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Helical Fermi arcs and surface states in time-reversal invariant Weyl semimetals
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Weyl semimetals are gapless three-dimensional topological materials where two bands touch at an even
number of points in the Brillouin zone. In this work we study a zinc-blende lattice model realizing a time-reversal
invariant Weyl semimetal. The bulk dynamics is described by 12 helical Weyl nodes. Surface states form a
peculiar quasi-two-dimensional helical metal fundamentally different from the Dirac form typical for topological
insulators. The allowed direction of velocity and spin of low-energy surface excitations are locked to the cubic
symmetry axes. The studied system illustrates the general properties of surface states in systems with common
crystal symmetries.
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I. INTRODUCTION

The study of gapped topological matter, such as quantum
Hall states, topological insulators (TI), and topological super-
conductors, has become a central topic in condensed-matter
physics.1 Topological materials exhibit a wide range of exotic
phenomena such as fractionalized excitations, quantized re-
sponses, and unusual surface states that have become signature
properties of these systems. A rapidly growing trend in search
of new topological materials is the rising interest in gapless
phases.

Weyl semimetals are three-dimensional (3D) materials
where two energy bands touch at an even number of
points in the reciprocal space.2 Band touching points, called
Weyl nodes, are possible in systems where either inversion
symmetry (IS) or time-reversal symmetry (TRS) is broken.
The robustness of Weyl semimetals follows from topological
properties of Weyl nodes acting as sources of the Berry
curvature and defining monopoles in momentum space.2,3

Characteristic physical properties of Weyl semimetals include
unusual electromagnetic response4–11 such as anisotropic dc
conductivity and anomalous Hall effect and the existence of
Fermi arcs and topological surface states12 and exotic broken-
symmetry states.13,14 There exist a number of promising
theoretical proposals,9,12,15–21 but no experimental verification
has been achieved yet. While Weyl semimetals with broken
TRS have been studied extensively, the time-reversal invariant
case has received much less attention.22 Weyl semimetals with
unbroken TRS are not merely of academic interest since, quite
generally, there exists a Weyl semimetal phase between a TI
and a trivial insulator phase when IS is broken.23,24

In this work we study a time-reversal invariant tight-binding
model in the zinc-blende lattice with a nearest-neighbor hop-
ping and a spin-orbit coupled next-nearest-neighbor hopping.
The orbitals on the different fcc sublattices have different
on-site energies, thus leading to IS breaking. The studied
model is a variant of the Fu-Kane-Mele model realizing 3D TI
phases.25 It is interesting that breaking IS by on-site potential
leads to rich physics fundamentally different from the gapped
TI phases.

The studied model realizes a time-reversal invariant Weyl
semimetal with 12 inequivalent Weyl nodes. In contrast to
most of the previous studies where Weyl semimetals are
realized by stacked two-dimensional (2D) layers, the surface

spectrum is identical for surfaces perpendicular to the three
cubic axes. Populated surface states form a number of
helical time-reversed patches bounded by Fermi arcs that are
aligned with the cubic axes. Low-energy excitations in the
vicinity of the Fermi arcs are highly unusual, consisting of
particles moving only along the cubic symmetry axes, with
their spin pointing to the perpendicular direction. Thus the
surface spectrum provides a new type of helical metal very
different from typical TI surface states1 and magnetic or
irradiated26 Rashba systems. Considering that much of the
interest in time-reversal invariant TIs is concentrated on their
helical surface metal, helical surface states on Weyl metals
offer intriguing alternative realization with distinct properties.
The studied model illustrates general features of Fermi arc
structures of time-reversal invariant Weyl semimetal with
common point-group symmetries.

II. THE STUDIED MODEL

We are studying a variant of the tight-binding model on
the zinc-blende lattice introduced by Fu, Kane, and Mele
in their pioneering work of topological insulators in three
dimensions.25 The zinc-blende lattice consists of two fcc
lattices displaced along the space diagonal by one quarter of
its length. The Hamiltonian of the model is

H = −
∑

〈i,j〉
(t c

†
i cj + H.c) +

∑

i

Ei c
†
i ci

+ iλ
∑

〈〈i,j〉〉
(c†i eij · s cj − H.c). (1)

The first term corresponds to the nearest-neighbor hopping
connecting points on different sublattices, the second term
represents the staggered on-site potential, and the last term is
the spin-orbit hopping between the second neighbors residing
on the same sublattice characterized by λ. Following Ref. 25,
we have chosen a next-nearest spin-orbit hopping term which
respects IS in addition to TRS. We assume that the lattice sites
are distinguished by their on-site potential so that Ei = ±ε

depending on which sublattice the site resides. This breaks IS
of the diamond structure and is crucial for the appearance of
the Weyl semimetal phase. The spin-orbit field is determined
by the two bond vectors connecting the second neighbors as
eij = ei×ej

|ei×ej | and s = (sx,sy,sz) are the Pauli matrices acting on
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spin. The staggered on-site potential breaks IS, which is crucial
in obtaining the Weyl semimetal phase. Model (1) gives rise
to the Bloch Hamiltonian

H = d1(k)σx + d2(k)σy + εσz

+ σz[Dx(k)sx + Dy(k)sy + Dz(k)sz], (2)

with

d1(k) = t(1 + cos k · a1 + cos k · a2 + cos k · a3),

d2(k) = t(sin k · a1 + sin k · a2 + sin k · a3),
(3)

Dx(k) = λ [sin k · a2 − sin k · a3

− sin (k · a2 − k · a1) + sin (k · a3 − k · a1)]

and where (σx,σy,σz) are the Pauli matrices acting on sublattice
space. The primitive and reciprocal vectors of the fcc lattice
are given by

a1 = a

2
(0,1,1), b1 = 2π

a
(−1,1,1),

a2 = a

2
(1,0,1), b2 = 2π

a
(1, − 1,1), (4)

a3 = a

2
(1,1,0), b3 = 2π

a
(1,1, − 1).

The other components Dy/z(k) are obtained by permuting
lattice vectors cyclically in the expression for Dx(k). The
time-reversal operation acting on Bloch Hamiltonians and
states has a representation T = −isyK , where K denotes
complex conjugation. The studied model (2) satisfies
T H (k)T −1 = H (−k), which is the criterion for a model to be
time-reversal invariant.

III. THE WEYL NODE STRUCTURE

The effective Weyl Hamiltonian can be found by reduc-
ing the four-band model to gapless and gapped two-band
models. This can be achieved by identifying the k-dependent
eigenstates of the spin sector D·s

D
|±D〉 = ±|±D〉, where D =

(Dx(k),Dy(k),Dz(k)) and D = √∑
i Di(k)2. In this basis the

spin part can be replaced by its eigenvalues in (2), leading to
two-band Hamiltonians for these spin sectors,

H± = d1(k)σx + d2(k)σy + [±D(k) + ε]σz. (5)

Assuming ε > 0 (ε < 0), H+ (H−) is always gapped, but band
touching in the H− (H+) sector may occur if d1 = d2 = 0
and D = ε (D = −ε) for some k = k0. When the IS-breaking
potential is weaker than the critical value ε < εc = 4|λ|, the
band-touching conditions yield 12 inequivalent Weyl nodes in
the first Brillouin zone at (±k0,0, 2π

a
), (0,±k0,

2π
a

), (±k0,
2π
a

,0),
(0, 2π

a
,±k0),( 2π

a
,0,±k0,), ( 2π

a
,±k0,0), where sin k0

2 = ε
4λ

. The
Weyl node structure is illustrated in Fig. 1. At ε = 0 the system
is gapless, and the Weyl nodes of opposite helicity sit on top of
each other. When inversion symmetry is weakly broken, 0 <

| ε
4λ

| � 1, the nodes move away from the three inequivalent
X points (0,0, 2π

a
), (0, 2π

a
,0), and ( 2π

a
,0,0). By increasing

| ε
4λ

|, the Weyl nodes move toward the four inequivalent W

points on the zone boundary. Since the W points on different
faces are connected by reciprocal lattice vectors bi , they
annihilate each other at the critical value | ε

4λ
| = 1, beyond

which the system becomes a trivial insulator. The dashed

FIG. 1. (Color online) Red and blue circles represent the 12
independent Weyl nodes of opposite chirality in the first Brillouin
zone. The node outside the zone is equivalent to the one in the kz = 0
plane and illustrates how the nodes annihilate at critical value ε = εc.

lines illustrate this process for a pair of nodes. One way to
understand the topological properties of the system is to map
the Hamiltonians (5) to the Bloch sphere. In the gapped phase
when |ε| > εc, it is not possible to cover the whole sphere
since [±D(k) + ε] always has the same sign when k takes all
values in the Brillouin zone. Particularly, if k is restricted to
a 2D submanifold defining a 2D Brillouin zone, the Chern
number of the mapping is always zero for both spin sectors.
The insulator phase is trivial without protected surface states.

On general grounds it is known that 6 of the 12 nonequiv-
alent Weyl nodes have positive (negative) helicity and that
nodes related by TRS have the same helicity. A twofold
rotational symmetry along cubic axes implies that the nodes
connected by π rotation have the same helicity. The zinc-
blende structure also respects π

2 rotations combined with a
reflection with respect to the plane orthogonal to the rotation
axis. The nodes related by this symmetry have opposite
helicities due to reflection. These expectations can be verified
in a systematic approach. In the vicinity of a Weyl node
the effective Hamiltonian can be brought to the form H =
vxkxσx + vykyσy + vzkzσz describing a hedgehog in the recip-
rocal space.2 The topological invariant associated with a Weyl
point can be calculated as a flux through the surface containing
the hedgehog and takes values ν = sign(vxvyvz). For a general
Hamiltonian H = ∑

i ni(k)σi with a Weyl node at k = k0

the invariant can be evaluated by ν = sign{det[∂ki
nj (k)]}|k=k0 .

Employing this formula, we can now identify the helicities
of Weyl points yielding ν(±k0,0, 2π

a
) = −sign ε, ν(0,±k0,

2π
a

) =
sign ε, ν( 2π

a
,±k0,0) = −sign ε, ν( 2π

a
,0,±k0) = sign ε, ν(±k0,

2π
a

,0) =
sign ε, ν(0, 2π

a
,±k0,) = −sign ε. As illustrated in Fig. 1, this

helicity structure confirms expectations from symmetry con-
siderations. The gapless sector of Eq. (5) describes a 3D helical
semimetal with opposite spin textures near nodes connected
by TRS. Generally, if Weyl nodes are grouped into pairs of
opposite helicities, the sum of the resulting separation vectors
vanishes (modulo a reciprocal lattice vector) by virtue of TRS.
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FIG. 2. (Color online) Phase diagram as a function of the IS-
breaking sublattice potential ε and spin-orbit coupling λ. At ε =
0 line inversion symmetry is restored, and the system is a Dirac
semimetal with a fourfold degenerate touching of two conduction
and two valence bands at X points.

The existence of a Weyl semimetal phase in the studied
model can be understood by arguments due to Murakami.23

At a generic (non-TRS) point in the Brillouin zone the bands
are nondegenerate, so a generic crossing happens between two
bands. The codimension of this crossing is three since the most
general Hamiltonian in the two-band subspace is described
by a linear combination of the three Pauli matrices (and an
unimportant term proportional to the unit matrix). Because the
dimensionality of the system coincides with the codimension
of the crossing, the touching of the bands may take place in
isolated points in the Brillouin zone. There exists a finite region
where a small variation of one parameter in the effective 2 × 2
Hamiltonian, such as ε in the studied case, just shifts the band
touching points but cannot gap them. Large perturbations may
gap the system by bringing two nodes of opposite helicity
together and annihilating them. The general phase diagram
of a system with broken IS is more complicated,24 but it is
reasonable to expect a finite gapless region between gapped
phases in the studied model, as illustrated in Fig. 2.

IV. SURFACE STATES AND FERMI ARCS

In the presence of a surface, Weyl semimetals exhibit
topologically protected surface states. Projections of Weyl
nodes to the surface determine end points of Fermi arcs, a
line in the surface Brillouin zone separating occupied and
empty states. The Fermi arc structure determines low-energy
properties of surface excitations. It is expected that Fermi arcs
are formed between the nodes that annihilate each other at W

points since a trivial insulator does not support surface states.
Assuming the IS-breaking parameter satisfies ε > 0, the

Weyl nodes are contained in the H− sector with spin wave
function |−D〉. First, we study the surface spectrum when the
system is terminated by a (001) plane. The in-plane momenta
kx,ky remain good quantum numbers and parametrize the
spectrum in the surface Brillouin zone |kx ± ky |� 2π

a
. The

Fermi arcs in this direction follow from the horizontally
moving Weyl nodes; the arcs from the vertically moving
nodes shrink to points in the surface Brillouin zone boundary.
As illustrated in Fig. 1, the horizontally moving nodes have
lattice equivalent counterparts in the kz = 2π

a
plane, so we

can concentrate on the neighborhood of H−(kz = 2π
a

). In

order to solve the surface modes, we define a new variable,
q = (kx,ky,

2π
a

), and linearize H− in q̃z ≡ kz − 2π
a

around
q̃z = 0, which yields

H (q) = d1(q)σx + d2(q)σy + [−D(q) + ε]σz

+ q̃z[d
′
1(q)σx + d ′

2(q)σy] + O
[
q̃2

z

]
, (6)

where d ′
1(k) = ∂kz

d1(kx,ky,kz)|kz= 2π
a

and d ′
2(k) = ∂kz

d2(kx,ky,

2π
a

). Defining d ′(q) ≡
√

d ′2
1 + d ′2

2 and d(q) ≡
√

d2
1 + d2

2 and
employing the orthogonality d ′

1(q)d1(q) + d ′
2(q)d2(q) = 0, it

follows that a rotation in the sublattice space U = e−iθσz/2 with
sin θ = d ′

2
d ′ transforms Eq. (6) to

H = q̃zd
′(q)σx + d(q)sign(kxky)σy + [ε − D(q)] σz. (7)

The sign function determines whether (d ′
1,d

′
2,0), (d1,d2,0), and

(0,0,1) define a right- or left-handed orthogonal set.
By substituting q̃z → −i∂z in Eq. (7), we search for

normalizable surface states satisfying H	 = E(kx,ky)	. Be-
fore proceeding further we must determine the appropriate
boundary condition that describes the vacuum-Weyl semimetal
boundary. The system is gapped when ε > εc, and as discussed
above, this phase corresponds to a topologically trivial band
insulator. Choosing coordinates so that z = 0 coincides with
the boundary, the surface states can be found by requiring that
ε = ε+ > εc for z > 0 (outside the system) and ε = ε− < εc

for z < 0 (inside the system). From the topological point of
view vacuum can be regarded as a band insulator with a very
large band gap, so the above boundary condition is appropriate
to describe a Weyl metal terminated by a surface.18

For positive ε we find a state localized on the surface for
each (kx,ky) satisfying D(q) > ε−, given by

	(kx,ky,z) = Ae
∓ z

ξ± |+y〉|−D〉, (8)

where upper (lower) signs correspond to the region outside
(inside) the system. Here |+y〉 denotes the state for which
σy |+y〉 = |+y〉, and we have included the spin part of the wave
function explicitly. The momentum-dependent penetration
depth of wave functions into the bulk is given by ξ± =
± d ′(q)

−D(q)+ε±
(which is positive under our assumptions). The

dispersion of the surface states is given by

E(kx,ky) = sign(kxky)d(q) = 4t sin
kxa

4
sin

kya

4
. (9)

As plotted in Figs. 3(a) and 3(b), the region for allowed surface
states is bounded by curves where the penetration depth ξ−
diverges (the black dashed curves). The divergence of ξ− is
accompanied by the merging of the surface spectrum to the
bulk spectrum, so the surface states cannot be distinguished
from the bulk states anymore. The positive (negative) energy
states exist in disjoint, time-reversed patches of the surface
Brillouin zone. More precisely, the states at k and −k have the
same energy and opposite spin. The Fermi arcs connecting the
Weyl points and satisfying the condition E(kx,ky) = 0 coin-
cide with the coordinate axes kx = 0 and ky = 0 separating the
positive and negative energy surface patches, as illustrated in
Figs. 3(a), 3(b), and 3(c). The spin of the surface states, shown
in Fig. 3(d), is parallel to (−Dx(k), − Dy(k),0)|kz= 2π

a
and has

only an in-plane component. The surface states are helical:
the in-plane momentum determines the spin state uniquely.
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(a) (b)

(c)

(d)

FIG. 3. (Color online) (a) The surface states first appear on
separate small patches when the system is close to the band insulator
transition ε

4λ
= 0.95 and grow together when the system enters

deeper into the Weyl metal phase. The lines connecting the nodes
represent the Fermi arcs. In the white area the penetration depth
perpendicular to the surface diverges. (b) Same as (a), but for
ε

4λ
= 0.75. (c) Energy dispersion of the surface states for ε

4λ
= 0.75.

(d) Spin texture of the surface states. On the Fermi arcs spin points
in one of the four allowed directions.

However, as discussed below, surface states are fundamentally
different from the Dirac form encountered in many TIs.

Allowing also negative values of ε, the surface states exists
for (kx,ky) satisfying D(kx,ky,

2π
a

) � |ε−|. The spectrum and
eigenfunctions are given by those presented above with the
exception that energy changes its sign and spin and sublattice
states are flipped, |−D〉 → |+D〉, |+y〉 → |−y〉. Therefore
the surface spectrum is not continuous at ε = 0. This behavior
is similar to the discontinuity in the anomalous Hall insulator
described by a Dirac equation with a sign-changing mass term.
Although the spectrum is not continuous at zero mass, the
penetration depth of the surface states diverges and smooths
out the transition in finite systems. The solution for the surface
spectrum by employing the linearized (long wavelength)
Hamiltonian (7) is valid as long as the characteristic spatial
variation is smooth ξ− 
 a. This condition fails at the surface
Brillouin zone boundary since d ′(q) = 0 at ky = kx ± 2π

a
.

However, for large enough ε values the surface spectrum
does not extend to the Brillouin zone boundary and analytical
approximation provides an accurate description everywhere.
Also, for weakly broken IS, ε

λ
� ( a

ξ−
)2, the approach fails since

in that case the two spin sectors (5) become nearly degenerate
and the long-wavelength approximation cannot resolve which
one contains the Weyl nodes. However, the case of small ε is of
limited interest since the surface states are not well localized
to the surface anyway.

The above analysis identifies Fermi arcs and surface states
for (001) surfaces. A similar analysis as presented above
can be carried out for (010) and (100) surfaces, and as the
symmetric structure of the nodes in Fig. 1 suggests, the spectra

for those surfaces are essentially identical to the spectrum of
the (001) surface.

V. DISCUSSION AND SUMMARY

As discussed above, the low-energy sector of surface states
consists of excitations in the vicinity of the two pairs of
time-reversed Fermi arcs. By time-reversed Fermi arcs we
mean arcs connected by the transformation k → −k. Since
the electronic dispersion is flat along the Fermi arcs, velocity
v = ∂kE(k) is perpendicular to the arc and spin near the arcs,
as illustrated in Figs. 3(c) and 3(d). Interestingly, velocity and
spin can have only one of the four allowed orientations near
the arcs. Therefore the allowed low-energy surface excitations
resemble those of two perpendicular one-dimensional (1D)
helical metals rather than a 2D helical metal realized on the
surfaces of many TI materials. Time-reversed Fermi arcs also
possess a perfect nesting property generic for 1D systems.
The surface-state structure could be probed by spin and angle-
resolved photoemission spectrum techniques or by electron
tunneling spectroscopy, as discussed in Ref. 27.

One naturally wonders which properties of the studied
model are generic and carry to other Weyl semimetals with
unbroken TRS. The key properties determining the Fermi arc
structure and spin textures on Fermi arcs are TRS and crystal
symmetries. Let us assume that the system is terminated by
a plane which admits a perpendicular axis of n-fold rotations
and m-fold rotations combined with a reflection. From TRS
we know that if there exists a Fermi arc between nodes at
k1 and k2 there must exist another arc terminated by nodes
at −k1 and −k2 with identical helicities but opposite spin.
Since the system is invariant in n-fold rotations, there must
also exist n time-reversed Fermi arc pairs. Spin on the arc
is also rotated, but helicities of rotated nodes remain the
same. Improper rotations also lead to m time-reversed Fermi
arc pairs, but the nodes connected by this transformation
have opposite helicities. The spin state remains unaffected in
reflection. The Fermi arc and spin structure in Figs. 3(b) and
3(c) are in agreement with the twofold rotational symmetry and
fourfold rotation combined with reflection. The arcs obtained
by twofold rotations and time reversal coincide, so there are
only two pairs of arcs. It is now quite straightforward to
imagine allowed Fermi arc structures in systems with different
point-group symmetries.

In summary, we studied a lattice model of a time-reversal in-
variant Weyl semimetal and its helical surface Fermi arcs. The
surface states are identical in all three surfaces perpendicular
to the cubic axes of the zinc-blende lattice. The low-energy
excitations at Fermi arcs consist of helical electrons with
discrete allowed velocity and spin orientations determined by
the cubic axes. The surface states can be regarded as a new
type of helical metal fundamentally different from the Dirac
form realized in typical topological insulator surfaces.
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