eq. (10).

C. Model parameters

Our model employs the following parameters: (i) The
electron transfer matrix element t0 for a single C–C bond
at distance r0 = 1.4 Å; (ii) the strength of the local Hubbard
interaction U ; (iii) the strength of the short-range Coulomb
interaction V ; (iv) the Peierls coupling α; (v) the spring
constants K and G. The model parameters are adjusted to
reproduce the single-particle gap Egap, the singlet exciton
energy ES, the energy of the triplet state ET, and the optical gap
in the triplet sector �t

opt, see Table I. Moreover, we estimate the
values for the spring constants from the energy of the phonon
replicas.

Of course, we cannot scan a five-dimensional parameter
space completely. Therefore, we have to restrict ourselves
to values which seem plausible, see Sec. V. The model
parameters investigated are summarized in Table III.

IV. METHOD

First, we outline our procedure to find the optimal lattice
structure. Next, we define the single-particle gap and describe
how we address excited in-gap states. Last, we remark on our
DMRG procedure and the extrapolation of our finite-size data
to the thermodynamic limit.

In this section and in the remainder of the paper, all energies
(t0,U,V ; Egap,�

s
opt,�st,�

t
opt) are given in eV, all lengths are

given in Å, and α is given in units of eV/Å.

TABLE III. Parameters of the Peierls–Hubbard-Ohno model.

Fixed Control
parameter Value parameter Range of values

εd 2.3 t0 2.0, . . . , 2.4 eV
K 44 eV/Å2 V 2, . . . , 3 eV
G 68 eV/Å2 U 5, . . . , 6 eV
r0 1.4 Å α 3.4, . . . , 3.6 eV/Å

245116-5



BARCZA, BARFORD, GEBHARD, AND LEGEZA PHYSICAL REVIEW B 87, 245116 (2013)

A. Optimization of the lattice structure

1. Procedure

The values for the electron transfer amplitude modulations
follow from minimization of the energy functional E
(δl) =
〈
|Ĥ |
〉 for the normalized state |
〉 which can be the ground
state or any excited state of Ĥ . The actual values for the
dimerization are obtained from the minimization of the energy
functional E
(δl) with respect to δl subject to the constraint

N−1∑
l=1

δl = 0. (15)

This reflects the fact that the total chain length should be fixed;
see below. The condition (15) is taken into account with the
help of the Lagrange multiplier 
.

According to the Hellmann–Feynman theorem,30 the neg-
ative derivatives of the energy functional with respect to δrl

define the force fields fl ,

− fl

2α
= − δl

2πt0λl

− 
 + Fl[δp], (16)

Fl[δp] = 1

2

〈∑
σ

(ĉ+
l,σ ĉl+1,σ + ĉ+

l+1,σ ĉl,σ )

〉

+ 1

2εd

N∑
i 	=j=1

βV/Å2

[1 + β(|�ri − �rj |/Å)2 ]3/2

×
[
xi,j

∂xi,j

∂δl

+ yi,j

∂yi,j

∂δl

]
〈(n̂i − 1)(n̂j − 1)〉,

(17)

where δp (p = 1, . . . ,N − 1) are the Peierls modulations of
the electron transfer amplitudes and xi,j = xi − xj , yi,j =
yi − yj .

For fixed bond angles, xl and yl are defined as xl = xl−1 +
rl cos(60◦) and yl = yl−1 − rl sin(60◦) for the bonds at an angle
of 120◦, and xl = xl−1 + rl and yl = yl−1 otherwise, with rl =
Rl − δl/(2α) from Eq. (10). The force fields fl are zero at the
optimal values δ

opt
l for a chosen state |
〉. Note that |
〉 is an

eigenstate of the electronic problem which is parameterized in
terms of δp. Therefore, the minimization of the force fields has
to be done self-consistently.18

(1) In step k of the iteration (k = 1,2, . . .), the target
eigenstate |
k〉, e.g., Gk , Sk , or Tk , is calculated for δk;l

using the infinite-lattice DMRG algorithm. In all our cases, the
initial choice δ1;l = 0 for l = 1, . . . ,N − 1 leads to converged
solutions.

(2) For given k and fixed quantum-mechanical expecta-
tion values in |
k〉, the distortion energies are determined
iteratively. To this end, the condition fl = 0 in Eq. (16)
is used to determine the distortion energies for the next
iteration, δn+1

k;l = 2πt0λl(−
n
k + Fl[δn

k;p]), (n � 0, δ0
k;l = δk;l).

Here, the Lagrange parameter follows from Eq. (15) as

n

k = ∑
l λlFl[δn

k;p]/
∑

l λl .
The distortion energies typically converge after some 5 to 15

iterations. The converged solution defines δk+1;l = limn→∞ δn
k;l

for the next iteration in k.
(3) Steps (i) and (ii) are repeated until a converged set

of distortion energies and DMRG energies for the states are
obtained, δl = limk→∞ δk;l , |
〉 = limk→∞ |
k〉.

Strictly speaking, the condition of a fixed chain length �c

corresponds to x2
1,N + y2

1,N = �2
c . We have verified numeri-

cally that the condition (15) preserves the chain length up to
0.1% for N � 100.

2. Polaronic energies

It is important to note that we optimize the lattice structure
and the corresponding distortion energies for each state
separately. Our excited states contain all polaronic energy con-
tributions, i.e., we give their relaxed energies. This polaronic
relaxation was not taken into account in our previous study.16

There, we studied rigid-lattice transitions with fixed electron
transfer amplitudes ts , td , and tt , which correspond to the Lewis
structure of Fig. 1. In general, they are higher in energy than
the corresponding relaxed excitations.

It is not a priori clear whether the relaxed or the rigid-
lattice energies should be compared to the experiment. For the
optical singlet excitation, no Stokes shift is observed between
absorption and fluorescence spectra3 so that, in the Franck-
Condon picture, the exciton creation process corresponds to a
vertical transition.

To estimate the polaronic contribution to the energy, we
calculate the energy of excited states in the rigid-lattice
approximation for our optimal parameter set, see Sec. VI.
For (t∗0 = 2.4 eV,α∗ = 3.4 eV/Å,U ∗ = 6 eV,V ∗ = 3 eV), the
relaxed energy of the single-particle gap is Erelaxed

gap = 2.45 eV
whereas the energy of a single-particle excitation with fixed
electron transfer matrix elements tG

s , tG
d , and tG

t leads to
E

rigid
gap = 2.47 eV, see Table I. Thus, the energy relaxation due

to the polaron formation amounts to about δpolaron = 0.02 eV.
In the band picture, the singlet exciton is a bound state of
particle-hole excitations. Correspondingly, the polaronic shift
in ES should be about twice as large as δpolaron, as indeed
observed, Erelaxed

S = 2.00 eV and E
rigid
S = 2.05 eV, so that

E
rigid
S − Erelaxed

S = 0.05 eV ≈ 2δpolaron.
The same amount of polaronic relaxation energy is observed

for the singlet-triplet gap, E
rigid
T − Erelaxed

T = 0.06 eV. When
we start from the relaxed triplet ground state, we find for
the optically excited state T∗ that E

rigid
T∗ = 1.28 eV whereas

Erelaxed
T∗ = 1.25 eV. It is seen that the polaronic relaxation

energy amounts to about δpolaron also in the triplet sector.
Our observation of a fairly small polaronic relaxation

energy ties in with the fact that our electron-lattice coupling
is small, λl < 0.1, and the adiabatic approximation is valid.
In our comparison with the experiment below, we show the
energies for transitions between lattice-relaxed configurations.

B. Single-particle gap and in-gap excitations

The band gap or single-particle gap Egap is defined by the
difference in chemical potentials for a system with Ne and
Ne − 1 particles,

Egap = μ(Ne) − μ(Ne − 1),
(18)

μ(Ne) = EG(Ne + 1) − EG(Ne),

where EG(Ne) is the energy of the Ne-particle ground state G.
In the presence of particle-hole symmetry at half band-filling,
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we have

Egap = 2μ(Ne) (19)

for the minimal energy of a single-particle excitation.
In polydiacetylenes, the singlet exciton and its vibronic

replicas carry most of the oscillator strength of the optical
excitations. The quadratic Stark effect in the electroabsorption
proves that they are bound states of electron-hole excitations.31

The exciton energy thus defines the optical gap

�s
opt = ES(Ne = N ) − EG(Ne = N ), (20)

where ES(Ne = N ) is the energy of the first excited state of
the half-filled system with symmetry Bu. The binding energy
of the exciton is then obtained as

�s
ex = Egap − ES. (21)

Note that we calculate for finite-size systems so that all
quantities must be extrapolated into the thermodynamic limit
N → ∞.

For a full account of all in-gap states, we target up to
five states simultaneously in the spin-singlet and spin-triplet
sectors, respectively. Note that the lattice relaxation must be
done for each state separately. These calculations represent the
most time consuming part of our investigations.

C. Numerical procedure

In this work we present results from numerical density
matrix renormalization group (DMRG)15 calculations on
finite chains with open boundary condition (OBC) using an
adopted version used previously.16 The discarded weight was
kept below η = 10−6 for all calculations by employing the
dynamical block-state selection (DBSS) procedure.32,33 We
have set the minimum number of block states to Mmin = 400
and used three sweeps. The maximum value of the number of
block states varied around Mmax = 600. As benchmarks we
compared our DMRG energies for some selected parameter
values with those from a DMRG code used earlier by Race,
Barford, and Bursill.18 This last one, however, only uses the
infinite-lattice procedure so that our variational energies are
always slightly lower.

The ground state as well as all excited states have been
targeted and relaxed individually using k = 5 to 15 relaxation
iteration steps to reach the preset convergence criterion on
δl . Note that each relaxation iteration step requires a full
DMRG run with three sweeps. The whole relaxation procedure
has been performed for all target states and for all chain
lengths independently from N = 6 up to N = 66, in steps of
�N = 4. For our optimized parameter set we have performed
calculations for up to N = 102 sites.

The spin multiplicity of the converged target states was
calculated from the expectation value of the operator for the
total spin Ŝ2, employing the expectation values of the corre-
sponding correlation functions.34 To determine the optically
dark in-gap singlet states we have shifted the energies of the
triplet states out of the gap by adding the term

∑
ij S−

i S+
j to

the Hamiltonian. As an alternative procedure, we have also
identified the exciton states by calculating the dipole strength
as introduced in Ref. 16 in which the reduced density matrix

of the target state was constructed from the reduced density
matrices of the ten lowest eigenstates.

For the 81 parameter points of the four-dimensional
search space (t0,α,U,V ) and for the energies of the states
(G,S,Egap,T ,T ∗,Xl,Yl) shown in Fig. 2, we have taken on
average k = 10 relaxation steps for the 16 to 24 different
chain lengths for single and multiple target states which results
in about 130 000 full DMRG runs. We estimate that the
calculations consumed overall about 45 CPU years which were
provided by 100 parallelized CPUs so that the calculations took
some five months in real time.

The PDA are charge and spin insulators, i.e., the gaps for
single-particle, optical, and magnetic excitations are finite.
The materials are characterized by finite correlation lengths.
Therefore, end effects decay exponentially, and local operators
that are calculated in the middle of the chain display a regular
behavior as a function of inverse system size. Thus, various
quantities that we calculate for finite chain lengths N can be
extrapolated reliably to the thermodynamic limit N → ∞ by
using a second-order polynomial fit.

As an example, in Fig. 3 we show the charge gap
calculated for t0 = 2.4, α = 3.4 eV/Å, U = 6 eV, and V =
2.0,2.5,3.0 eV, as a function of 1/N . As seen from the figure,
the second-order polynomial fits permit a reliable extrapola-
tion, but the quadratic curvature becomes dominant for N � 50
only. Therefore, a study of long chains is mandatory. The
appearance of the inflection point at sizable chain lengths is
more pronounced for the gap states than for the single-particle
gap. An example, the optical gap, is shown in Fig. 4.

In Figs. 5 and 6 we show finite-size results for the
triplet ground-state energy ET (singlet-triplet gap �st) and
for the optical gap in the triplet sector �t

opt = ET∗ − ET,
respectively, for t0 = 2.4 eV, α = 3.4 eV/Å, U = 6 eV, V =
2.0,2.5,3.0 eV. The ground-state energy ET in the triplet sector
rapidly converges as a function of inverse system size 1/N

because the state is deep in the gap. The energy ET∗ of
its optical excitation T∗ is close to the threshold Egap for
single-particle excitations so that long chains must be studied
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FIG. 3. (Color online) Finite-size scaling of the charge gap
Egap, calculated for t0 = 2.4 eV, α = 3.4 eV/Å, U = 6 eV, V =
2.0,2.5,3.0 eV, and 14 � N � 66 sites. The lines are quadratic fits.
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FIG. 4. (Color online) Finite-size scaling of the singlet exciton
energy ES (optical gap �s

opt), calculated for t0 = 2.4 eV, α =
3.4 eV/Å, U = 6 eV, V = 2.0,2.5,3.0 eV, and 10 � N � 66 sites.
The lines are quadratic fits.

for a reliable extrapolation to the thermodynamic limit. For the
scan of our parameter regime as specified in the next section,
we limit ourselves to chains of length N � 66. The accuracy
of the extrapolation is better than δE = 0.05 eV.

Before we detail our optimization of the parameter set in
Sec. VI A, we show in Fig. 7 the finite-size scaling of all four
gaps for our optimal choice of parameters (t∗0 = 2.4 eV,α∗ =
3.4 eV/Å,U ∗ = 6 eV,V ∗ = 3 eV) for which we investigate
chains with up to N = 102 sites. As can be seen from Fig. 7,
the finite-size extrapolation can be done very accurately with
an uncertainty of δE � 0.01 eV. The extrapolated values are
Egap = 2.45 eV, �s

opt = 2.00 eV, �st = 1.00 eV, and �t
opt =

1.25 eV, see also Table I.
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FIG. 5. (Color online) Finite-size scaling of the triplet ground-
state energy ET (singlet-triplet gap �st), calculated for t0 = 2.4 eV,
α = 3.4 eV/Å, U = 6 eV, V = 2.0,2.5,3.0 eV, and 10 � N � 66
sites. The lines are quadratic fits.
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FIG. 6. (Color online) Finite-size scaling of the optical gap in
the triplet sector �t

opt = ET∗ − ET, calculated for t0 = 2.4 eV, α =
3.4 eV/Å, U = 6 eV, V = 2.0,2.5,3.0 eV, and 14 � N � 66 sites.
The lines are quadratic fits.

V. PARAMETER REGIME

Before we present our results in Sec. VI, we give arguments
for the parameter regime used in our study, as summarized in
Table III.

A. Spring constants

At first sight, it seems to be easy to obtain the spring
constants K and G because they can be inferred from
Raman scattering data for short molecules. Unfortunately,
the influence of the delocalized π electrons appears to be
crucial. For example, early Raman experiments in ethane,35

H3C−CH3, give Ke
σ = 31 eV/Å2 whereas for the single-bond

in diacetylene,36 HC ≡C − C≡ CH, Kda
σ = 45 eV/Å2 is found.

In polymers, the situation is equally ambiguous because the
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FIG. 7. (Color online) Finite-size scaling of (a) the charge gap
Egap, (b) the optical gap �s

opt, (c) the singlet triplet gap �st, and (d)
the optical gap in the triplet sector �t

opt, calculated for the optimal
parameter set (t∗

0 = 2.4 eV, α∗ = 3.4 eV/Å, U ∗ = 6 eV, V ∗ = 3 eV),
and N � 102 sites. The lines are quadratic fits. The extrapolated
values are summarized in Table I.
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theoretical analysis of the same Raman data for polyacetylene
leads to the same set of concurring values37 KPA,1

σ = 31 eV/Å2

and KPA,2
σ = 46 eV/Å2 (Ref. 29). In the present work, we

investigate the consequences of a strong spring constant for
the σ bond, K > 40 eV/Å2. We plan to present a detailed
study of the vibrational properties in the near future.

To estimate K (and G), we calculate the optical phonon
spectrum from a simple classical model. The carbon atoms of
mass M = 12u in the Lewis structure of Fig. 1 are linked by
spring constants of strength K and G = gK in the sequence
(G,K,K,K) in the unit cell, corresponding to the σ -py

bond and the three σ bonds. The optical phonons for two-
dimensional vibrations of the chain are derived in Appendix B.
There are four positive solutions of the characteristic equation
for the phonon frequencies, ωa < ωb = √

2K/M < ωc < ωd ,
where ωb is the resonance frequency of two carbon atoms
linked by the spring constant K (Ref. 29). The frequencies
ωa,c,d are obtained from the zeros of the third-order polynomial

p(y) = y3 − 2(g + 2)y2 + (7/2 + 6g)y − 3g (22)

as ωa,c,d = √
ya,c,dK/M , p(ya,c,d ) = 0.

In comparison with the experiment, see Sec. II B2,
we assign ωd (g) = ωT and ωc(g) = ωD. From (ωT/ωD)2 =
(0.261/0.181)2 = 2.079 we find g0 = 1.547, yd (g0) = 4.463,
yc(g0) = 2.147, and ya(g0) = 0.4845. From yc(g0) =
Mω2

D/K we obtain K = 44.1 eV/Å2 which agrees with results
obtained for polyacetylene chains,29 KPA,2

σ = 46 eV/Å2. In
addition, we find G = gK = 68.3 eV/Å2 for the σ -py bond.
For comparison, the spring constant in ethene (ethylene) was
derived as Keth

σ−py
= 60 eV/Å2 (Ref. 38).

The other two optical phonons have the energies h̄ωb =
h̄
√

2K/M = 0.175 eV, and h̄ωa = h̄
√

K/M
√

ya(g0) =
0.086 eV, respectively. These values are in good agreement
with the experiment, h̄ωb ≈ h̄ωD∗ = 0.155 eV, and
h̄ωa ≈ h̄ωS = 0.090 eV, see Sec. II B2. Note that we
use experimental data for comparison which include the
influence of the π electrons whereas for our model calculations
we employ bare values for the backbone. The influence of the
itinerant π electrons must be calculated self-consistently so
that the values for K and G need further refinement. This task
is left for a future study.

B. Electron-phonon coupling

Next, we discuss the bare band structure for noninteracting
electrons and estimate the size of the electron-phonon coupling
constant α.

1. Bare band structure

The bare band structure for the ground state with filled
valence bands with energies Ev,2(k) = −ε2(k) and Ev,1(k) =
−ε1(k) and empty conduction bands with energies Ec,1(k) =
ε1(k) and Ec,2(k) = ε2(k) is derived in Appendix C, see
Eq. (C8). The bare gap is given by �bare = 2ε1(k = 0). The
Coulomb interaction enhances all gaps13 so that the singlet-
triplet gap �st = ET − EG ≈ 1 eV will be larger than �bare.
Therefore, the size of the bare band gap constrains the possible
values for the electron-phonon coupling.

In the absence of Coulomb interactions, the values for ts, td,
and tt must be determined from the minimization of the total

ground-state energy per unit cell

etot(δd,δt ) = ekin(δd,δt ) + epot(δd,δt ),
(23)

epot(δd,δt ) = 1

4πt0λ

(
δ2

d + gδ2
t + 1

2
(δt + δd)2

)
,

where g = G/K and λ = 2α2/(πt0K). The kinetic energy of
the electrons is given by

ekin(δd,δt ) = −2
∫ π

−π

dk

2π
[ε1(k) + ε2(k)] , (24)

where the factor of 2 accounts for the spin degeneracy.
The electron transfer matrix elements ts,d,t and the distortion

corrections δs,d,t are related by ts = t0 − (δt + δd)/4, td =
t0 + δd/2, and tt = t0 + δt/2 + δe/2. Here, we used the fact
that 2δs + δd + δt = 0 because the length of the unit cell is
not changed by the intrinsic distortion. The strength of the
extrinsic dimerization δe follows from the solution of Eq. (A6)
of Appendix A for U = V = 0,

δe(U = V = 0)

πt0λ
= −8T1(δe)

2ε0(δe)
= 8T1(δe)

4T1(δe)
= 2 (25)

so that δe(U = V = 0) = 4α2/K .
The numerical minimization of etot(δd,δt), Eq. (23), leads

to the somewhat surprising result that the bare gap �bare(t0,α)
very weakly depends on t0. For α = 3.5 eV/Å, K =
44 eV/Å2, and G = 68 eV/Å2, we find that �bare(2,3.5) =
0.878 eV and �bare(2.4,3.5) = 0.835 eV; it even decreases
slightly with increasing t0. In contrast, the bare band gap
strongly increases as a function of α. For t0 = 2.4 eV,
K = 44 eV/Å2, and G = 68 eV/Å2, we find �bare(2.4,3.4) =
0.776 eV and �bare(2.4,3.6) = 0.897 eV. The bare band gap
becomes larger than �st = 1 eV for t0 = 2.4 eV and α =
3.8 eV/Å. Therefore, we must use smaller values for α as
derived and used previously.18,29

2. Intrinsic and extrinsic Peierls distortion

In polyacetylene (PA), the mobile π electrons dimerize the
chain. This intrinsic Peierls effect results in a measured bond
length alternation of �r = 0.04 Å, i.e., the long and short
bonds of length rPA

s = 1.44 Å and rPA
d = 1.36 Å alternate along

the chain.39 Almost the same amount of alternation in rs and
rd is seen in PDA, see Sec. II A2. Previous DMRG studies18

lead to �r = 0.03 Å.
When we assume that the intrinsic Peierls effect affects the

triple bond in the same way as the double bond, we come to
the conclusion that the length R1 of the σ -py bond before the
intrinsic dimerization is R1 ≈ 1.25 Å assuming rt = 1.21 Å.
Therefore, the extrinsic dimerization due to the py bond
accounts for r0 − R1 = δe/(2α) = 0.15 Å. For noninteracting
electrons, we have δe(U = V = 0) = 4α2/K , independent of
t0. Thus, we arrive at the estimate α ≈ 0.15Å(K/2) which
gives α ≈ 3.3 eV/Å for K = 44 eV/Å2.

Even in the presence of Coulomb interactions, the cal-
culation of δe is simple because it requires the solution
of a two-site problem only, see Appendix A. Therefore, a
complete parameter scan is readily accomplished. As we
shall argue below, the on-site Coulomb repulsion U is quite
substantial. Therefore, in Fig. 8 we show parameter regions in
(t0,α,V ) for U = 6 eV that correspond to δe/(2α) = 0.15 Å.
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FIG. 8. (Color online) Regions in the parameter space t0-V which
lead to R1 = 1.25 Å for U = 6 eV. The color coding gives the
appropriate value for α.

As compared to noninteracting electrons, the electron-phonon
coupling α has to be increased by some 10% to generate the
same extrinsic Peierls dimerization for the interacting two-site
system. This indicates that the Coulomb interaction makes the
bonds noticeably stiffer. To account for this effect, our spring
constant K from Sec. V A should be reduced by at least 10%;
a more thorough scan for the K parameter will be done in a
future study.

Figure 8 shows that the dependence on t0 and V is rather
weak: it is mostly the Peierls coupling α that determines the
size of the bond length shift. From the data in Fig. 8 we
conclude that α ≈ (3.5 ± 0.1) eV/Å is a reasonable starting
point, whereby we compensate our somewhat too large spring
constant K .

C. Coulomb parameters

Previous studies10,11,16,18 succeeded to reproduce the charge
gap and the energy of the singlet exciton. However, the
complexity of the in-gap states could not be recovered. In
particular, the splitting �st of the singlet and triplet ground
states cannot be reproduced as it comes out substantially too
high. Moreover, in previous approaches no dark singlet states
have been found that lie energetically below the singlet exciton.

The energetic positions of the states T and X1,2 are a clear
signal of substantial electronic correlations induced by the
Hubbard interaction U . Our initial calculations with small
ratios U/V put T and X1,2 too high in energy as compared
to the experiment.40 As we shall show in the next section,
we find a reasonably good description of the level scheme in
Fig. 2 only for substantial U and comparably small V , 5 eV �
U � 6 eV and 2 eV � V � 3 eV, as indicated in Table III, so
that U/V = κ ≈ 2 holds. Note that we included the dielectric
constant εd explicitly in the Ohno potential (6) because we
treat chains immersed in their monomer matrix.

Substantial values for the Coulomb interaction were ad-
vanced by Chandross and Mazumdar20 as a result of their
model study of poly-phenylene-vinylene (PPV) thin films.
To describe the linear and nonlinear optical properties of

PPV, they proposed UCM = 8 eV with UCM/VCM = κ = 2
(Refs. 20 and 41). Note, however, that these authors worked
with fixed lattice parameters, i.e., without lattice relaxations
for the excitations, and employed an approximation (single
configuration interaction, SCI) to calculate optical excitations.

The bare bandwidth in our calculations is W ≈ 4t0 � 9 eV
which still is larger than the on-site interaction. Therefore,
the system is still far from the spin-Peierls limit. At the same
time, however, the correlations are strong enough to impede
weak-coupling approaches.13

VI. RESULTS

First, we scan our parameter space and determine our best
parameter set (t0,α,U,V ). Next, we analyze the energy levels
of optically dark in-gap states and comment on the lattice
parameters.

A. Optimization of the parameter set

For each choice of the parameter set (t0,α,U,V ), we
calculate the ground-state energies at half band-filling and one
additional particle, and the energy of the three excited state
S, T, and T∗ at half band-filling from which we determine
the four gaps Egap, �s

opt, �st, and �t
opt for systems with size

10 � N � 66. The lattice geometry of all states is relaxed, see
Sec. IV. We performed calculations for (t0,α,U,V ) for a broad
range of parameters using small system sizes up to N = 30
sites. For the optimal range (t0 = 2.0,2.2,2.3,2.4 eV, α =
3.4,3.5,3.6 eV/Å, U = 5.0,5.5,6.0 eV, V = 2.0,2.5,3.0 eV)
we investigated systems with up to N = 66 sites, i.e., we
address altogether 108 different parameter sets.

As an example, in Fig. 9 we show the extrapolated energies
for fixed (t0 = 2.4 eV, U = 6.0 eV), as a function of V =
2.0,2.5,3.0 eV for the three parameters α = 3.4,3.5,3.6 eV/Å.
As expected for our small parameter window, we observe a
fairly linear dependence of the gaps on the parameters V and
α. It is seen that not all the gaps can be reproduced perfectly
with a single parameter set. In general, for fixed (t0,U ), the
optical gap in the triplet sector, �t

opt = ET∗ − ET requires
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FIG. 9. (Color online) Extrapolated energies as a function of V

for α = 3.4,3.5,3.6 eV/Å for fixed (t0 = 2.4 eV,U = 6.0 eV). The
horizontal lines give the experimental results for 3BCMU (green
dashed line) and 4BCMU (black dotted line).
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TABLE IV. Spread σ as a function of (t0,α,U ) for 3BCMU where
the experimentally observed gaps are given by Egap = 2.482 eV,
�s

opt = 1.896 eV, �st = 1.0 eV, and �t
opt = 1.360 eV. The three best

sets (t0,α,U ) are printed in bold.

t0/eV

2.0 2.2 2.4

U = 5.0 eV
α = 3.4 eV/Å 1.96 2.79 3.22
α = 3.5 eV/Å 1.68 3.12 3.67
α = 3.6 eV/Å 2.66 3.63 4.11

U = 5.5 eV
α = 3.4 eV/Å 1.91 1.63 2.28
α = 3.5 eV/Å 1.96 2.14 2.85
α = 3.6 eV/Å 2.53 2.63 3.37

U = 6.0 eV
α = 3.4 eV/Å 14.07 1.95 1.55
α = 3.5 eV/Å 3.56 2.06 2.11
α = 3.6 eV/Å 3.59 2.91 3.67

larger values for (α,V ) than the other gaps. Therefore, we
have to compromise to find a good parameter set.

To this end, we define V ∗
i as the value V for a given (t0,α,U )

which reproduces the experimental gaps i (i = 1,2,3,4 for
Egap, �s

opt, �st, �t
opt) for 3BCMU and 4BCMU from Table I.

Then, we calculate the joint standard deviation σ (t0,α,U ) from

[σ (t0,α,U )]2 = 1

6

∑
i>j

[(V ∗
i − V ∗

j )/eV]2. (26)

The optimal parameter set minimizes the spread σ . The results
for σ (t0,α,U ) are shown in Table IV for 3BCMU and for
4BCMU in Table V, respectively.

Tables IV and V indicate that the best set for both 3BCMU
and 4BCMU is (t0 = 2.4 eV,α = 3.4 eV/Å,U = 6 eV). Then,
a look at Fig. 9 shows that V = 3 eV is the best value for which
we have data available. Therefore, we shall use the set (t∗0 =
2.4 eV,α∗ = 3.4 eV/Å,U ∗ = 6 eV,V ∗ = 3 eV) as our optimal

TABLE V. Spread σ as a function of (t0,α,U ) for 4BCMU where
the experimentally observed gaps are given by Egap = 2.378 eV,
�s

opt = 1.810 eV, �st = 0.95 eV, and �t
opt = 1.345 eV. The three best

sets (t0,α,U ) are printed in bold.

t0/eV

2.0 2.2 2.4

U = 5.0 eV
α = 3.4 eV/Å 2.42 3.19 3.66
α = 3.5 eV/Å 2.30 3.65 4.16
α = 3.6 eV/Å 3.36 4.17 4.58

U = 5.5 eV
α = 3.4 eV/Å 2.85 2.31 2.91
α = 3.5 eV/Å 2.67 2.87 3.45
α = 3.6 eV/Å 3.37 3.34 3.96

U = 6.0 eV
α = 3.4 eV/Å 17.89 2.51 2.15
α = 3.5 eV/Å 3.96 2.56 2.68
α = 3.6 eV/Å 4.07 3.64 5.12

parameter set. The trend shows that α might even be a bit
smaller, α � 3.4 eV/Å, and t0 a bit larger, t0 � 2.4 eV, for the
optimal case. We plan to perform a more systematic estimate
for the optimal parameter set in the near future.

For our optimal parameter set (t∗0 = 2.4 eV, α∗ =
3.4 eV/Å, U ∗ = 6 eV, V ∗ = 3 eV), the corresponding theo-
retical values for the excitation energies are Egap = 2.45 eV,
�s

opt = 2.00 eV, �st = 1.00 eV, and �t
opt = 1.25 eV. They are

also given in Table I.

B. Optically dark in-gap triplet states

In the triplet sector, we find a series of optically dark states
Yl (l = 1,2,3,4) at energies just above the triplet ground state.
As indicated in Fig. 2, the optically dark triplet states Yl open
decay channels for the states X1 and X2.

The structure of the optically dark in-gap triplet states is
also interesting from a theoretical point of view. In a band
picture, the triplet ground state with spin component Sz = 1
consists of a hole in the ↓ valence band and an electron in the
↑ conduction band, both at momentum k = 0. Close in energy
are the corresponding excitations at finite but small momentum
k. The dispersion of these excitations is quadratic as a function
of k.

In the interacting case, these excitations may form a spin-
flip density wave with momentum q whose dispersion relation
at low energy is given by

εsf(q) = csfq, (27)

where csf is the (sound) velocity. For finite chains, we
have quantized quasimomenta ql = πl/[(N/4 + 1)d] (l =
1,2, . . .), where d is the length of the unit cell. Therefore,
the levels Yl should obey

EYl
− ET = εsf(ql) + αl

N2
+ · · · , (28)(

N

4
+ 1

)
(EYl

− ET) = csf
lπ

d
+ αl

N
+ · · · . (29)

We confirm this hypothesis in Fig. 10 where we show
(N/4 + 1)(EYl

− ET) as a function of 1/N . As seen from the
figure, the energy differences scale to a finite value linearly
in 1/N . Moreover, the extrapolated values are equidistant
from which we can read off �sf ≡ csfπ/d = 0.625 meV.
Using d = 4.9 Å we thus estimate the velocity for the spin-
flip density excitations as csf = 148 m/s. For localized spin
models, we have cJ ≈ J (d/4) so that, approximating cJ ≈ csf ,
the effective magnetic interaction in our system is of the order
of 1 meV, J ≈ (4/π )�sf = 0.8 meV.

C. Optically dark in-gap singlet states

In Fig. 11(a) we show the (relaxed) excitation energies for
the four energetically lowest singlet states as a function of 1/N

for (t∗0 = 2.4 eV,α∗ = 3.4 eV/Å,U ∗ = 6 eV,V ∗ = 3 eV). For
our optimal parameter set, there are at least three optically
dark singlet states below the singlet exciton. We extrapolate
EX1 = 1.744 eV which is about 0.25 eV higher than esti-
mated from experiment, see Table I. This indicates that the
local correlations could still be larger than U = 6 eV. Note,
however, that the absolute positions of X1 and X2 have not
been determined experimentally for nBCMU, but it is known
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FIG. 10. (Color online) Scaled excitation energies of the first
four triplet states, Dl = (N/4 + 1)(EYl

− ET), as a function of
inverse system size 1/N for 10 � N � 78 and (t∗

0 = 2.4 eV,α∗ =
3.4 eV,U ∗ = 6 eV,V ∗ = 3 eV). The crossings of the ordinate are
equidistant, D1 = 0.637 meV, D2 = 1.235 meV, D3 = 1.851 meV,
and D4 = 2.548 meV, indicating a linear dispersion relation for the
excitations.

from pump-probe spectroscopy3 that there are (at least) two
optically dark singlet states below the singlet exciton.

The next two dark in-gap singlets are almost degenerate in
energy, EX2a = 1.853 eV and EX2b = 1.863 eV. They lie below
the singlet exciton, as seen in the experiment, but about 0.15 eV
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FIG. 11. (Color online) (a) Energies of the lowest singlet states
as a function of inverse system size 1/N for 10 � N � 78 for (t∗

0 =
2.4 eV,α∗ = 3.4 eV,U ∗ = 6 eV,V ∗ = 3 eV). After the extrapolation,
the states X2a and X2b are essentially degenerate, EX1 = 1.744 eV,
EX2a

= 1.853 eV, EX2b
= 1.863 eV, and ES = 1.995 eV. The hori-

zontal dashed line gives the value for the charge gap in 3BCMU.
(b) Overlap intensity of the dipole operator for spin-singlet in-gap
states after the extrinsic and the intrinsic relaxation for N = 46 sites.

higher than estimated in Table I. Figure 11(b) shows the dipole
overlap16 for the four singlet states X1, X2a , X2b, and S at chain
length N = 46. Only the exciton S has a finite dipole overlap.
Note the energy shift of all in-gap states due to the intrinsic
Peierls effect. The Peierls shift amounts to several tenths of an
electron volt.

As in the triplet sector, we employ the band picture at
fixed particle number to view the elementary excitations of the
ground state as a hole in the valence band and an electron in the
conduction band. In a Wannier picture, the electron-electron
interaction forms bound states from these pairs, such as X1,
the lowest-lying Ag singlet, and S, the singlet exciton with
Bu symmetry. Apart from these bound states, there should
be a continuum of scattering states. The degeneracy of the
states X2a and X2b indicates that they are near the threshold
to the X continuum. Indeed, two-photon absorption above
Ef ≈ 2.0 eV excites states that can fission into two triplets.3

Unfortunately, it takes a significant amount of CPU time in
our DMRG approach to target more than four in-gap singlet
states simultaneously so that a more detailed investigation of
the in-gap spectrum remains an open problem.

D. Lattice parameters

Finally, we show results for the lattice constants in Fig. 12.
For our optimal set of parameters, the extrapolated values are
rs = 1.425 Å, rd = 1.373 Å, and rt = 1.239 Å, for the single,
double, and triple bonds, respectively. When compared to the
experimental values for PDA single crystals given in Sec. II A,
the values for the single and double bonds are rather good but
the triple bond is too large. This can also be seen from the size
of the unit cell. Given the Lewis structure of Fig. 1, the unit
cell in chain direction has the length d with d2 = r2

d + (2rs +
rt)2 − 2rd(2rs + rt) cos(ϕ1). Using ϕ1 = 120◦, this results in
d = 4.92 Å which is slightly larger than the experimental
values for 3BCMU chains, d3BCMU = 4.89 Å (Ref. 3).
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FIG. 12. (Color online) Atomic distances rs, rd, and rt for the
single, double, and triple bonds in the chain center as function
of inverse system size 1/N for 6 � N � 66 for (t0 = 2.4 eV,α =
3.4 eV/Å,U = 6 eV), and V = 2.0,2.5,3.0 eV. The extrapolated
values for the best parameter set (V = 3 eV) are rs = 1.425 Å,
rd = 1.373 Å, and rt = 1.239 Å.
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The comparison shows that the spring constants K and G

are too large and/or the electron-phonon coupling constant α

is too small. Consequently, the spring constants K , G should
be included as parameters in the optimization procedure.

VII. CONCLUSION

A. Parameter values

In our study we use quite sizable values for the Coulomb
parameters. Substantial values for the Hubbard interaction,
UCM = 8 eV, were used by Chandross et al. in their studies of
the optical properties of poly-phenylene-vinylene (PPV) thin
films.20 For PDA chains immersed in their monomer matrix,
we find U = 6 eV and confirm their previous result for the ratio
between U and V , UCM/VCM = κ = U/V = 2 (Refs. 20 and
41). Note that we additionally screen the long-range part of the
Coulomb interaction by the dielectric constant of the monomer
matrix, εd = 2.3. A further increase of the Hubbard interaction
beyond U = 6 eV would be problematic, as can be seen from
Fig. 13(a). For fixed t0 and α, the spread of the gaps increases
with increasing U . In particular, the calculated singlet-exciton
energy would deviate significantly from its experimental value.
Moreover, the number of dark singlet states below the exciton
would become larger than expected from experiment.

For fixed t0 = 2.4 eV and U = 6 eV, a change from α =
3.4 eV/Å would increase the spread in the gaps, as can be seen
from Fig. 13(b). Therefore, we advocate an electron-phonon
coupling strength which is some 15% smaller than the value
proposed by Ehrenfreund et al. αE = 4.0 eV/Å (Ref. 29).

In the literature, typical values for the electron transfer
integral are t0 = 2.5 eV (Refs. 28 and 37) and t0 = 2.4 eV
(Refs. 20 and 41). Our work indicates that a readjustment of
the bare electron transfer integral is not necessary for nBCMU.
This can be seen from Fig. 13(c), where the spread of Vi

increases for both smaller and larger t0.

5 5.5 6
0

2

4

6

8

U

V
*

3.4 3.5 3.6
0

2

4

6

8

α

V
*

2 2.2 2.4
0

2

4

6

8

t
0

V
*

 

 

Egap Δst Δs
opt Δt

opt

t0=2.4 α=3.4 t0=2.4 U=6 α=3.4 U=6

(a) (b) (c)

FIG. 13. (Color online) Optimal values V ∗
i for the four gaps Egap,

�s
opt, �st, and �t

opt (a) as a function of U for t0 = 2.4 eV and α =
3.4 eV/Å, (b) as a function of α for t0 = 2.4 eV and U = 6 eV, and
(c) as a function of t0 for U = 6 eV and α = 3.4 eV/Å.

B. Outlook

Our study can be extended in several directions. First, the
strength of the spring constants K and G must be determined
self-consistently. In this way, a better agreement between
theory and experiment for the lattice parameters can be
obtained.

Second, the parameter search in the four-dimensional
space (t0,α,U,V ) can be optimized by performing a smooth
interpolation between the 81 data sets which we have inves-
tigated numerically thus far. Moreover, the present analysis
does not distinguish between various ligand types (3BCMU,
4BCMU). The differences are partly due to strain, and a
distinction between PDA must therefore be incorporated in the
lattice parameters. In addition, different side groups introduce
(small) electrostatic potential at the carbon atoms which are
linked to the side groups. Our numerical analysis shows that
the influence of an electrostatic potential of the order of
εi � 0.3 eV at the side-group sites changes the spectra by
δE � 0.05 eV so that this contribution can be ignored to first
approximation.

Third, for an optimal parameter set it is interesting to
study the properties of the ground and excited states in
more detail. For example, the lattice structure of the exciton
(polaron-exciton) and its polarizability can be calculated16,42

and be compared with the experiment. Moreover, further
in-gap states should be address, e.g., the spin-2 ground state
15Ag , or a second singlet exciton 21B−

u .
These tasks are left for a future study.
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APPENDIX A: EXTRINSIC DIMERIZATION

Following the authors of Ref. 18, we diagonalize the two-
site Peierls–Hubbard-Ohno model in the spin singlet sector to
derive the ground-state energy. To this end we consider the
two states in site representation

|1〉 =
√

1

2
(ĉ+

1,↑ĉ+
2,↓ − ĉ+

1,↓ĉ+
2,↑)|vac〉,

|2〉 =
√

1

2
(ĉ+

1,↑ĉ+
1,↓ + ĉ+

2,↑ĉ+
2,↓)|vac〉.

In the subspace S = 0, the Hamilton matrix of the electronic
problem has the entries (He)i,j = 〈i|Ĥe|j 〉 (i,j = 1,2). A short
calculation gives

He =
(

−U/2 −2T1(δe)

−2T1(δe) U/2 − V (δe)

)
, (A1)
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where

V (δe) = V/εd√
1 + β(R1(δe)/Å)2

,

(A2)

R1(δe) = r0 − δe

2α
, T1(δe) = t0 + δe

2
.

R1(δe) is the length of the σ -py double bond, T1(δe) is the
corresponding electron transfer amplitude, U is the strength
of the electrons’ local Coulomb repulsion, and V (δe) is their
interaction on neighboring sites. Note that in Ref. 18, the
unshifted energies were used, i.e., the previous expressions
follow from ours after an energy shift by U/2 + V (δe).

The ground-state energy ε0 of the two-electron system
follows from the diagonalization of the matrix (A1) as

ε0(δe) = − 1
2 (V (δe) +

√
[U − V (δe)]2 + [4T1(δe)]2). (A3)

Now that we know the ground-state energy of the electronic
Hamiltonian explicitly, we do not have to invoke the Hellmann-
Feynman theorem to determine the optimal values for the
electron transfer amplitudes δe. Instead, we directly minimize
the total ground-state energy

E0(δe) = ε0(δe) + (δe)2

4πt0λ
(A4)

with respect to δe [λ = 2α2/(πKt0)]. We set

V ′(δe) = ∂V (δe)

∂δe
= VβR1(δe)

2αεdÅ2

1

{1 + β[R1(δe)/Å]2}3/2
.

(A5)

Therefore, the optimization of the electron-lattice problem for
two carbon atoms with a double bond leads to the implicit
equation

δe

πt0λ
= [2ε0(δe) + U ]V ′(δe) − 8T1(δe)

2ε0(δe) + V (δe)
, (A6)

which is solved iteratively.

APPENDIX B: OPTICAL PHONONS

Assuming the Lewis structure of Fig. 1, the position of the
atoms in the unit cell are denoted by the two-dimensional
vectors �Al , �Bl , �Cl , and �Dl for l = 1, . . . ,L = N/4. Their
equilibrium positions are denoted as �Al,0, �Bl,0, �Cl,0, and
�Dl,0. The PDA structure implies �Bl,0 − �Al,0 = �Dl,0 − �Cl,0 =
rs�ex , �Cl,0 − �Bl,0 = rt�ex , and �Al+1,0 − �Dl,0 = rd[cos(φ)�ex −
sin(φ)�ey] for the singlet, triplet, and doublet bonds, where
φ = 180◦ − ϕ1 = 60◦.

1. Lagrange function

We shall treat the atomic motions classically. For conve-
nience, we use periodic boundary conditions L + 1 ≡ 1.

The kinetic energy of the atoms is given by

T = M

2

L∑
l=1

[( �̇Al)
2 + ( �̇Bl)

2 + ( �̇Cl)
2 + ( �̇Dl)

2]. (B1)

In the spring-constant model, the atoms’ potential energy is
approximated by (g = G/K)

V = K

2

L∑
l=1

[(| �Bl − �Al| − rs)
2 + g(| �Cl − �Bl| − rt)

2

+ (| �Dl − �Cl| − rs)
2 + (| �Al+1 − �Dl| − rd)2]. (B2)

To second order in the displacement �δx = �x − �x0 we can write

(|�x| − |�x0|)2 ≈ ( �δx · �x0/|�x0|)2. (B3)

We define the (small) displacements �al = �Al − �Al,0 = ax
l �ex +

a
y

l �ey , �bl = �Bl − �Bl,0 = bx
l �ex + b

y

l �ey , �cl = �Cl − �Cl,0 =
cx
l �ex + c

y

l �ey , and �dl = �Dl − �Dl,0 = dx
l �ex + d

y

l �ey . Then, the
Lagrange function in the harmonic approximation becomes
L = T − V with

T = M

2

L∑
l=1

[(�̇al)
2 + ( �̇bl)

2 + (�̇cl)
2 + ( �̇dl)

2],

V = K

2

L∑
l=1

{(
bx

l − ax
l

)2 + g
(
cx
l − bx

l

)2 + (
dx

l − cx
l

)2

+ [
cos(φ)

(
ax

l+1 − dx
l

) − sin(φ)
(
a

y

l+1 − d
y

l

)]2
}
. (B4)

The variables b
y

l and c
y

l are cyclic and drop out of the problem.

2. Eqnarrays of motion

The Euler-Lagrange equations can be solved using the
Fourier ansatz

xl(t) = e−iωt

L∑
k=1

ξke
ikl (B5)

with k = 2πmk/L, mk = 0,1, . . . ,L − 1 as the crystal mo-
mentum. Here, ξ = (αx,αy,βx,γ x,δx,δy) corresponds to x =
(ax,ay,bx,cx,dx,dy). The resulting set of six algebraic
equations can be cast into a matrix equation M(ω) �Ek =
(0,0,0,0,0,0)T for the vector �Ek = (αx

k ,α
y

k ,βx
k ,γ x

k ,δx
k ,δ

y

k )T .
With the abbreviations y = Mω2/K , c = cos(φ), and s =
sin(φ), the matrix reads

M(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + c2 − y −cs −1 0 −c2e−ik cse−ik

−cs s2 − y 0 0 cse−ik −s2e−ik

−1 0 1 + g − y −g 0 0

0 0 −g 1 + g − y −1 0

−c2eik cseik 0 −1 1 + c2 − y −cs

cseik −s2eik 0 0 −cs s2 − y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)
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The equation for the vibrational frequencies ωn(k) as a function
of the crystal momentum k results from the characteristic
equation det[M(ω)] = 0.

We are interested in the optical phonon modes ωn = ωn(k =
0). The characteristic equation reduces to

y2(y − 2)p(y) = 0,

p(y) = y3 − 2(g + 2)y2 + (7/2 + 6g)y − 3g

(B7)

for all g and φ = 60◦. The finite-frequency solutions are
denoted as ωn (n = a,b,c,d). We set ωb = √

2K/M , and
ω2

a < ω2
c < ω2

d result from the three real roots of p(y) = 0
in (B7) as ωa,c,d = √

Kya,c,d/M .

APPENDIX C: BARE DISPERSION RELATION

The operator for the kinetic energy T̂ in Eq. (2) is readily
diagonalized for periodic boundary conditions N + 1 ≡ 1.
For the ground state of noninteracting electrons, the unit
cell consists of four sites N = 4L, and the electron transfer
amplitudes follow the periodic pattern (ts,tt,ts,td). Thus, we
may write

T̂ = −
∑

σ

L−1∑
n=0

(ts ĉ
+
4n+1,σ ĉ4n+2,σ + tt ĉ

+
4n+2,σ ĉ4n+3,σ

+ ts ĉ
+
4n+3,σ ĉ4n+4,σ + td ĉ

+
4n+4,σ ĉ4(n+1)+1,σ ) + H.c.

(C1)

We introduce the four operators b̂M;k,σ for electrons with
quasimomentum k = −π + 2πmk/L, mk = 0,1, . . . ,L − 1
via

b̂M;k,σ =
√

1

L

L−1∑
n=0

e−iknĉ4n+M,σ . (C2)

The inverse transformation reads

ĉ4n+M,σ =
√

1

L

∑
k

eiknb̂M;k,σ , (C3)

where we used that the sum over the quasimomenta k generates
the orthogonality relation

1

L

∑
k

eik(m−n) = δm,n (C4)

for two lattice indices m,n. In turn, the sum over lattice indices
n leads to the orthogonality relation

1

L

L−1∑
n=0

ein(k−p) = δk,p (C5)

for two quasimomenta k,p.

When we apply the transformation (C3) to the kinetic
energy (C1), we obtain

T̂ = −
∑
k,σ

(tsb̂
+
1;k,σ b̂2;k,σ + ttb̂

+
2;k,σ b̂3;k,σ

+ tsb̂
+
3;k,σ b̂4;k,σ + tde

ikb̂+
4;k,σ b̂1;k,σ ) + H.c. (C6)

The remaining task is to band-diagonalize the kinetic energy.
To this end we diagonalize the 4 × 4 matrix Mk with

Mk =

⎛
⎜⎜⎜⎝

0 −ts 0 −tde
−ik

−ts 0 −tt 0

0 −tt 0 −ts

−tde
ik 0 −ts 0

⎞
⎟⎟⎟⎠ . (C7)

Its eigenvalues in ascending order are E1(k) = −ε2(k),
E2(k) = −ε1(k), E3(k) = ε1(k), E4(k) = ε2(k) with ε1(k) <

ε2(k). We find17

[ε1,2(k)]2 = t2
s + t2

d /2 + t2
t /2

±
√(

t2
d − t2

t

)2
/4 + t2

s

[
t2
d + t2

t + 2tdtt cos(k)
]
.

(C8)

We write

Mk = U+
k DkUk , (C9)

where D = diag[−ε2(k), − ε1(k),ε1(k),ε2(k)] is a diagonal
matrix which contains the eigenvalues of Mk . We define the
band-diagonal operators

⎛
⎜⎜⎜⎝

α̂k,σ

β̂k,σ

γ̂k,σ

δ̂k,σ

⎞
⎟⎟⎟⎠ = Uk

⎛
⎜⎜⎜⎝

b̂1;k,σ

b̂2;k,σ

b̂3;k,σ

b̂4;k,σ

⎞
⎟⎟⎟⎠ (C10)

and find

T̂ =
∑
k,σ

[ε2(k)(δ̂+
k,σ δ̂k,σ − α̂+

k,σ α̂k,σ )

+ ε1(k)(γ̂ +
k,σ γ̂k,σ − β̂+

k,σ β̂k,σ )]. (C11)

The α and β bands are the valence bands which are filled in
the ground state at half band-filling. The γ and δ bands are the
conduction bands which are empty in the half-filled ground
state.

The bare gap at half band-filling obeys �bare = 2ε1(0) with

[ε1(0)]2 = t2
s + t2

d /2 + t2
t /2 −

√
4t2

s + (tt − td)2(td + tt)/2.

(C12)

For small deviations, ts,td,ts ≈ t0, this simplifies to17

�bare ≈ |tt + td − 2ts| . (C13)
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32Ö. Legeza, J. Röder, and B. A. Hess, Phys. Rev. B 67, 125114

(2003).
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