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We present analytic results for the finite-frequency current noise and the nonequilibrium ac conductance for
a Kondo quantum dot in presence of a magnetic field. Using the real-time renormalization group method, we
determine the line shape close to resonances and show that while all resonances in the ac conductance are
broadened by the transverse spin relaxation rate, the noise at finite field additionally involves the longitudinal rate
as well as sharp kinks resulting in singular derivatives. Our results provide a consistent theoretical description
of recent experimental data for the emission noise at zero magnetic field, and we propose the extension to finite
field for which we present a detailed prediction.
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I. INTRODUCTION

The understanding of quantum many-body effects and their
characteristic signatures in transport properties represents a
fundamental topic in mesoscopic physics. Beside the average
current, its fluctuations described by the current noise contain
additional information on the interplay of strong correlations
and quantum fluctuations. In particular, the finite-frequency
noise reveals the characteristic time scales of the system and
provides information about the dynamics of excitations. The
developments in the nanoscale device fabrication technology
led to the experimental analysis of the noise in various
systems ranging from Josephson junctions to single-electron
transistors.1

It is by now well established that strong correlations
play a crucial role for the transport properties of quantum
dots. For example, for quantum dots in the so-called Kondo
regime, the transport is dominated by spin fluctuations leading,
at sufficiently low energies, to a universal conductance of
G = 2e2/h due to resonant tunneling processes.2 Recently, it
has also become possible to measure the current noise in such
Kondo quantum dots realized in carbon-nanotube devices.3,4

In particular, Basset et al.4 measured the finite-frequency
emission noise and observed resonances when the external
frequency equaled the applied bias voltage.

The nonequilibrium finite-frequency noise in quantum
dots has theoretically been studied for the Anderson model,
resonant level models, and spin valve systems.5 For quantum
dots in the Kondo regime, previous studies focused either on
the shot noise (zero frequency)6 or on the exactly solvable
Toulouse limit,7 while the finite-frequency noise has only
very recently started to attract attention.4,8–10 Of particular
interest in this context is the nontrivial interplay of the different
energy scales, which manifests itself in the appearance of char-
acteristic resonances whose line shapes contain information
about the underlying microscopic relaxation mechanisms. For
quantum dots in the Kondo regime, these are the transverse
and longitudinal relaxation of the dot spin, which are identical
at zero magnetic field, but acquire different values when the
rotational symmetry is broken.

In this work, we provide an analytic analysis of the
finite-frequency current noise and the ac conductance in
the nonequilibrium Kondo model. We apply the real-time
renormalization group (RTRG) method,11,12 which is based
on a systematic expansion in the reservoir-system coupling.
Using the solution of the two-loop RG equations, we derive
analytic results for the noise and ac conductance in the weak-
coupling regime max{|�|,|V |,|h0|} � TK , where TK denotes
the Kondo scale at which the system enters the strong-coupling
regime. We analyze the characteristic features in the noise and
conductance in detail. We particularly focus on the effects of a
finite magnetic field and show that it leads to (i) characteristic
resonances as a function of the frequency and bias voltage
and (ii) the appearance of both the longitudinal and transverse
spin relaxation rates in the broadening of these resonances as
well as sharp kinks in the noise. We find excellent agreement
with existing experimental data4 for the emission noise at zero
magnetic field, and propose the measurement at finite field for
which we present a detailed analysis.

The paper is organized as follows. In the next section, we
define the symmetric and antisymmetric current noise as well
as their relation to the ac conductance. After introducing the
Kondo model, we describe the calculation of the dynamical
current-current correlation function with the RTRG method in
Sec. III, the technical details are reported in the Appendix.
In Secs. IV and V, we present the analytic results for the
finite-frequency current noise obtained from the solution of
the flow equations and discuss their experimental observation
in connection with recent data.4 We finally determine the real
and imaginary parts of the nonequilibrium ac conductance and
conclude with a summary.

II. CURRENT-CURRENT CORRELATIONS
AND AC CONDUCTANCE

The nonequilibrium dc current through Kondo quantum
dots has been intensively studied13–15 in the past. Here, we
investigate the zero-temperature fluctuations of the current in
the stationary state, which are captured by the symmetric and
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antisymmetric current noise,

S±(t) = 1
2 〈[I (t) − 〈I 〉,I (0) − 〈I 〉]±〉, (1)

where I = −ṄL = −i[H,NL]− denotes the current operator
in the left lead with the corresponding particle number
NL, and 〈I 〉 is the stationary current. Due to the fixed
number of electrons on the dot, other lead components of
the noise are given by S±

αβ(�) = αβS±(�) with α,β = ± for
left/right leads. The finite-frequency noise refers to the Fourier
transform

S±(�) =
∫ ∞

−∞
dtei�tS±(t), (2)

with S±(�) = ±S±(−�). The symmetric and antisymmetric
noise determine the absorption and emission noise induced by
photon absorption and emission,16

Sa/e(�) = S+(�) ± S−(�), (3)

related by Sa(−�) = Se(�). Positive (negative) frequencies
correspond to photon emission (absorption). In equilibrium,
S+(�) and S−(�) are related by the fluctuation dissipation
theorem17 (FDT), which at T = 0 reads

S−(�) = sgn(�)S+(�). (4)

As a consequence, the emission (absorption) noise in equilib-
rium vanishes for positive (negative) frequencies.

In order to calculate S±(�), it is useful to introduce the
auxiliary current-current correlation function

C±(�) =
∫ 0

−∞
dte−i�t 〈[I (0),I (t)]±〉, (5)

which is related to the symmetric and antisymmetric noise
by12

S+(�) = Re C+(�) − 2π〈I 〉2δ(�), (6a)

S−(�) = Re C−(�). (6b)

The calculation of C±(�) will be addressed in the next section.
In addition to the finite-frequency noise, we study the

nonequilibrium ac conductance G(�) induced by a small
ac voltage modulation of the dc bias V (t) = V + δV e−i�t .
The real part is determined by the antisymmetric noise10,19

Re G(�) = S−(�)

�
, (7)

and the imaginary part can be obtained by the Kramers-
Kronig relations, with Re G(�) = Re G(−�) and Im G(�) =
−Im G(−�). Alternatively, generalizing the Kubo formula to
nonequilibrium distributions allows to derive both the real and
imaginary part of G(�) from the auxiliary function C−(�)
by18,19

G(�) = 1

�
[C−(�) − C−(0)], (8)

without resorting to the Kramers-Kronig relations. A detailed
derivation of this extension is provided in Appendix A.

Combining Eqs. (3) and (7), the absorption noise is
determined by the emission noise and the real part of the

ac conductance:

Sa(�) = Se(�) + 2� Re G(�). (9)

Alternatively, measuring the emission and the absorption noise
allows to extract the ac conductance, which may represent an
advantage with respect to a direct ac detection. We note that
the real part of the ac conductance relates the symmetric noise
to the emission noise by

Se(�) = S+(�) − � Re G(�). (10)

Hence the emission excess noise �Se(�), defined as the
difference between the emission noise at finite V and V = 0, is
given by �Se(�) = �S+(�) − � Re [�G(�)]. In the linear
voltage regime, the ac conductance is approximately constant
in V , implying Re [�G (�)] = 0; therefore the emission
excess noise coincides with the symmetric excess noise and is
thus an even function of frequency. In the nonlinear regime, the
V dependence of Re [�G(�)] leads to an asymmetric emission
excess noise.

III. MODEL AND RTRG METHOD

A. Model

We consider a Kondo quantum dot consisting of a spin-1/2
S subject to a local magnetic field h0, which is coupled to
two noninteracting electronic leads via an isotropic exchange
interaction (see Fig. 1),

H = Hres + h0S
z + 1

2

∑
αα′kk′σσ ′

Jαα′a
†
αkσ S · σ σσ ′aα′k′σ ′ . (11)

Here, a
†
αkσ and aαkσ create and annihilate electrons with

momentum k and spin σ = ↑,↓ in lead α = L,R, and σ

are the Pauli matrices. The leads are described by Hres =∑
αkσ εka

†
αkσ aαkσ , with a flat density of states in a band

of width 2D, and chemical potentials μL/R = ±V/2. The
exchange interaction is assumed to be derived from an Ander-
son impurity model via the Schrieffer-Wolff transformation
and thus satisfies J 2

nd = JLJR , where Jnd = JRL = JLR and
Jα = Jαα . We use the parameterization JL/R = 2xL/RJ0 with
xL + xR = 1. The system is at zero temperature and we use
units such that e = h̄ = kB = 2μB = 1.

B. RTRG method

We calculate the current noise using the RTRG
approach.11,12 Here, we present the essentials, for a detailed
derivation including technical details we refer to Appendix B.

JJ

JL JR

S = 1
2

V
2 − V

2

h0

FIG. 1. (Color online) Sketch of the considered quantum dot in
the Kondo regime.

245115-2



MAGNETIC FIELD EFFECTS ON THE FINITE- . . . PHYSICAL REVIEW B 87, 245115 (2013)

The dynamics of the reduced density matrix of the dot
ρD(t) = Trresρ(t), obtained by tracing out the lead degrees of
freedom from the full density matrix of the system, is described
by the von Neumann equation

ρ̇D(t) = −iLDρD(t) − i

∫ t

t0

dt ′�(t − t ′)ρD(t ′), (12)

for an initially decoupled system ρ(t0) = ρD(t0)ρLρR with
an arbitrary dot density matrix ρD(t0) and the left and right
reservoirs given by grand-canonical distribution functions.
The first term describes the dynamics of the isolated dot,
and the dissipative kernel �(t − t ′) contains the information
about the effects on the local spin due to the coupling to the
reservoirs. Introducing a Laplace variable z, the effective dot
Liouvillian Leff

D (z) = LD + �(z),

ρD(z) =
∫ ∞

t0

dteiz(t−t0)ρD(t) = i

z − Leff
D (z)

ρD(t0), (13)

governs the time evolution of the reduced density matrix of
the dot. The stationary reduced density matrix is obtained by
carrying out the limit t0 → −∞, or equivalently in Laplace
space,

ρst
D = lim

z→i0+

z

z − Leff
D (z)

ρD(t0). (14)

The effective dot Liouvillian Leff
D (z) incorporates all infor-

mation about the relaxation dynamics of the spin on the
dot encoded in the renormalized magnetic field h and the
longitudinal and transverse spin relaxation rates �1 and �2.

In general, the noise (2) is determined by the real part of
the auxiliary function (5), which can be expressed12 as

C±(�) = −iTrD

[
�I (�)

1

� − Leff
D (�)

�±
I (�,i0+)ρst

D

]
− iTrD

[
�±

II (�,i0+)ρst
D

]
. (15)

The kernels �I (�), �±
I (�,i0+), and �±

II (�,i0+) obey RG
equations similar to that of the Liouvillian (see appendices for
further details).

The RTRG weak-coupling analysis is based on a systematic
expansion in the renormalized exchange couplings around
the poor man’s scaling solution J () given by J () =
[2 ln(/TK )]−1. Here,  denotes the flow parameter, and the
Kondo temperature is defined by TK = De−1/2J0 . Before 

reaches TK in the flow from high- to low-energy scales, which
is in the range  � c � TK , where c = √

�2 + V 2 + h2,
we can carry out an expansion of the noise in a power
series of J (). In doing so, we are able to identify which
resonant features in the noise get broadened by relaxation
rates and which remain sharp. The latter effect, in particular,
occurs in the nonequilibrium setup at finite magnetic field and
� = ±V . Technically, this is seen in the RTRG equations as
the influence of the resolvent projection P0

1
�−Leff

D (�)
onto the

zero-eigenvalue subspace of the Liouvillian. This represents a
nontrivial feature of the two-point functions (2), in contrast to
one-point functions, which receive no contribution from the
zero-eigenvalue subspace.11

IV. FINITE-FREQUENCY NOISE

We have analytically derived S±(�) up to second order in
the poor man’s scaling solution J = J (c). In the scaling limit
(D → ∞,J0 → 0 at fixed TK ) and for � � TK , they read

S+(�) = πJ 2
ndMh + π

8
J 2

nd

∑
α,σ=±

|� + αV + σh|2

+ π

2
J 2

nd

∑
α=±

[
M2|� + αV |

−
(

M2 − 1

4

)
|� + αV |1

]
, (16a)

S−(�) = 3π

4
J 2

nd� + π

4
J 2

ndM
∑

α,σ=±
σ |� + αV + σh|2,

(16b)

where |x|i = (2x/π ) arctan(x/�i) is the absolute value
function smeared on the scale �i . The longitudinal and
transverse relaxation rates are given by �1 = π (J 2

L +
J 2

R)|h|/2 + πJ 2
nd max{|V |,|h|} and �2 = πJ 2

nd|V |/2 + �1/2,
respectively.14 The dot magnetization is M = −(1 +
r)2h/[2(1 + r2)|h| + 4r max{|V |,|h|}], with the renormalized
magnetic field h = (1 − J )h0 and the asymmetry r = xL/xR .

We stress that the RTRG method provides a consistent
derivation of the relaxation rates appearing in Eqs. (16) via the
smeared absolute value function. In particular, these are absent
in bare second-order perturbation theory, which is obtained by
replacing the renormalized exchange coupling J with the bare
one J0 and taking the limit �i → 0. We note that in this limit,
the contribution proportional to M2 in S+ vanishes, which
within the RTRG analysis introduces new effects discussed in
the following.

A. Symmetric noise

We plot the symmetric noise and its derivative20 in Fig. 2.
We consider r = 1, the asymmetry effects are discussed below.
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FIG. 2. (Color online) (Top) Symmetric noise S+(�) for V =
100 TK , r = 1, and different magnetic fields. (Bottom) Derivative
dS+/d� showing a discontinuous jump at � = V for finite magnetic
fields (zoom in the inset), see Ref. 20.
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For vanishing magnetic field, Eq. (16a) simplifies to

S+(�) = 3π

8
J 2

nd

∑
α=±

|� + αV |�, (17)

where |x|� = (2x/π ) arctan(x/�) with � = �1 = �2 =
πJ 2

ndV for h0 = 0. The pronounced feature at � = V (blue
curve) leads to a characteristic resonance in the derivative.
For finite magnetic fields additional features at � = |V ± h|
arise, which yield enhancements in the derivative broadened
by the transverse spin relaxation rate �2. Furthermore, due to
the terms proportional to M2 in Eq. (16a) at � = ±V we find a
contribution to S+, which is not broadened by any microscopic
decay rate. As shown in Fig. 2, the sharp kink at V = � yields
a discontinuity in the derivative with the jump given by

� = πJ 2
ndM

2. (18)

For h < V the contribution proportional to (M2 − 1/4)
provides a superposition with a continuous enhancement at
� = V broadened by �1. This dependence on the magnetic
field is shown in the inset of Fig. 2. We note that the singular
behavior can already be observed in equilibrium (see Fig. 3).
For zero voltage and finite magnetic field, Eq. (16a) reads

S+(�) = π

4
J 2

nd

[
|�| − 2h +

∑
σ=±

|� + σh|2
]

(19)

with �2(V = 0) = 2πJ 2
c |h|. The absolute value at � = 0 is

shifted to � = ±V for finite voltages.
In contrast to S+(�), the antisymmetric noise S−(�)

contains only terms with resonances broadened by �2. This
behavior is reflected in the ac conductance and will be
discussed below.

In Fig. 4, we consider asymmetry effects, which involve a
rescaling of the exchange couplings J 2

nd by 4r/(1 + r)2. The
magnetization depends only weakly on r . As a consequence,
the reduced relaxation rates lead to a sharpening of the features
close to the resonances.
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FIG. 3. (Color online) Symmetric noise S+(�) as a function of
bias voltage V for magnetic field h0 = 100 TK leading to h = 89 TK ,
r = 1, and different frequencies (top), and derivative dS+(V )/dV

(bottom), see Ref. 20.
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FIG. 4. (Color online) Normalized symmetric noise
S+(�)/S+(0) for V = 100 TK , h0 = 0, and different asymmetries r

(top), and derivative d

d�
S+(�)/S+(0) (bottom), see Ref. 20.

For � � TK , the irreducible contribution to C±(�) (given
by its first term) is dominant, while the reducible one (the
second term) is subleading ∼O(J 4). However, for � � TK the
reducible term contributes in order J 2 supplementing Eq. (16a)
in the limit � → 0 by

− π2J 4
nd

2�1

[
2V M +

(
M2 + 1

4

)
m(V,h)

]
m(V,h), (20)

with m(V,h) = |V + h|2 − |V − h|2. In total, this result gen-
eralizes the nonequilibrium shot noise6 of a Kondo quantum
dot to the case of finite magnetic fields.

We finally consider the noise to current14 ratio S+(0)/I .
For V < h, we obtain

S+(0)

I
= V − 2h + ∑

σ=± |V + σh|2
3V − ∑

σ=± σ |V + σh|2 . (21)

In equilibrium S+(0)/I = 1/3 for h � TK . The noise to
current ratio increases with bias voltage, reaching the Poisson
limit S+(0)/I = 1 for V � h. Similar results are obtained in
the Toulouse limit.7

B. Fluctuation-dissipation ratio

In equilibrium, the symmetric and antisymmetric noise
S±(�) satisfy the FDT. For vanishing magnetic field, the limit
� → ∞ reads

S+(�) = 3π

4
J 2

nd|�|, (22a)

S−(�) = 3π

4
J 2

nd�, (22b)

that is, Eq. (4) is obviously satisfied.
To investigate the violation of the FDT out of equilibrium,

we introduce the fluctuation-dissipation ratio

f (�) = S−(�)

S+(�)
, (23)

which in equilibrium is given by f (�) = sgn(�) at zero
temperature. Using the results (16), we obtain

f (�) = 2�∑
α=± |� + αV |� . (24)
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FIG. 5. (Color online) Fluctuation-dissipation ratio f (�) for V =
100 TK , r = 1, and different magnetic fields.

We find f (� > V ) = 1, i.e., the equilibrium result holds,
whereas for small frequencies, we obtain the linear behavior
f (� � V ) = �/|V |� .

At either large magnetic fields or strong asymmetries r , the
voltage effects are suppressed, see Fig. 5. In particular, we note
that f (�) = 1 for � > V + h.

C. Emission noise

From the expressions (16), we determine the emission
noise Se(�) = S+(�) − S−(�) describing the noise induced
by photon emission:

Se(�) = πJ 2
ndMh − 3π

4
J 2

nd�

+ π

2
J 2

nd

∑
α=±

[
M2|� + αV |−

(
M2 − 1

4

)
|� + αV |1

]
+ π

4
J 2

nd

∑
α,σ=±

(
1

2
− σM

)
|� + αV + σh|2. (25)

It inherits the features of the symmetric noise discussed above,
which can be probed in the measurements of dSe(�)/d� or
dSe(�)/dV .

From Eq. (25), the voltage and frequency dependence of
Se(�) appear to be very similar except for the additional
features at V = h due to the voltage dependence of the mag-
netization. As the voltage dependence is experimentally more
easily accessible, we focus on the voltage dependence shown
in Fig. 6. For zero magnetic field, the emission noise reduces to

Se(�) = 3π

8
J 2

nd

( ∑
α=±

|� + αV |� − 2�

)
, (26)

leading to a suppression for V < �. At finite magnetic fields,
we distinguish two regimes. For h < V , the photon emission
is suppressed for V < |� − h|. For larger magnetic fields
h > V , the feature at V = |� − h| disappears for M = −1/2.

The emergence of the singular behavior in the emission
noise at � = ±V can be attributed to the fact that at large
fields, h > V , the spin on the dot is fixed to its ground state
(see Fig. 7). Processes at external frequencies � = V probe
the charge transfer between the leads, which are not broadened
due to the sharpness of the Fermi edges at zero temperature. At
smaller fields, 0 < h < V , the spin becomes dynamical, and
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FIG. 6. (Color online) Emission noise Se(V ) (top) and deriva-
tive dSe(V )/dV (bottom), see Ref. 20, for � = 100 TK , r = 1,
and different magnetic fields. In the inset, the dependence of the
discontinuity � on the magnetic field is shown for V = 100 TK and
different asymmetries r .

virtual processes involving longitudinal spin fluctuations give
an additional, continuous, contribution broadened by �1. In
turn, processes involving a spin flip on the dot, which appear at
� = |V ± h|, are broadened by �2. The latter behavior is also
found for all resonances appearing in the current.14 Thus the
noise offers a way to study richer relaxation phenomena than
those present in the current. We note that a discontinuity in the
derivative of the noise was also found7 in the strong-coupling
regime of the Kondo model at the Toulouse point; we therefore
expect it to be a generic feature of the finite-frequency noise
in Kondo quantum dots.

The inset of Fig. 6 displays the jump � as a function of
the magnetic field for different asymmetries. For h < V , the
increase of M2 leads to a maximum at h = V , while for h > V

the decrease of J 2
nd dominates. The most pronounced jump is

obtained for the symmetric case with r = 1. The reduction with
increasing asymmetry is inferred by the r dependence of J 2

nd, in
addition to the r dependence of the magnetization for h < V .

V. EXPERIMENTAL OBSERVATION

The emission noise describing the noise induced by photon
emission16 can be probed in the measurements of dSe(�)/d�

or dSe(�)/dV . In particular, at finite magnetic field, a very
sharp feature is expected at � = ±V , which in experiments
will only be broadened by finite temperatures, instrumental
resolution, or charge fluctuations not captured in the Kondo
model (11). We compare our results for the emission noise
to the experimental data by Basset et al.4 at zero field and
find very good agreement without adjustable parameters. We
moreover discuss the predictions for a measurement at finite
magnetic fields.

A. Comparison to zero-field data

We first consider vanishing magnetic field as in the recent
experiments by Basset et al.4 on the emission noise of a carbon
nanotube quantum dot in the Kondo regime. For this case,
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FIG. 7. (Color online) Visualization of the origin and behavior of the discontinuity in dSe(V )/dV at V = � for different magnetic fields.

Eq. (26) yields

dSe(�)

dV
= 3

4
J 2

nd

(
arctan

� + V

�
− arctan

� − V

�

)
, (27)

where J 2
nd = xL(1 − xL)/ ln2(

√
�2 + V 2/TK ). We emphasize

that Eq. (27) contains only two unknown parameters, namely,
the Kondo temperature TK and the asymmetry xL, which
are extracted from the differential conductance (see below).
The previous theoretical analysis of the data in Ref. 4 used a
frequency-dependent RG analysis, which required, however,
the fitting of the line shape close to the resonances with
phenomenological relaxation rates. Here, in contrast, the rate
� was derived consistently and does not contain free fit
parameters.

In order to determine TK and xL, we fit the measured
differential conductance4 to the theory15 (see inset of Fig. 8).
The asymmetry is extracted21 from G(V = 0) = 1.194 e2/h

and amounts to xL ≈ 0.82 (or 0.18), while the Kondo temper-
ature is obtained from G(V = T ∗

K ) = 2
3G(V = 0) and T ∗

K =
10.57 TK

22 and equals TK ≈ 110 mK ≈ 0.01 mV. Using these
parameters, we plot Eq. (27) against the experimental results4

in Fig. 8. In the range |V | � 1 mV, we find excellent agreement
for both frequencies; for larger voltages charge fluctuations
set in, and the Kondo model (11) is no longer adequate.
For this reason, our analysis of the features at V = ±� is
limited to � � 1mV. On the other hand, it is restricted by
the weak-coupling condition � � TK ≈ 0.01mV, leaving two
orders of magnitude in the window of admissible frequencies.
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FIG. 8. (Color online) Comparison of Eq. (27) to the experimental
data of Ref. 4 for the derivative of the emission noise dSe/dV at
h0 = 0. We stress that Eq. (27) does not contain any free parameter.
Inset: Fit of G(V ) to the theoretical result.15

B. Predictions for finite field

We propose to measure the emission noise of a quantum dot
in the Kondo regime at finite magnetic field (see Fig. 9). As
can be easily inferred from Eq. (25), the energy scale h has two
effects on dSe(�)/dV . (i) It introduces additional features at
V = ±|� + h|, V = ±|� − h|, and V = ±h, which originate
from the onset of additional transport processes as well as
from the voltage dependence of the dot magnetization M .
(ii) At large magnetic fields h > �, the resonances at V =
±� turn into discontinuous jumps. At smaller fields, these
jumps are superimposed with a contribution broadened by the
longitudinal spin relaxation rate �1, while all other resonances
are broadened by the transverse rate �2. For illustration, we
show dSe(�)/dV for the parameters of Ref. 4 but finite
magnetic fields in Fig. 9. In experiments, the jumps at V = ±�

will be broadened by finite temperature T . This broadening is
linear in T , in contrast to the other resonances, which are
broadened by �2 + O(T ). For this reason, the features at
V = ±� stay much sharper than all other ones as long as
T � �2 ∼ TK .

VI. AC CONDUCTANCE

Finally, we discuss the nonequilibrium ac conductance.
We consider a setup23 at finite dc bias V modulated by
a small ac voltage δV , V (t) = V + δV e−i�t . This induces
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V
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]

FIG. 9. (Color online) Voltage derivative of the emission noise
for the experimental parameters of Ref. 4 with �/2π = 78 GHz
(blue line). For comparison, we show the result for small (red line)
and large (green line) magnetic fields. For finite fields, we observe
discontinuous jumps at V = ±�. The relation between h0 and the
applied field is given by h0 = g∗happ/2 with the material specific
effective g factor g∗. (Inset) Magnetic-field dependence of the jump
height.
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a frequency-dependent current I (V,δV,�) from which the
nonequilibrium ac conductance can be extracted via G(�) =
limδV →0

1
δV

[I (V,δV,�) − I (V )] with I (V ) denoting the sta-
tionary dc current. We stress that G(�) is the ac conductance
in a nonequilibrium stationary state, i.e., in the presence of the
finite dc bias V .

Using Eq. (8), the real and imaginary parts of G(�) are
determined by C−(�). As a consequence, the singular behavior
in S+(�) due to the terms characterized by the absence of any
decay rate is not reflected in the ac conductance. To second
order in the renormalized exchange coupling, we find

Re G(�) = 3π

4
J 2

nd + πM

4�
J 2

nd

∑
α,σ=±

σ |� + αV + σh|2,

(28a)

Im G(�) = − M

2�
J 2

nd

∑
α,σ=±

σ [L2(� + αV + σh)

−L2(αV + σh)], (28b)

where L2(x) = x ln(c/

√
x2 + �2

2) gives rise to logarith-
mic behavior at the resonances, which is a characteristic
feature of Kondo systems. Similarly to S+(�), for small
frequencies, Re G(�) is supplemented by the contribu-
tion π

2 J 2
ndm(V,h) (∂M/∂V ) for V > h, where ∂M/∂V =

−M�−1
1 (∂�1/∂V ), originating from the reducible part of

C−(�). We note that for the conductance this contribution
is more pronounced due to the additional factor of 1/�,
in Eq. (8). Thus, in the limit � → 0, one recovers the
nonequilibrium dc conductance14, while for V → 0 one
obtains the equilibrium ac conductance,24

Re Geq(�) = 3π

4
J 2

nd + πM

2�
J 2

nd

∑
σ=±

σ |� + σh|2, (29a)

Im Geq(�) = − M

2�
J 2

nd

∑
σ=±

σ [L2(� + σh) − L2(σh)],

(29b)

with features at � = ±h. We observe that in contrast to the
symmetric noise, Eq. (28) presents no feature at � = V for
finite magnetic fields. Moreover, all resonances are broadened
by the transverse rate �2, thus the finite-frequency noise
contains more information on the relaxation processes than
the conductance.

For zero magnetic field, Eq. (28a) simplifies to Re G(�) =
3πJ 2

nd/4, the imaginary part vanishes. The frequency and volt-
age dependence of the real part originates in the c dependence
of the renormalized exchange coupling Jnd. This behavior is
displayed in Fig. 10 (blue curve), where we show results for the
frequency dependence of G(�) at finite bias voltage. At finite
magnetic field, additional features appear close to the reso-
nances at � = |V ± h| in both the real and imaginary parts.

The voltage dependence of G(�) at fixed frequency is
shown in Fig. 11 and exhibits a qualitatively similar behavior.
The real part exhibits a characteristic enhancement at V = h

due to the onset of inelastic cotunneling processes. For finite
frequencies, this step-like enhancement is replaced by a contin-
uous increase in the range V = |h ± �| with reduced height.
The effect of the additional contribution for � → 0 is clearly
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FIG. 10. (Color online) Real and imaginary parts of the ac
conductance G(�) (Ref. 25) for V = 100 TK , r = 1, and different
magnetic fields h0. We observe no feature at � = V .

visible. The slight change in the slope at V = h is due to the
voltage dependence of the dot magnetization. The imaginary
part, shown in the lower panel, vanishes for � = 0. For small
frequencies � < h, the line shape is approximately antisym-
metric around V = h except for the offset at zero voltage.

VII. CONCLUSION

We have studied the effects of a finite magnetic field
on the finite-frequency current noise and nonequilibrium
ac conductance of a Kondo quantum dot. Using the RTRG,
we present analytic solutions of the flow equations in the
weak-coupling regime. These exhibit a novel contribution in
the symmetric noise S+, characterized by the absence of any
decay rate as a microscopic cutoff scale. Due to the interplay
of the different energy scales, both observables exhibit various
resonances, close to which the line shapes are governed by
self-consistently derived decay rates. In particular, at finite
magnetic field the symmetric noise possesses a sharp feature
at � = ±V resulting in discontinuous derivatives with respect
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FIG. 11. (Color online) Nonequilibrium ac conductance G(�)
(Ref. 25) for h0 = 100 TK , r = 1, and different frequencies �.
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to frequency or bias voltage. We propose to measure the
emission noise of a Kondo quantum dot at finite magnetic
field for which we have derived the full line shape including
the characteristic resonances and a discontinuous jump in its
derivative. The extension of the present results to the regime of
strong coupling15 represents an interesting question to address
in future investigations.
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APPENDIX A:GENERALIZATION OF THE KUBO
FORMULA TO NONEQUILIBRIUM DISTRIBUTIONS

We provide here the derivation of Eq. (8), for a setup with a
small ac voltage δV modulating the dc bias V by V (t) = V +
δV e−i�t . We split the Hamiltonian in its time-independent
part H0 and the perturbation

H1(t) = h1δV e−i�t , (A1)

with h1 = 1
2

∑
α αNα . To calculate the average current induced

by H1 to linear order in δV , we determine the density matrix
to the same order. Expanding ρ(t) = ρ(0)(t) + ρ(1)(t) + · · ·
in power series of δV , we obtain the set of von Neumann
equations for contributions of every order:

d

dt
ρ(0)(t) = −i[H0,ρ

(0)(t)]−, (A2a)

d

dt
ρ(1)(t) = −i[H0,ρ

(1)(t)]− − i[H1(t),ρ(0)(t)]−. (A2b)

The first equation is solved by the density matrix of the
unperturbed system in Heisenberg representation:

ρ(0)(t) = U0(t)ρ0U
†
0 (t), U0(t) = e−iH0t , (A3)

where ρ0 is the initial density matrix. To solve the equation for
ρ(1)(t), we introduce a correction U1(t) to the unperturbed time
evolution operator U0(t), which includes the linear effects of
the perturbation:

U1(t) = −iU0(t)
∫ t

0
dt ′e−i�t ′U

†
0 (t ′)h1U0(t ′). (A4)

Assuming that the initial density matrix ρ0 is independent of
δV , we express

ρ(1)(t) = U1(t)ρ0U
†
0 (t) + U0(t)ρ0U

†
1 (t). (A5)

The average current induced by the perturbation to linear order
in δV is then given by〈

I (1)
α

〉
(t) = Tr

{
I (0)
α ρ(1)(t)

}
, (A6)

as I (1)
α = −i[H1(t),Nα]− = 0. Using Eq. (A5) and the relation

I (1)(t) = G(�,t)e−i�t δV , we obtain the ac conductance

G(�,t) = −iei�t

∫ t

0
dt ′e−i�t ′Tr

{[
I (0)
α (t),h1(t ′)

]
−ρ0

}
= 1

�
Tr

{[
I (0)
α (t),h1(t)

]
−ρ0

}
− ei�t

�
Tr

{[
I (0)
α (t),h1

]
−ρ0

}
− 1

�

∫ t

0
dt ′ei�(t−t ′)Tr

{[
I (0)
α (t),

d

dt ′
h1(t ′)

]
−
ρ0

}
,

(A7)

where we performed an integration by parts. The second term
vanishes as the system is initially decoupled and [h1,ρ0]− = 0.
By virtue of

d

dt ′
h1(t ′) = i[H0,h1(t ′)]− = −I (0)(t ′), (A8)

G(�,t) can be expressed as a commutator of the current
operators at different times:

G(�,t) = 1

�

∫ t

0
dt ′[ei�(t−t ′) − 1]Tr

{[
I (0)
α (t),I (0)(t ′)

]
−ρ0

}
.

(A9)
In the stationary limit t → ∞, the ac conductance is de-
termined by the antisymmetric current-current correlation
function C−(�):

G(�) = 1

�

∫ 0

−∞
dt(e−i�t − 1)〈[I (0)(0),I (0)(t)]−〉

= 1

�
[C−(�) − C−(0)], (A10)

where G(�) is the ac conductance in a nonequilibrium
stationary state, i.e., in the presence of the finite dc bias V .

APPENDIX B: RTRG ANALYSIS OF THE
CURRENT-CURRENT CORRELATION FUNCTION

In this appendix, we set up generic RG equations for the
calculation of the current-current correlation function for a
model of a quantum dot coupled to electronic leads with
spin and/or orbital fluctuations. We extend the calculations for
dynamical correlation functions of Ref. 12 to current-current
correlations. For completeness, we will report the basic ideas
of the RTRG, with the definitions and notations of Refs. 11
and 14 in the first section. Afterwards, we will present
the calculation of the irreducible part of the current-current
correlation function C±(�) (15) in detail. The reducible part
of Eq. (15) will be discussed in Appendix B 3, as it contributes
only in the zero-frequency limit.

1. Basic definitions

We consider the reduced density matrix ρD(t), which is
obtained from the full density matrix ρ(t) by tracing out
the reservoir degrees of freedom ρD(t) = Trresρ(t). The full
density matrix is given by the solution of the von Neumann
equation,

ρ(t) = e−iH tρ(0)eiHt = e−iLtρ(0), (B1)
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where L = [H, . ]− is the Liouvillian acting on the operators in
Hilbert space. Similarly to the Hamiltonian H = HD + Hres +
V , the Liouvillian contains corresponding contributions for the
dot, the reservoirs, and the coupling of the dot to the reservoirs.
For an initially decoupled system ρ(0) = ρD(0)ρLρR with
an arbitrary dot density matrix ρD(0) and the left and right
reservoirs described by grand-canonical distribution functions,
the dynamics of the reduced dot density matrix ρD(t) can be
obtained from the quantum kinetic equation

ρ̇D(t) = −iLDρD(t) − i

∫ t

0
dt ′�(t − t ′)ρD(t ′). (B2)

Here, the first term describes the dynamics of the isolated dot
and the kernel �(t − t ′) contains all information about the
dissipation due to the coupling to the reservoirs. In Laplace
space, this equation is solved to

ρD(z) =
∫ ∞

0
dt eiztρD(t) = i

z − Leff
D (z)

ρD(0), (B3)

where Leff
D (z) = LD + �(z) is the effective dot Liouvillian

consisting of the bare dot Liouvillian LD and the dissipative
kernel �(z) encoding the relaxation and decoherence pro-
cesses of the dot. The stationary state is obtained by

ρst
D = lim

z→i0+
z

z − Leff
D (z)

ρD(0) (B4)

in Laplace space. The kernel �(z) is determined by a
diagrammatic expansion in the interaction between the dot
and the reservoirs.

In the following, we report the definitions of Refs. 11 and
14. The interaction vertex G

pp′
11′ is defined via the interaction

part of the Liouvillian

LV = 1
2p′Gpp′

11′ : J
p

1 J
p′
1′ : , (B5)

where we implicitly sum over the indices 1 = ηαω and the
Keldysh indices p,p′ = ±. J

p

1 is a quantum field superopera-
tor in Liouville space of the reservoirs,

J
p

1 =
{
a1C for p = +
Ca1 for p = −,

(B6)

where C is an arbitrary reservoir operator, a1 is a cre-
ation/annihilation operator for η = +/−, and G

pp′
11′ is a

superoperator acting on the states of a quantum dot, defined
by

G
pp′
11′ =

{
g11′C for p = +
−Cg11′ for p = −.

(B7)

The contractions are represented by

γ
pp′
11′ = p′〈Jp

1 J
p′
1′

〉
ρres

= δ11̄′ρ(ω)p′fα(αp′ω), (B8)

with ρ(ω) being the density of states and fα(x) being the Fermi
function of reservoir α. The free propagation of the system
between two interaction vertices is described by resolvents of
the form

�(z) = 1

z − Leff
D (z)

. (B9)

An exact derivation of the diagrammatic rules can be found in
Ref. 11.

The stationary current

〈I 〉st = −i lim
z→0+

TrD�I (z)ρst
D(z) (B10)

and the current-current correlation function (5) can be
expressed in terms of corresponding current kernels after
integrating out the reservoir degrees of freedom.12 Here, �I (�)
is the current kernel corresponding to the current operator
I

pp′
11′ , �±

I (�,ξ ) to the current vertex (I±)pp′
11′ , and �±

II (�,ξ ) to

the vertex (II±)pp′
11′ with both current operators. The current

operators are defined in the same way as the Liouvillian,
via the commutator and anticommutator LI = i

2 [I,·]+ and

LI± = i[I,·]±, related to the interaction vertex G
pp′
11′ by

I
pp′
11′ = cL

11′δpp′pG
pp

11′ , (B11a)

(I+)pp′
11′ = 2cL

11′δpp′pG
pp

11′ , (B11b)

(I−)pp′
11′ = 2cL

11′δpp′G
pp

11′ , (B11c)

where cL
11′ = − 1

2 (ηδαL + η′δα′L) accounts for the antisymme-
try in the lead indices. In the diagrammatic expansion, it is
important to distinguish between these current vertices, since
the first one, Eq. (B11a), has to be at the leftmost position of
a diagram, while the other two can be at arbitrary positions.
Furthermore, the current vertex I± acts as a separator between
the two frequencies � and ξ occurring in Eq. (15); in
front of I±, the variable � of the Fourier transform of the
current-current correlation function occurs in the respective
resolvents, and after I±, it is replaced by the Laplace
variable ξ , which is later sent to zero for the stationary state.

Equation (15) consists of two different terms C± = C±
red +

C±
irr. The first one is reducible with respect to the current

vertices, and it is composed of two individual current kernels
each containing only one current vertex. The second one
is irreducible and given by the current-current kernel �±

II

containing all irreducible diagrams incorporating both current
vertices. For the calculation of the current noise up to second
order in the interaction between the quantum dot and the
leads, we introduce a dimensionless coupling constant J ,
which fulfills G

pp′
11′ ∝ J . Since all kernels contain at least

two vertices, all are of order J 2. Thus the irreducible term
proportional to �±

II always contributes, while in general, the
reducible one is of higher order. Only in the limit � → 0 it
might be possible that the resolvent [� − Leff

D (�)]−1 becomes
of the order J−2 and thus reduces the order of this term. For
the Kondo model, which will be discussed in Appendix B2b,
this is indeed the case. However, since the reducible term
only contributes in the low-frequency limit, we will focus
on the determination of the current-current kernel �±

II in the
next section, while the additional � → 0 contribution will be
discussed in Appendix B 3.

Ī12 Ī
2̄ 1̄

s
s

Ī12 Ī
2̄ 1̄

s
a

FIG. 12. (Color online) Diagrams for the integration of the sym-
metric part for the current-current kernel �±

II . The two adjacent dots
symbolize the two reservoir field operators belonging to one vertex.
s(a) denotes the symmetric (antisymmetric) contraction γ s(γ a).
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2. Finite-frequency current-current correlation function

In this section, we first set up the RG equations for the
current-current kernel �±

II (�,ξ ) and the required vertices
for an arbitrary model with spin/orbital fluctuations. These
equations are solved explicitly for the isotropic Kondo model.
We finally derive the ac conductance from the finite-frequency
current-current correlation function.

a. Generic RG equations of the current-current kernel

The RG procedure presents two steps. In the first step, the
symmetric part of the reservoir contractions γ

pp′
11′ is integrated

out in a discrete step. In the second one, a cutoff  is introduced
in the contractions via the Fermi function.

Discrete step. For the discrete step, we split the reservoir
contraction into a symmetric and an antisymmetric part

γ
pp′
11′ = δ11̄′p′γ s

1 + δ11̄′γ a
1 , (B12)

where γ s
1 = 1

2ρ(ω̄) and γ a
1 = ρ(ω̄)[fα(ω̄) − 1

2 ] with ω̄ = ηω.
In Fig. 12, we show the lowest order diagrams for the discrete
RG step for the kernel �±

II . Using the diagrammatic rules11

and the decomposition (B12) yields

Ī
±a(2)
11′ =

∫ ∞

−∞
dω̄2p

′γ s
2 (I±)pp

12

1

E12 + ω̄1 + ω̄2 − LD
G

p′p′

2̄1′ +
∫ ∞

−∞
dω̄2p

′γ s
2 G

pp

12

1

E12 + ω̄1 + ω̄2 − LD
(I±)p

′p′

2̄1′ − (1 ↔ 1′),

(B13a)

ĪI
±a

11′ = p′γ s
2 I

pp

12

1

E12 + ω̄12 − LD
(I±)p

′p′

2̄1′ − (1 ↔ 1′), (B13b)

�±a
II =

∫ ∞

−∞
dω̄1

∫ ∞

−∞
dω̄′

1

(
1

2
γ s

1′ + p′γ a
1′

)
γ s

1 I
pp

11′
1

E11′ + ω̄1 + ω̄′
1 − L

(0)
S

(I±)p
′p′

1̄′1̄ . (B13c)

Performing the frequency integrations11 and neglecting terms of order 1/D, we obtain

Ī±a
11′ = Ī±

11′ −i
π

2
(Ī±

12G̃2̄1′ − Ī±
1′2G̃2̄1 + Ḡ12Ĩ

±
2̄1′ − Ḡ1′2Ĩ

±
2̄1), (B14a)

ĪI
±a

11′ = −i
π

2
(Ī12Ĩ

±
2̄1′ − Ī1′2Ĩ

±
2̄1), (B14b)

�±a
II = −i

π2

16
DĪ11′ Ī B±

1̄′1̄ − i
π

4
Ī11′

(
E11′ − L

(0)
S

)
Ĩ±

1̄′1̄ + π2

32
Ī11′

(
E11′ − L

(0)
S

)
Ī±

1̄′1̄ − π

4
DĪ11′ Ĩ±

1̄′1̄, (B14c)

where we used the averaged vertices Ḡ11′ = ∑
p G

pp

11′ and G̃11′ = ∑
p pG

pp

11′ (analog for the current vertices). These results
represent the initial condition for the RG equations set up in the following.

Continuous step. In the continuous RG step, the kernel �±
II (�,ω,ξ,ξ ′) and the vertices Ī±

11′ (�,ω,ξ,ξ ′,ω1,ω1′ ) and
ĪI

±
11′ (�,ω,ξ,ξ ′,ω1,ω1′ ) acquire an additional dependence on the Laplace variables � + iω and ξ + iξ ′, as well as on the

Matsubara frequencies ω1 and ω1′ . In Fig. 13, the diagrams for the current kernel �±
II are shown. According to the diagrammatic

rules developed in Ref. 11, we determine the RG equations for the kernel and the vertices

−dĪ±
11′ (�,ω,ξ,ξ ′; ω1,ω1′ )

d
= −iĪ±

12(�,ω,ξ,ξ ′; ω1,)�(ξ12,ξ
′ + ω1 + )Ḡ2̄1′(ξ12,ξ

′ + ω1 + , − ,ω1′ )

− iḠ12(�,ω; ω1,)�(�12,ω + ω1 + )Ī±
2̄1′ (�12,ω + ω1 + ,ξ,ξ ′; −,ω1′ )

+ Ī±
12(�,ω,ξ,ξ ′; ω1,)�(ξ12,ξ

′ + ω1 + )Ḡ1′3(ξ12,ξ
′ + ω1 + ,ω1′ ,ω3)

×�(ξ11′23,ξ
′ + ω1 + ω1′ +  + ω3)Ḡ3̄2̄(ξ11′23,ξ

′ + ω1 + ω1′ +  + ω3, − ω3, − )

+ Ḡ12(�,ω,ω1,)�(12,ω + ω1 + )Ī±
1′3(E12,ω + ω1 + ,ω1′ ,ω3)

×�(E11′23,ω + ω1 + ω1′ +  + ω3)Ḡ3̄2̄(E11′23,ω + ω1 + ω1′ +  + ω3, − ω3, − )

+ Ḡ12(�,ω,ω1,)�(�12,ω + ω1 + )Ḡ1′3(�12,ω + ω1 + ,ω1′ ,ω3)

×�(�11′23,ω + ω1 + ω1′ +  + ω3)Ī±
3̄2̄(�11′23,ω + ω1 + ω1′ +  + ω3,ξ,ξ ′; −ω3, − )

− Ī±
23(�,ω,ξ,ξ ′; ,ω3)�(ξ23,ξ

′ +  + ω3)Ḡ3̄1(ξ23,ξ
′ +  + ω3, − ω3,ω1)

×�(ξ12,ξ
′ + ω1 + )Ḡ1′2̄(ξ12,ξ

′ + ω1 + ,ω1′ , − )

− Ḡ23(�,ω,,ω3)�(�23,ω +  + ω3)Ī±
3̄1(�23,ω +  + ω3,ξ,ξ ′; −ω3,ω1)

×�(ξ12,ξ
′ + ω1 + )Ḡ1′2̄(ξ12,ξ

′ + ω1 + ,ω1′ , − )

− Ḡ23(�,ω,,ω3)�(�23,ω +  + ω3)Ḡ3̄1(�23,ω +  + ω3, − ω3,ω1)

×�(�12,ω + ω1 + )Ī±
1′2̄(�12,ω + ω1 + ,ξ,ξ ′; ω1′ , −  + (1 ↔ 1′)

− Ī±
23(�,ω,ξ,ξ ′; ,ω3)�(ξ23,ξ

′ +  + ω3)Ḡ11′(ξ23,ξ
′ +  + ω3; ω1,ω1′ )

×�(ξ11′32,ξ
′ + ω1 + ω1′ + ω3 + )Ḡ3̄2̄(ξ11′23,ξ

′ + ω1 + ω1′ + ω3 + ; −ω3, − )
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Ī12 Ī 2̄1̄

ĪI 12 Ḡ2̄1̄

Ī12 Ī2̄3 Ḡ3̄1̄ Ī12 Ḡ2̄3 Ī3̄1̄

ĪI 12 Ḡ2̄3 Ḡ3̄1̄

FIG. 13. (Color online) RG diagrams for the renormalization of the current-current kernel �±
II .

− Ḡ23(�,ω,,ω3)�(�23,ω +  + ω3)Ī±
11′ (�23,ω +  + ω3,ξ,ξ ′; ω1,ω1′ )

×�(ξ11′32,ξ
′ + ω1 + ω1′ + ω3 + )Ḡ3̄2̄(ξ11′23,ξ

′ + ω1 + ω1′ + ω3 + ; −ω3, − )

− Ḡ23(�,ω,,ω3)�(�23,ω +  + ω3)Ḡ11′ (�23,ω +  + ω3,ω1,ω1′ )

×�(�11′32,ω + ω1 + ω1′ + ω3 + )Ī±
3̄2̄(�11′23,ω + ω1 + ω1′ + ω3 + ,ξ,ξ ′; −ω3, − ),

(B15)

−dĪI
±
11′ (�,ω,ξ,ξ ′; ω1,ω1′ )

d
= −iĪ12(�,ω,ω1,)�(�12,ω + ω1 + )Ī±

2̄1′(�12,ω + ω1 + ,ξ,ξ ′; −,ω1′ )

− iĪI
±
12(�,ω,ξ,ξ ′; ω1,)�(ξ12,ξ

′ + ω1 + )Ḡ2̄1′(ξ12,ξ
′ + ω1 + , − ,ω1′ )

+ Ī12(�,ω,ω1,)�(�12,ω + ω1 + )Ī±
1′3(�12,ω + ω1 + ,ξ,ξ ′; ω1′ ,ω3)

×�(ξ11′23,ξ
′ + ω1 + ω1′ +  + ω3)Ḡ3̄2̄(ξ11′23,ξ

′ + ω1 + ω1′ +  + ω3, − ω3, − )

+ Ī12(�,ω,ω1,)�(�12,ω + ω1 + )Ḡ1′3(�12,ω + ω1 + ,ω1′ ,ω3)

×�(�11′23,ω + ω1 + ω1′ +  + ω3)Ī±
3̄2̄(�11′23,ω + ω1 + ω1′ +  + ω3,ξ,ξ ′; −ω3, − )

+ ĪI
±
12(�,ω,ξ,ξ ′; ω1,)�(ξ12,ξ

′ + ω1 + )Ḡ1′3(ξ12,ξ
′ + ω1 + ,ω1′ ,ω3)

×�(ξ11′23,ξ
′ + ω1 + ω1′ +  + ω3)Ḡ3̄2̄(ξ11′23,ξ

′ + ω1 + ω1′ +  + ω3, − ω3, − )

− Ī23(�,ω,,ω3)�(�23,ω +  + ω3)Ī±
3̄1(�23,ω +  + ω3,ξ,ξ ′; −ω3,ω1)

×�(ξ12,ξ
′ + ω1 + )Ḡ1′2̄(ξ12,ξ

′ + ω1 + ,ω1′ , − )

− Ī23(�,ω,,ω3)�(�23,ω +  + ω3)Ḡ3̄1(�23,ω +  + ω3, − ω3,ω1)

×�(�12,ω + ω1 + )Ī±
1′2̄(�12,ω + ω1 + ,ξ,ξ ′; ω1′ , − )

− ĪI
±
23(�,ω,ξ,ξ ′; ,ω3)�(ξ23,ξ

′ +  + ω3)Ḡ3̄1(ξ23,ξ
′ +  + ω3, − ω3,ω1)

×�(ξ12,ξ
′ + ω1 + )Ḡ1′2̄(ξ12,ξ

′ + ω1 + ,ω1′ , − ) + (1 ↔ 1′)
− Ī23(�,ω,,ω3)�(�23,ω +  + ω3)Ī±

11′ (�23,ω +  + ω3,ξ,ξ ′; ω1,ω1′ )

×�(ξ11′32,ξ
′ + ω1 + ω1′ + ω3 + )Ḡ3̄2̄(ξ11′23,ξ

′ + ω1 + ω1′ + ω3 + , − ω3, − )

− Ī23(�,ω,,ω3)�(�23,ω +  + ω3)Ḡ11′(�23,ω +  + ω3,ω1,ω1′ )

×�(�11′32,ω + ω1 + ω1′ + ω3 + )Ī±
3̄2̄(�11′23,ω + ω1 + ω1′ + ω3 + ,ξ,ξ ′; −ω3, − )

− ĪI
±
23(�,ω,ξ,ξ ′; ,ω3)�(ξ23,ξ

′ +  + ω3)Ḡ11′ (ξ23,ξ
′ +  + ω3,ω1,ω1′ )

×�(ξ11′32,ξ
′ + ω1 + ω1′ + ω3 + )Ḡ3̄2̄(ξ11′23,ξ

′ + ω1 + ω1′ + ω3 + , − ω3, − ), (B16)

d�±
II (�,ω,ξ,ξ ′)

d
= +Ī12(�,ω; ,ω2)�(�12,ω + ω2 + )Ī±

2̄1̄(�12,ω +  + ω2,ξ,ξ ′; −ω2, − )

+ ĪI
±(�,ω,ξ,ξ ′; ,ω2)�(ξ12,ξ

′ + ω2 + )Ḡ2̄1̄(ξ12,ξ
′ +  + ω2, − ω2, − )

− iĪ12(�,ω,,ω2)�(�12,ω + ω2 + )Ī±
2̄3(�12,ω + ω2 + ,ξ,ξ ′; −ω2,ω3)

×�(ξ13,ξ
′ + ω3 + )Ḡ3̄1̄(ξ13,ξ

′ + ω3 + , − ω3, − )

− iĪ12(�,ω,,ω2)�(�12,ω + ω2 + )Ḡ2̄3(�12,ω + ω2 + , − ω2,ω3)

×�(�13,ω + ω3 + )Ī±
3̄1̄(�13,ω + ω3 + ,ξ,ξ ′; −ω3, − )

− iĪI
±
12(�,ω,ξ,ξ ′; ,ω2)�(ξ12,ξ

′ + ω2 + )Ḡ2̄3(ξ12,ξ
′ + ω2 + , − ω2,ω3)

×�(ξ13,ξ
′ + ω3 + )Ḡ3̄1̄(ξ13,ξ

′ + ω3 + , − ω3, − ), (B17)
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where the resolvent is given by

�(E,ω) = 1

E + iω − Leff
D (E,ω)

. (B18)

Furthermore, on the right-hand side, we implicitly sum over repeated indices not occurring on the left-hand side, and integrate∫ 

0 dω2 and
∫ 

0 dω3. Since except for � all frequencies are bound by  and  → 0 during the RG flow, we expand around

zero Matsubara frequency26 Ī±
11′ (�,ξ ) = Ī±

11′ (�,0,ξ,0; 0,0) and analogously for ĪI
±. The frequency dependence of the vertices

in lowest order is taken into account by setting all Matsubara frequencies on the right-hand side of Eqs. (B15) and (B16) to zero
and neglecting higher-order contributions:

d

d

[
Ī±

11′ (�,ω,ξ,ξ ′; ω1,ω1′ ) − Ī±
11′ (�,ξ )

] = iĪ±
12(�,ξ )[�(ξ12,ξ

′ + ω1 + ) − �(ξ12,)]Ḡ2̄1′ (ξ12)

+ iḠ12(�)[�(�12,ω + ω1 + ) − �(�12,)]Ī±
2̄1′ (�12,ξ ) − (1 ↔ 1′), (B19)

d

d

[
ĪI

±
11′ (�,ω,ξ,ξ ′; ω1,ω1′ ) − ĪI

±
11′ (�,ξ )

] = iĪ12(�)[�(�12,ω + ω1 + ) − �(�12,)]Ī±
2̄1′ (�12,ξ )

+ iĪI
±
12(�,ξ )[�(ξ12,ξ

′ + ω1 + ) − �(ξ12,)]Ḡ2̄1′ (ξ12) − (1 ↔ 1′). (B20)

Introducing the function F (�,ω) defined by

i�(�,ω) = d

dω
F (�,ω), (B21)

we can integrate these differential equations to

Ī±
11′ (�,ω,ω1,ω1′ ) ∼= 1

2 Ī±
11′ (�) + Ī±

12(�) [F (�12,ω + ω1 + ) − F (�12,)] Ḡ2̄1′(�12)

+ Ḡ12(�) [F (�12,ω + ω1 + ) − F (�12,)] Ī±
2̄1′ (�12) − (1 ↔ 1′), (B22)

ĪI
±
11′ (�,ω; ω1,ω1′ ) ∼= 1

2 ĪI
±
11′ (�) + ĪI

±
12(�) [F (�12,ω + ω1 + ) − F (�12,)] Ḡ2̄1′(�12)

+ Ī12(�) [F (�12,ω + ω1 + ) − F (�12,)] Ī±
2̄1′ (�12) − (1 ↔ 1′). (B23)

Here we used

i�(�,ω + ) ≈ d

d
F (�,ω + ), (B24)

neglecting the implicit  dependence due to Leff
D in the resolvents. The analog expressions for the expanded vertex Ḡ(�) and

Ī (�) can be found in Ref. 26. The RG equations (B15)–(B17) thus reduce to

dĪ±
11′ (�,ξ )

d
= iĪ±

12(�,ξ )�(ξ12,)Ḡ2̄1′(ξ12) − iĪ±
1′2(�,ξ )�(ξ1′2,)Ḡ2̄1(ξ1′2)

+ iḠ12(�)�(�12,)Ī±
2̄1′(�12,ξ ) − iḠ1′2(�)�(�1′2,)Ī±

2̄1(�1′2,ξ )

+ Ī±
23(�,ξ )�(ξ23, + ω3)Ḡ11′ (ξ23)�(ξ11′32,ω3 + )Ḡ3̄2̄(ξ11′23)

+ Ḡ23(�)�(�23, + ω3)Ī±
11′ (�23,ξ23)�(ξ11′32,ω3 + )Ḡ3̄2̄(ξ11′23)

+ Ḡ23(�)�(�23, + ω3)Ḡ11′ (�23)�(�11′32,ω3 + )Ī±
3̄2̄(�11′23), (B25)

dĪI
±
11′ (�,ξ )

d
= iĪ12(�)�(�12,)Ī±

2̄1′ (�12,ξ ) − iĪ1′2(�)�(�1′2,)Ī±
2̄1(�1′2,ξ )

+ iĪI 12(�,ξ )�(ξ12,)Ḡ2̄1′(ξ12) − iĪI 1′2(�,ξ )�(ξ1′2,)Ḡ2̄1(ξ1′2)

+ Ī23(�)�(�23, + ω3)Ī±
11′ (�23,ξ )�(ξ11′32,ω3 + )Ḡ3̄2̄(ξ11′23)

+ Ī23(�)�(�23, + ω3)Ḡ11′ (�23)�(�11′32,ω3 + )Ī±
3̄2̄(�11′23,ξ )

+ ĪI 23(�,ξ )�(ξ23, + ω3)Ḡ11′ (ξ23)�(ξ11′32,ω3 + )Ḡ3̄2̄(ξ11′23), (B26)

d�±
II (�,ξ )

d
= −iĪ12(�)K(�12)Ī±

2̄1̄(�12,ξ ) − iĪI 12(�,ξ )K(ξ12)Ḡ2̄1̄(ξ12) − 2iĪ12(�)K(�12)Ī±
2̄3(�12,ξ )K(ξ2̄3)Ḡ3̄1̄(ξ2̄3)

− 2iĪ12(�)K(�12)Ḡ2̄3(�12)K(�13)Ī±
3̄1̄(�13,ξ ) − 2iĪI 12(�,ξ )K(ξ12)Ḡ2̄3(ξ12)K(ξ13)Ḡ3̄1̄(ξ13), (B27)

where we used

K(�) = i

∫ 

0
dω�(�,ω + ). (B28)
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Weak-coupling analysis above c. As discussed in detail in Refs. 11 and 14 for  > c = max{|�|,|V |,|h|}, the
cutoff scales in the resolvents can be neglected. This leads to a reference solution Ḡ(1) ∝ J , which can be used as a starting point
for a systematic expansion of the RG equations in orders of the coupling constant J at scale .

For the solution of the flow equations, it is important to note that terms proportional to J n/ on the right-hand side lead to
contributions J n−1. Furthermore, by expanding the resolvent it can be shown11,12,14 that the vertices and the corresponding RG
equations can be split in a frequency-dependent and a frequency-independent part:

Ī±(�,ξ ) = Ī±(1) + iĪ±(2a1) + Ī±(2a2) + Ī±(2b)(�,ξ ). (B29)
Here, the superscripts (1) and (2) indicate the order of the vertex in J . For the frequency-independent part of the RG equations,
we consider a differential equation for the imaginary part (2a1) and one for the real part containing the sum of Ī±(1) and Ī±(2a2)

of the vertices:

dĪ
±(1+2a2)
11′

d
= 1



[
Ī±

12Ḡ
(1)
2̄1′ − Ī±

1′2Ḡ
(1)
2̄1 + Ḡ

(1)
12 Ī±

2̄1′ − Ḡ
(1)
1′2Ī

±
2̄1 + Ī±

12Ḡ
(2a2)
2̄1′ − Ī±

1′2Ḡ
(2a2)
2̄1 + Ḡ

(2a2)
12 Ī±

2̄1′ − Ḡ
(2a2)
1′2 Ī±

2̄1

− Ī
±(1)
12 Z(1)Ḡ

(1)
2̄1′ − Ḡ

(1)
12 Z(1)Ī

±(1)
2̄1′ + Ī

±(1)
1′2 Z(1)Ḡ

(1)
2̄1 + Ḡ

(1)
1′2Z

(1)Ī
±(1)
2̄1

− 1

2
Ī

±(1)
23 Ḡ

(1)
11′Ḡ

(1)
3̄2̄ − 1

2
Ḡ

(1)
23 Ī

±(1)
11′ Ḡ

(1)
3̄2̄ − 1

2
Ḡ

(1)
23 Ḡ

(1)
11′ Ī

±(1)
3̄2̄

]
, (B30a)

dĪ
±(2a1)
11′

d
= 1



[
Ī

±(1)
12 Ḡ

(2a1)
2̄1′ + Ī

±(2a1)
12 Ḡ

(1)
2̄1′ − Ī

±(1)
1′2 Ḡ

(2a1)
2̄1 − Ī

±(2a1)
1′2 Ḡ

(1)
2̄1

+ Ḡ
(1)
12 Ī

±(2a1)
2̄1′ + Ḡ

(2a1)
12 Ī

±(1)
2̄1′ − Ḡ

(1)
12 Ī

±(2a1)
2̄1′ − Ḡ

(2a1)
12 Ī

±(1)
2̄1′

]
, (B30b)

dĪI
±(1+2a2)
11′

d
= 1



[
Ī

(1)
12 Ī

±(1)
2̄1′ − Ī

(1)
1′2 Ī

±(1)
2̄1 + Ī

(1)
12 Ī

±(2)
2̄1′ − Ī

(1)
1′2 Ī

±(2)
2̄1 + ĪI

±
12Ḡ

(1)
2̄1′ − ĪI

±
1′2Ḡ

(1)
2̄1

− Ī
(1)
12 Z(1)Ī

±(1)
2̄1′ + Ī

(1)
1′2Z

(1)Ī
±(1)
2̄1 − ĪI

±(1)
12 Z(1)Ḡ

(1)
2̄1′ + ĪI

±(1)
1′2 Z(1)Ḡ

(1)
2̄1

− 1

2

(
Ī

(1)
23 Ī

±(1)
11′ Ḡ

(1)
3̄2̄ + Ī

(1)
23 Ḡ

(1)
11′ Ī

±(1)
3̄2̄ + ĪI

±(1)
23 Ḡ

(1)
11′Ḡ

(1)
3̄2̄

)]
, (B30c)

dĪI
±(2a1)
11′

d
= 1



[
Ī

(1)
12 Ī

±(2a1)
2̄1′ + Ī

(2a1)
12 Ī

±(1)
2̄1′ − Ī

(1)
1′2 Ī

±(2a1)
2̄1 − Ī

(2a1)
1′2 Ī

±(1)
2̄1

+ ĪI
±(1)
12 Ḡ

(2a1)
2̄1′ + ĪI

±(2a1)
12 Ḡ

(1)
2̄1′ − ĪI

±(1)
1′2 Ḡ

(2a1)
2̄1 − ĪI

±(2a1)
1′2 Ḡ

(1)
2̄1

]
, (B30d)

where Z(1) parameterizes the frequency dependence of the Liouvillian in first order14 by L
(1)
D (�) = L

(1)
D − �Z(1). The initial

conditions of the RG equations are given by the discrete RG step (B14a) and (B14b). We note that only the imaginary parts of
Ī±a and ĪI

±a are generated during the discrete step. Thus the real part of Ī± is given by the bare vertex; ĪI
± is initially zero.

The frequency-dependent parts Ī± and ĪI
± can be integrated to

Ī
±(2b)
11′ (�,ξ ) = Ī

±(1)
12 ln

 − iξ12 + iL
(0)
D


Ḡ

(1)
2̄1′ + Ḡ

(1)
12 ln

 − i�12 + iL
(0)
D


Ī

±(1)
2̄1′ − (1 ↔ 1′), (B31)

ĪI
±(2b)
11′ (�,ξ ) = ĪI

±(1)
12 ln

 − iξ12 + iL
(0)
D


Ḡ

(1)
2̄1′ + Ī

(1)
12 ln

 − i�12 + iL
(0)
D


Ī

±(1)
2̄1′ − (1 ↔ 1′). (B32)

In order to distinguish between the different orders in J , we expand K(z) as

K(z) = ln
2 − iz

 − iz
= iz

2
+ K̃(z). (B33)

The terms proportional to J n/ on the right-hand side lead to contributions J n−1 after the integration over , while those
proportional to K̃(z) remain of the same order.

Similarly to the vertices, the RG equation of the kernel �±
II can be split in one for the real and one for the imaginary part.

Since for the derivation of the noise only the imaginary part of �±
II is needed, we will restrict our analysis to Im �±

II here. The
real part will be considered in Appendix B 2c, for the calculation of the imaginary part of the ac conductance. In analogy to the
equations for Ī± and ĪI

±, the imaginary part of �±
II is given by

dIm �±
II

d
= 1

2

[
Ī

(1)
12 (�12 − L

(0)
D )Ī±(2a1)

2̄1̄ + Ī
(2a1)
12 (�12 − L

(0)
D )Ī±(1)

2̄1̄ + ĪI
±(1)
12 (ξ12 − L

(0)
D )Ḡ(2a1)

2̄1̄ + ĪI
±(2a1)
12 (ξ12 − L

(0)
D )Ḡ(1)

2̄1̄

]
− Ī

(1)
12 Im K̃(�12)Ī±(1)

2̄1̄ − ĪI
±(1)
12 Im K̃(ξ12)Ḡ(1)

2̄1̄ , (B34)
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with initial condition given by Eq. (B14c). In order
to distinguish between contributions involving K̃(z) and the
ones proportional to 1/ it is useful to split the RG equation
for �±

II in

dIm �
±(2a)
II

d
= −Ī

(1)
12 Im K̃(�12)Ī±(1)

2̄1̄

− ĪI
±(1)
12 Im K̃(ξ12)Ḡ(1)

2̄1̄ , (B35)

dIm �
±(2b)
II

d
= 1

2

[
Ī

(1)
12 (�12 − L

(0)
D )Ī±(2a1)

2̄1̄

+ Ī
(2a1)
12 (�12 − L

(0)
D )Ī±(1)

2̄1̄

+ ĪI
±(1)
12 (ξ12 − L

(0)
D )Ḡ(2a1)

2̄1̄

+ ĪI
±(2a1)
12 (ξ12 − L

(0)
D )Ḡ(1)

2̄1̄

]
. (B36)

Using K̃(z) = dF̃(z)/d, with

F̃(z) =  ln
2 − iz

 − iz
− iz

2

[
ln

(2 − iz)

2( − iz)2
+ 1

]
, (B37)

Eq. (B35) can be integrated to

Im �
±(2a)
II = −Ī

(1)
12 Im F̃c

(�12)Ī±(1)
2̄1̄ − ĪI

±(1)
12 Im F̃c

(ξ12)Ḡ(1)
2̄1̄ ,

(B38)

where we used F̃(z) →  ln 2 + O(z/)2 for  � |z|.
Thus the contribution at 0 is canceled by the first term of
the initial condition (B14c) for14

0 = π2

16 ln 2
D. (B39)

Weak-coupling analysis below c. As explained in Ref. 14,
up to c we resummed all leading and subleading logarithmic
contributions in ln(D/c) for the renormalized vertex. Thus
at  = c, the bare coupling constant is replaced by

Jc = 1

2 ln c

TK

, (B40)

providing the starting point for an expansion in Jc � 1 for
c � TK . At the same time, the Liouvillian in the resolvents
is replaced by the full effective one Leff

D (z).
Since we stop the flow of the coupling J at c also the

RG flow of all vertices is stopped at this scale. The current-
current kernel �±

II at  = 0 is calculated perturbatively in
Jc by replacing all vertices by their values at  = c in the
following indicated by the index c [e.g., Ḡc(1)]. Carrying out
this replacement in Eq. (B27), we find for the RG equation of
the imaginary part of the current-current kernel up to second
order in Jc:

dIm �
±(2)
II

d
= −Ī

c(1)
12 Im K(�12)Ī c±(1)

2̄1̄ − ĪI
c±(1)
12 Im K(ξ12)Ḡc(1)

2̄1̄ ,

(B41)

which can be easily integrated from c to 0 by using K(z) =
dF(z)/d with

F(z) = F̃(z) + iz

2

(
ln

i

2z
+ 1

)
. (B42)

The contribution proportional to F̃c
(z) is canceled by the

corresponding term from above c, and hence we find

Im �±
II = −Ī

c(1)
12 Im

�12 − Leff
D (�)

2

×
[

ln
ic

2
(
�12 − Leff

D (�)
) + 1

]
Ī

c±(1)
2̄1̄

− ĪI
c±(1)
12 Im

ξ12 − Leff
D (ξ )

2

×
[

ln
ic

2
(
ξ12 − Leff

D (ξ )
) + 1

]
Ḡ

c(1)
2̄1̄ , (B43)

where F̃=0 = 0.
In order to obtain analytic solutions for the RG equations,

we decompose the effective Liouvillian into eigenvalues and
projectors Leff

D (z) = ∑
i λi(z)Pi(z) and expand around the

poles given by the self-consistency equations zi = λi(zi). With
this approximation, Im �±

II at  = 0 is given by

Im �±
II = −

∑
i

�12 − Re zi

2
arctan

�12 − Re zi

Im zi

Ī
c(1)
12 PiĪ

c±(1)
2̄1̄

−
∑

i

ξ12 − Re zi

2
arctan

ξ12 − Re zi

Im zi

ĪI
c±(1)
12 PiḠ

c(1)
2̄1̄ .

(B44)

As explained in detail in Ref. 11, the eigenvalue zi = 0
characterizing the stationary state, could, in principle, lead to
divergencies. Performing the discrete RG step, its contribution
vanishes if the vertex Ḡ stands right of the projector P0

since P0Ḡ = 0. This is the case for the second contribution
of Eq. (B44), but not for the first one. From the definitions
(B11), we obtain the relations Ī+

11′ = 2G̃11′ and Ī−
11′ = 2Ḡ11′ .

Since Ī− is proportional to Ḡ, also the contribution of P0 in the
first term of Eq. (B44) is zero. For Ī+, this does not hold and
the zero eigenvalue will lead to a contribution characterized by
the absence of any finite relaxation rate leading to a sharp kink
in the symmetric noise and a discontinuity in its derivative.
However, there are no contributions of the zero eigenvalue27

in order J 3
c ln(c/|x + i�|) and thus no divergent logarithmic

contributions emerge in Im �+
II .

b. Application to the isotropic Kondo model

In the following, we solve the RG equations set up in the
previous section explicitly for the isotropic Kondo model. The
interaction part of the Hamiltonian (11) is given by

V = 1
2g11′ : a1a1′ : , (B45)

where we used the notation 1 = ηασω and sum (integrate)
implicitly over all indices (frequencies). Here, g11′ is the
coupling vertex acting on the dot states only and :.: denotes
normal-ordering of the reservoir field operators, meaning
that no contractions within the normal-ordered product are
allowed. A contraction is defined by

a1a1′ ≡ 〈a1a1′ 〉ρres = δ11̄′ρ(ω)fα(ηω), (B46)
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with fα(ηω) = (eω/Tα + 1)−1 = 1 − fα(−ω) the Fermi distri-
bution function at the corresponding temperature Tα of the
reservoir and δ11′ ≡ δηη′δαα′δσσ ′δ(ω − ω′) is the δ distribution
in compact notation. Furthermore, we introduce the cutoff
band width D via the density of states

ρ(ω) = D2

D2 + ω2
. (B47)

For the isotropic Kondo model, we consider [see Fig. 1 and
Eq. (11)] the coupling vertex

g11′ = 1

2

{
(Jαα′ )0S

iσ i
σσ ′ for η = −η′ = +

−(Jα′α)0S
iσ i

σ ′σ for η = −η′ = −.
(B48)

In Liouville space, it reads

G
pp

11′ = 1

2

{
(Jαα′ )0L

piσ i
σσ ′ for η = −η′ = +

−(Jα′α)0L
piσ i

σ ′σ for η = −η′ = − (B49)

with the spin superoperators Lp = (Lpx,Lpy,Lpz) defined by
their action on an arbitrary operator A in the dot Hilbert space

L+A = SA, L−A = −AS. (B50)

The explicit matrix structure of these spin matrices can be
found in Ref. 12. For the solution of the RG equations, these
matrices will always occur in the combinations

L1 = 1
2 (L+ − L−) − iL+ × L−, (B51a)

L2 = − 1
2 (L+ + L−), (B51b)

L3 = 1
2 (L+ − L−) + iL+ × L−, (B51c)

La = 3
41 + L+ · L−, (B51d)

Lb = 1
41 − L+ · L−, (B51e)

Lc = 1
21 + 2L+zL−z, (B51f)

Lh = L+z + L−z = −2L2z. (B51g)

With these spin superoperators the Liouvillian in zeroth order
is given by

L
(0)
D = [HD,·]− = h0L

h. (B52)

The results for the coupling vertex, the Liouvillian and
the current vertex I for η = −η′ = + determined in Refs. 11
and 14 read

Ḡ
(1)
11′ = −Jαα′ L2σ σσ ′, (B53a)

G̃
(1)
11′ = 1

2
Jαα′ (L1 + L3)σ σσ ′, (B53b)

Ḡ
(2a1)
11′ = π

2
JαβJβα′ L3σ σσ ′, (B53c)

L
(1)
D = 1

2
trJh0L

h, (B53d)

Ī
(1)
11′ = 1

2
JL

αα′ L1σ σσ ′, (B53e)

Ī
(2a1)
11′ = −3π

8

(
JL

αβJβα′ − JαβJL
βα′

)
Lbδσσ ′ , (B53f)

where σ is a vector consisting of the Pauli matrices and
JL

αα′ = cL
αα′Jαα′ . The vertex for η = −η′ = − is obtained by

using Ḡ11′ = −Ḡ1′1, which also holds for the current vertices.

Furthermore, the coupling constant Jαα′ = 2
√

xαxα′J fulfills
the poor man’s scaling equation

dJ ()

d
= − 2


J ()2, (B54)

which is solved by

J () = 1

2 ln 
TK

, TK = 0e
−1/(2J0), (B55)

where J0 = J (0) is the initial value of the coupling constant
at 0.

According to Eqs. (B11b) and (B11c), the initial values for
Ī± and Ĩ± are given by

Ī
+(1)
11′ = 2G̃

(1)
11′ = JL

αα′ (L1 + L3)σ σσ ′ , (B56a)

Ĩ
+(1)
11′ = 2Ḡ

(1)
11′ = −2JL

αα′ L2σ σσ ′, (B56b)

Ī
−(1)
11′ = 2Ḡ

(1)
11′ = −2JL

αα′ L2σ σσ ′, (B56c)

Ĩ
−(1)
11′ = 2G̃

(1)
11′ = JL

αα′ (L1 + L3)σ σσ ′ . (B56d)

Inserting these initial vertices in Eqs. (B30) and using the
poor man’s scaling equation (B54), the vertices Ī±

11′ as well
as ĪI

±
11′ can be determined up to second order in J . Since

for the derivation of the imaginary part of the current-current
kernel the real part of the vertices is needed only in first order,
we skip the second order of the real part here. In first order,
I± is given by its initial value with -dependent coupling J .
The imaginary part of the second order is given by its initial
condition (B14a) with the initial couplings J0 replaced by the
-dependent ones:

Ī
+(2a1)
11′ = −i

3π

4

(
JL

αβJβα′ − JαβJL
βα′

)
Lbδσσ ′

+ i
π

4

(
JL

αβJβα′ − JαβJL
βα′

)
Laδσσ ′

− iπ (JL
αβJβα′ + JαβJL

βα′ )L2iσ i
σσ ′ (B57a)

Ī
−(2a1)
11′ = iπ

(
JαβJL

βα′ + Jβα′JL
αβ

)
L3iσ i

σσ ′ . (B57b)

The generated vertex ĪI
± is initially given by Eq. (B14b),

ĪI
+a

11′ = iπJL
αβJL

βα′L
1iσ i

σσ ′, (B58)

ĪI
−a

11′ = 0, (B59)

with no contribution in first order. Solving Eqs. (B30c) and
(B30d), we find that ĪI

+ remains zero in first order, while ĪI
−

is given by

ĪI
−(1)
11′ = aLL

αα′L
1iσ i

σσ ′ , (B60)

with

aLL
αα′ = 1

4

(
−1

2

J 2

J0
+ 1

2
J0

)
1 + 1

4

(
J − 1

2

J 2

J0
− 1

2
J0

)
σx.

(B61)

We note that the contribution of (B60) to the antisymmetric
noise as well as to the ac conductance will turn out to vanish.
For the contributions in second order, ĪI

− is zero, while ĪI
+

is given by

ĪI
(2a1)
11′ = π

2

(
JL

αβJL
βα′ + JL

βα′J
L
αβ

)
L1σ σσ ′ . (B62)
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The RG equation (B36) for the contribution from  > c of
�±

II (�,ξ ) can be solved by inserting these vertices and using
the poor man’s scaling equation (B54).

Using for the poles zi and projectors Pi (see Ref. 14)

z0 = 0, P0 = Lb + 2ML3z, (B63)

z1 = −i�1, P1 = La − Lc − 2ML3z, (B64)

z± = ±h − i�2, P± = 1
2 (Lc ± Lh), (B65)

with the renormalized magnetic field h, relaxation rates �1/2,
and the magnetization M , Eq. (B44) gives for the current-
current kernel in the limit ξ → 0+,

Im �+
II = π

2
J 2

ndhL1z + π

8
J 2

nd

∑
α,σ=±

|� + αV + σh|2Lb

+ π

4
J 2

nd

∑
α=±

[|� + αV | − |� − αV |1]ML1z

+ π

2
J 2

nd

∑
α=±

|� + αV |1Lb, (B66)

Im �−
II = 3π

4
J 2

nd�Lb + π

8
J 2

nd

∑
α,σ=±

σ |� + αV + σh|2L1z.

(B67)

The symmetric and the antisymmetric noise (16) are obtained
by multiplying with the stationary density matrix14 ρst = 1

21 +
2MSz from the right, and performing the trace over the dot
degrees of freedom, with TrDLbρst = 1 and TrDL1zρst = 2M .

c. AC conductance

The real part of the ac conductance is given by Eq. (7) and
thus can directly be calculated from the antisymmetric current
noise (16b). According to Eq. (8), the imaginary part of the ac
conductance is given by

Im G(�) = 1

�
[Im C−(�) − Im C−(0)], (B68)

with

Im C−(�) = −TrD
[
Re �−

II (�,i0+)ρst
D

]
. (B69)

Starting from Eq. (B27) and following the calculation of
Im �−

II , we obtain the flow equation for the real part:

dRe �−
II

d

= 1

2
Ī

(1)
12 (�12 − L

(0)
D )Ī−(2a2)

2̄1̄ + 1

2
Ī

(2a2)
12 (�12 − L

(0)
D )Ī−(1)

2̄1̄

+ 1

2
ĪI

(1)
12 (ξ12 − L

(0)
D )Ḡ(2a2)

2̄1̄ + 1

2
ĪI

(2a2)
12 (ξ12 − L

(0)
D )Ḡ(1)

2̄1̄

− Ī
(1)
12 Re K̃(�12)Ī−(1)

2̄1̄ − ĪI
(1)
12 Re K̃(ξ12)Ḡ(1)

2̄1̄ . (B70)

As a consequence of Eq. (B68), all �-independent terms will
not contribute. In addition, the current vertices Ī (2a2) and Ī−(2a2)

determined by the RG equation (B30a) do not contribute due
to the matrix structure as Ī (2a2) ∝ L1 and Ī−(2a2) ∝ L1. Using
Eqs. (B53e) and (B56c) for Ī (1) and Ī−(1), we thus obtain

Re �−
II = 1

4
J 2

nd

∑
α,σ=±

σL2(� + αV + σh)L1z, (B71)

which yields

Im C−(�) = −1

2
J 2

nd

∑
α,σ=±

σL2(� + αV + σh)M. (B72)

For the imaginary part of the ac conductance (B68), we finally
obtain

Im G(�) = − M

2�
J 2

nd

∑
α,σ=±

σ [L2(� + αV + σh)

−L2(αV + σh)]. (B73)

The real part of the ac conductance (28a) and its imaginary
part can be combined to a single complex function. Introducing
H2(x) = L2(x) + iπ |x|2/2, the ac conductance is given by

G(�) = 3π

4
J 2

nd − i
M

2�
J 2

nd

∑
α,σ=±

σ [H2(� + αV + σh)

−H2(αV + σh)]. (B74)

3. Low-frequency limit

In this appendix, we discuss the additional contributions
to the current noise and the ac conductance arising from the
reducible part of the current-current correlation function (15),

C±
red(�) = −iTrD

[
�I (�)

1

� − Leff
D (�)

�±
I (�,i0+)ρst

D

]
,

(B75)

in the low-frequency limit. For � → 0, the contribution of the
eigenvalue z1 appears to be of order J 2. In addition, the zero
eigenvalue leads to a singularity. In the following, we analyze
these contributions.

First, we compute the current kernels �I and �±
I . The

kernel of the normal current operator �I derived in Ref. 14 for
zero frequency is obtained by replacing the Laplace variable
by the frequency �:

�I (�) = i
3π

8
V J 2

ndL
b

+ 1

8
J 2

nd

∑
α,σ=±

ασH2(� + αV + σh)L1z. (B76)

For the derivation of the kernel �±
I (�,ξ ), we have to take into

account all diagrams with the current vertex on an arbitrary
position. In particular, we have to distinguish between the two
frequencies, � occurring to the left of I±, and ξ → 0+ to the
right. Furthermore, since �I (�) is on the leftmost position in
Eq. (B75), we can neglect all contributions vanishing under
the trace. Differently, for �±

I (�,ξ ), all terms have to be taken
into account. This yields the RG equation

d�±
I (�,ξ )

d
= −iĪ±

12(�,ξ )K(ξ12)Ḡ2̄1̄(ξ12)

− iḠ12(�)K(�12)Ī±
2̄1̄(�12,ξ )

− 2iḠ12(�)K(�12)Ī±
2̄3(�12,ξ )K(ξ2̄3)Ḡ3̄1̄(ξ2̄3)

− 2iḠ12(�)K(�12)Ḡ2̄3(�12)K(�13)Ī±
3̄1̄(�13,ξ)

− 2iĪ±
12(�,ξ )K(ξ12)Ḡ2̄3(ξ12)K(ξ13)Ḡ3̄1̄(ξ13).

(B77)
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Solving this equation in an analog way as the one for �±
II , we

obtain

�+
I (�,0+) = −1

2
J 2

nd

∑
α,σ=±

ασH2(� + αV + σh)L3z

+ i
π

2
J 2

ndV (3Lb − La)

+ i
π

2
J 2

nd

∑
σ=±

σ |V + σh|2L1z, (B78a)

�−
I (�,0+) = 2J 2

nd

∑
σ=±

L2(V + σh)La

− J 2
nd

∑
α,σ=±

αH2(� + αV + σh)La.

(B78b)

Now we discuss the contribution of the eigenvalue z1. With
Eqs. (B76) and (B78a), the reducible contribution at � = 0 to
the symmetric current-current correlation function is given by

C+
red(0)|z1 = TrD�I (0)

1

�1
P1�

+
I (0,i0+)ρst

D

= −2πJ 4
nd

1

�1
V M

∑
σ=±

σ |V + σh|2

−
(

2M2 + 1

2

)
J 4

nd
1

�1

(∑
σ=±

σ |V + σh|2
)2

.

(B79)

Since C+
red(0)|z1 is real and Re C+ = S+, it represents

the reducible contribution to the symmetric noise. Since
�−

I (0,0+) = 0, there is no additional contribution to the
antisymmetric noise at � = 0.

In the limit � → 0, Eq. (8) for the ac conductance reads

G(� → 0) = dC−

d�

∣∣∣∣
�=0

. (B80)

Using Eq. (B75), the reducible part of the conductance can be
expressed directly by the current kernels �I and �−

I :

Gred(� → 0)|z1 = − 1

�1
TrD

[
�I (0)P1

d�−
I

d�

∣∣∣∣
�=0

ρst
D

]
, (B81)

where we used that P1 and �1 are independent of the external
frequency � and �−

I (0,0) = 0. With

d�−
I

d�

∣∣∣∣
�=0

= −2i
d�1

dV
La, (B82)

we obtain

Gred(� = 0)|z1 = −π

2
J 2

nd
M

�1

d�1

dV

∑
σ=±

σ |V + σh|2. (B83)

We finally note that this term is real and thus does not affect
the imaginary part of the ac conductance.

The reducible contribution of Eq. (B75) of the zero
eigenvalue is given by

C±
red(�)|z0 = −iTrD�I (�)

1

�
P0�

±
I (�,0+)ρst

D, (B84)

which leads to a singularity in the limit � → 0. To study
the singular behavior in detail, we use the kernels �I (�) and
�±

I (�,0+) given by Eqs. (B76) and (B78), respectively. The
contribution to S+(0) is

S+
red(�)|z0 = Re C+

red(�)|z0

= −πTrD�I (�)P0�
+
I (�,0+)δ(�)ρst

D, (B85)

due to Im 1
�+iδ

= −πδ(�). Inserting Eqs. (B76) and (B78a),
we find

S+
red(0)|z0 =

[
9π3

8
J 4

ndV
2 + 3π3

2
J 4

ndV M
∑
σ=±

|V + σh|2

+π2J 4
nd

(
M

∑
σ=±

|V + σh|2
)2]

δ(�)

= 2π〈I 〉2
stδ(�), (B86)

where we used14

〈I 〉st = 3π

4
J 2

ndV + π

2
J 2

ndM
∑
σ=±

σ |V + σh|2. (B87)

Thus this term is exactly canceled by the second term of
Eq. (6a) and does not lead to any singularities.

As �−
I ∝ La and P0L

a = 0, there is no singular behavior
in S−(0) and hence G(� → 0) is not affected.
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