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We present an investigation of the lattice dynamics of the charge density wave (CDW) compound 2H -NbSe2.
We analyze the precise nature of the wave vector-dependent electron-phonon coupling (EPC) and derive the bare
dispersion of the CDW soft phonon mode using inelastic x-ray scattering combined with ab initio calculations.
Experimentally, phonon modes along the � − M line, i.e., q = (h,0,0), with 0 � h � 0.5 and the same longitudinal
symmetry (�1) as the CDW soft mode, were investigated up to 32 meV. In agreement with our calculations, we
observe significant EPC in the optic modes at h � 0.2. We analyze the EPC in the optic, as well as acoustic, mode
and show that the q dependences stem from scattering processes between two bands at the Fermi surface that
both have a Nb 4d character. Finally, we demonstrate that the soft mode dispersion at T = 33 K (=TCDW) can
be well described on the basis of a strongly q-dependent EPC matrix element and an acousticlike bare phonon
dispersion in agreement with observations near room temperature.
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I. INTRODUCTION

Charge density wave (CDW) formation is one of the most
common phenomena in solid state physics and relevant to a
number of important issues in condensed matter physics, such
as the role of stripes in cuprate superconductivity1 and charge
fluctuations in the colossal magnetoresistive manganites.2

Static CDW order, i.e., a periodic modulation of the electronic
density, can only be stabilized in case of a nonzero electron-
phonon coupling (EPC), specifically, coupling of phonons
to electrons in the conduction bands. Hence, the electronic
modulation is accompanied by a lattice distortion involving a
soft phonon mode with a zero energy at q = qCDW and T =
TCDW′ .

2H -NbSe2 is a prototypical CDW compound. It was
originally investigated more than four decades ago as one
of the first layered materials in which superconductivity was
observed (TSC (2H -NbSe2) = 7.2 K).3 Only afterward was it
realized that 2H -NbSe2 undergoes a CDW phase transition at
TCDW = 33 K,4 although the exact distortion pattern at T <

TCDW is still a subject of research.5 Original ideas on the origin
of the CDW formation centered on the Fermi surface nesting;
however, subsequent experiments found that CDW in some
compounds appears without strong Fermi surface nesting.6

An early alternative mechanism based on a q-dependent
enhancement of the EPC matrix element gq has been proposed.
A prominent role of EPC and, in particular, the wave vector
dependence of gq have been suggested.7–9 Experimentally,
however, the small size of 2H -NbSe2 single crystals allowed
only a limited investigation of the CDW soft phonon mode
close to TCDW by inelastic neutron scattering.10–12 Earlier, we
reported high-resolution inelastic x-ray scattering experiments
showing evidence that in 2H -NbSe2, the wave vector depen-
dence of gq is at the origin of the CDW transition.13

Any realistic model of soft phonons in CDW compounds
must begin with understanding of the bare phonon dispersion
ωbare(q), which is the dispersion without the interaction of

the phonon with electrons in the conduction bands. It takes
into account the screening of the ionic movements by the
strongly bound core electrons but not the more subtle effects
due to electronic scattering processes near the Fermi surface.
Extracting ωbare(q) is not a trivial task, because it cannot be
measured directly. Furthermore, it is necessary to go beyond
the simple assumption that the soft phonon must derive from an
acoustic branch, because optic phonons can also soften to zero
energy if they are coupled to conduction electrons strongly
enough.

In this paper, we derive the bare phonon dispersion ωbare(q)
of the CDW soft mode in NbSe2 from a detailed analysis
of the wave vector-dependent EPC, the correlated electronic
scattering processes, and the phonon displacement patterns.
Because the soft phonon mode is not necessarily acousticlike,
optic phonons of the same symmetry as the soft mode had to
be investigated as well. We have measured phonons with �1

symmetry up to 32 meV, providing evidence of EPC in the
optical branches at small wave vectors. These results are in
good agreement with our ab initio calculations, and we used
the latter to further analyze the observed EPC in the optic,
as well as acoustic, phonons. We found that the wave vector
dependence of EPC in the investigated phonons is primarily
due to electronic scattering processes between two Nb 4d-
derived bands at the Fermi surface. Furthermore, the phonon
patterns do not indicate an exchange of eigenvectors between
optic and acoustic phonons. Accordingly, the soft mode at T =
TCDW is acousticlike.

II. THEORY

Calculations using density functional perturbation theory
(DFPT) were performed in the framework of the mixed-basis
pseudopotential method.14 The exchange-correlation func-
tional was treated in the local-density approximation. Norm-
conserving pseudopotentials for Nb and Se were constructed,
including 4s and 4p semicore states in the valence space in the
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FIG. 1. (Color online) (a) Calculated phonon dispersion along
the (100) direction in NbSe2. Different line types (colors) denote
branches with different symmetries (see legend). (b) Branches with
longitudinal symmetry (�1) [solid lines in (a)]. Labels correspond
to the discussion. Vertical bars denote the calculated electronic
contribution to the phonon line width 2γ , scaled by a factor of 10 for
visibility.

case of Nb. The deep potentials can be efficiently treated in
the mixed-basis scheme, which combines local functions and
plane waves for the representation of the valence states. Local
functions of s, p, and d symmetry at the Nb sites and of s and
p symmetry on the Se sites were combined with plane waves
up to 24 Ry.

Phonon energies and EPC were calculated using DFPT
or the linear response technique,15 in combination with
the mixed-basis pseudopotential method.16 To resolve fine
features related to the Fermi surface geometry, Brillouin zone
(BZ) integrations were performed with a dense hexagonal
24 × 24 × 8 k-point mesh (244 points in the irreducible
BZ). The standard smearing technique was employed with
a Gaussian broadening of 0.1 eV. Tests with the denser k-
point mesh confirmed sufficient convergence for both phonon
energies and line widths. All results were obtained for the fully
optimized hexagonal structure (a = b = 3.40 Å, c = 12.09 Å).

Imaginary phonon energies, shown as the negative roots of
the square phonon energies in Fig. 1, appear in the calculation
because of an anharmonic double-well potential reflecting the
CDW instability. At zero temperature, the lattice distorts into a
CDW and sits in one of the minima. However, the calculation
assumes that the lattice is undistorted, i.e., that it sits in the
middle (i.e., local maximum) of the double-well potential.
Negative curvature of the potential at atomic positions of
the high-temperature structure is what gives an imaginary
calculated energy for the phonon whose eigenvector is close
to the CDW distortion.

III. EXPERIMENT

The inelastic x-ray scattering experiments were carried
out at the XOR 30-ID (HERIX) beamline of the Advanced
Photon Source, Argonne National Laboratory, with a focused
beam size of 30 μm. The incident energy was 23.724 keV
(Ref. 17), and the horizontally scattered beam was analyzed

by a set of spherically curved silicon analyzers (Reflection
12 12 12).18 The full width at half maximum (FWHM) of the
energy and wave vector space resolution was ∼1.5 meV and
0.066 Å−1, respectively, where the former is experimentally
determined by scanning the elastic line of a piece of plastic
and the latter is calculated from the experiment geometry
and incident energy. The components (Qh, Qk , Ql) of the
scattering vector are expressed in reciprocal lattice units (r.l.u.)
(Qh, Qk , Ql = h∗2π/a, k∗2π/a, l∗2π/c) with the lattice
constants a = b = 3.443 Å and c = 12.55 Å of the hexagonal
unit cell, space group P 63/mmc. Measurements were made
in the constant-wave vector Q mode, i.e., as energy scans
at constant wave vector Q = τ + q, where τ is a reciprocal
lattice point and q is the reduced wave vector. Measurements
were done in the BZs adjacent to τ = (3,0,0) and (3,0,1), i.e.,
Q = (3−h,0,0) and (3−h,0,1). We used a high-quality single
crystal sample of ∼50 mg (2 × 2 × 0.05 mm3) with a TCDW

of 33 K determined from the temperature dependence of the
superlattice reflections,13 in agreement with previous results.19

The sample was mounted in a closed-cycle refrigerator, and
measurements reported here were done at various temperatures
33 K � T � 250 K.

Measured energy spectra were fitted using a pseudo-Voigt
function for the elastic line with a variable amplitude and
fixed line shape established by scanning through the CDW
superlattice peak at T = 8 K and reference scans of a piece
of plastic. Phonon peaks were fitted by a damped harmonic
oscillator (DHO) function20

S(Q,ω) = [n(ω) + 1]Z(Q)4ω�/π
[
ω2 − ω̃2

q

]2 + 4ω2�2
(1)

where Q and ω are the wave vector and energy transfer,
respectively; n(ω) is the Bose function; � is the imaginary
part of the phonon self-energy; ω̃q is the phonon energy
renormalized by the real part of the phonon self-energy; and
Z(Q) is the phonon structure factor. This function covers the
energy loss and energy gain scattering by a single line shape
and was convoluted with the experimental resolution. The
intensity ratio of the phonon peaks at E = ±ωq is fixed by the
principle of detailed balance. The energy ωq of the damped
phonons is obtained from the fit parameters of the DHO
function by ωq =

√
ω̃2

q − �2 (Ref. 21). Here, ω̃q is the phonon
energy renormalized by the real part of the susceptibility, Re χ ,
whereas ωq is renormalized by both the real and the imaginary
parts of the susceptibility.

IV. RESULTS

A. Density functional perturbation theory

Our calculated phonon dispersions are in good agreement
with previous calculations.22 In Fig. 1(a), we show the disper-
sion along the crystallographic (100) direction, including the
CDW vector qCDW = (0.329,0,0).19 Due to the double-layered
structure within the hexagonal unit cell of NbSe2, we observe
pairs of branches with very small differences in absolute
energy and dispersion except for the acoustic modes. As
reported previously,13 our calculations predict a broad range
of wave vectors with imaginary phonon energies, indicating
the structural instability. Nonetheless, we discuss our results
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within the undistorted high-temperature structure, because we
are interested in the lattice dynamics leading to the phase
transition at and just above the phase transition.

Fig. 1(b) focuses on the longitudinal branches along the
(100) direction that have �1 symmetry. We also plot the
momentum and energy-resolved calculated electronic contri-
bution to the line width of the phonons, which is a direct
measure of the EPC. Sizable contributions of EPC to the
phonon line widths for the longitudinal acoustic (LA) and
longitudinal optic (LO) phonon branches are calculated. In the
two highest LO modes, we see little wave vector dependence
of EPC, whereas the two LO branches starting at the zone
center at 27.13 and 28.43 meV exhibit a clear decrease of EPC
along the � − M line [Fig. 1(b)]. Moreover, the EPC of the LA
and lowest LO branches strongly increases in the wave vector
range, where the line widths of the LO branches starting at
27.13 and 28.43 meV are reduced (h = 0.2–0.25 r.l.u.). The
wave vectors where the dispersion of the LA mode has its
maximum and the ones of the LO branches starting at 27.13
and 28.43 meV that have a minimum in their dispersions are
in the same wave vector range 0.2 � h � 0.25. Hence, an
exchange of eigenvectors, which is possible for modes of the
same symmetry, between the medium-energy LO modes and
the LA branch cannot be excluded even though the energy gap
is quite large (12–14 meV). Such an exchange of eigenvectors
would change the discussion of the bare phonon energy in
Sec. V. Instead of the softening of the LA branch, we would
have to consider the softening of an LO phonon over more
than 20 meV from the zone center to qCDW.

For a more detailed analysis, and because both the experi-
mental results for phonon energies and the line widths are in
good agreement with the predictions of DFPT (see Sec. IV B),
we looked into the calculated phonon eigenvectors of the
three investigated modes, taking into account the respective
electronic contributions to the phonon line width γ . The
calculated absolute atomic displacements uatom for the LO1,
LO2, and acoustic branches along the � − M line are shown
in Figs. 2(a)–2(c). In Figs. 2(d)–2(f), γ s (half width at half
maximum) of the three phonon branches are plotted. For the
LO1 branch, the maximum in γ as a function of wave vector
[Fig. 2(e)] coincides with the maximal Nb displacement uNb. In
the acoustic branch, the strong maximum in γ at h = 0.3–0.35
[Fig. 2(f)] is accompanied by an increase of the corresponding
uNb; however, it has only a very broad peak [Fig. 2(a)]. There
is no clear correlation between the movements of the Se atoms
[Figs. 2(b) and 2(c)] and the γ values. This indicates that the
dominant part of γ is due to scattering by electronic states
with a Nb character, as shown below. The LO2 branch does
not show a relation between uNb and γ , although there is a
maximum in the former close to the zone center [Fig. 2(a)].

Here, it is instructive to look into the contributions to
the total γ due to different scattering processes at the Fermi
surface. Our calculated Fermi surface is produced by two Nb
4d-derived bands (which we call Nb1 and Nb2 for simplicity)
and one band with a Se 4p character, in agreement with
previous reports.23,24 Apparently, electronic scattering paths
between the two Nb 4d-derived bands are responsible for the
strong maxima in the EPC of the LO1 and acoustic modes
[Figs. 2(e) and 2(f)]. Furthermore, we see that the same
scattering path yields a weak maximum in γ for the LO2

FIG. 2. (Color online) (a)–(c) The q dependence of the calculated
absolute atomic displacements for the acoustic (AC), lower optic
(LO1), and highest optic (LO2) branches. Three displacements are
shown: (a) Nb ‖ a, (b) Se ‖ a, and (c) Se ‖ c. Other components
are zero. (d)–(f) Calculated electronic contribution to the phonon line
width γ for the (d) LO2, (e) LO1, and (f) AC branches. Each panel
shows the total line width (solid line) and the dominant contributions
related to specific electronic scattering processes.

branch close to the zone center [Fig. 2(d)], which coincides
with the maximum in uNb for this branch [Fig. 2(a)]. Hence,
our analysis demonstrates that phonon displacements with
strong Nb movements are necessary to produce a large and
wave vector-dependent EPC. The consecutive maxima of γ

in the LO2, LO1, and acoustic branches going from close to
the zone center to the zone boundary, i.e., from h = 0 to
0.5, might indicate a certain transformation of a Nb character
from the LO2 to the LO1 and then to the acoustic branch
along this direction. However, the wave vector dependence
of the Nb displacements, in particular the one of the acoustic
branch, argues against a decisive role of such an exchange with
respect to the formation of CDW order. uNb increases by 1/3
at h = 0.15–0.35 and then is reduced by 3% farther toward
the zone boundary [Fig. 2(a)]. However, the corresponding γ

related to scattering between the Nb 4d-derived bands jumps
from zero at a small wave vector to a clear maximum at h =
0.3 and then decreases again by 50% [red dots in Fig. 2(f)].
We conclude that DFPT does not predict an exchange of
eigenvectors between the LO and the LA branches of �1

symmetry in NbSe2.

B. Experimental results

Experiments using inelastic neutron scattering to measure
phonons in materials that have a CDW with good wave
vector and energy resolution were limited to a small number
of compounds, where sufficiently large single crystals could
be grown.25 Similar measurements in NbSe2 gave only
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FIG. 3. (Color online) Raw inelastic x-ray scattering data ob-
tained at T = 50 K and (a) Q = (2.7,0,1) and (b) Q = (2.7,0,0). Solid
(red) lines are fits consisting of an elastic line, DHOs for the inelastic
peaks, and a linear background shown as dashed (blue) lines. The
inset in (b) shows the temperature-dependent phonon energy of the
second-lowest longitudinal mode at q = (0.3,0,0). The dashed line is
a visual guide.

limited insight10,11 into the dynamics in the pretransitional
temperature region just above TCDW. Apart from the small
sample volume, previous measurements focused on the BZ
adjacent to the reciprocal lattice vector τ = (3,0,0). In contrast,
our calculations predicted a much larger structure factor for the
soft phonon mode around τ = (3,0,1). Fig. 3 shows inelastic
x-ray scattering raw data taken in the two BZs at a reduced
wave vector of q = (0.3,0,0), which demonstrate the accuracy
of the calculated structure factors and hence the calculated
phonon pattern. The soft mode pattern includes movements of
Se along the c axis, although the CDW-ordering wave vector
has a zero component along the (001) direction.10,19 Here, it
is instructive to know that the eigenvector of the soft mode
does not quantitatively reflect the structural distortion in the
CDW-ordered phase. For instance, it is important to consider
the superposition of the soft mode in different but equivalent
directions, such as the three equivalent (100) directions in the
hexagonal lattice of 2H -NbSe2. Extracting the CDW distortion
from DFPT is possible in principle but outside the scope of
this paper.

Energy scans of the optic phonon branches are shown
in Fig. 4, along with the observed dispersion along the
crystallographic (100) direction at T = 33 and 250 K. We
measured the optic branches corresponding to the calculated
ones starting at 27.13 meV (LO1) and 30.86 meV (LO2) at Q =

FIG. 4. (Color online) (a) Raw data showing two optic phonon
modes at Q = (2.2,0,0) at T = 33 K. The solid (red) line is a fit
consisting of two DHOs for the inelastic peaks convoluted with the
experimental resolution and a linear background shown as dashed
(blue) lines. Measured phonon dispersion is at (b) T = 33 K and (c)
T = 250 K. Solid lines denote the dispersion associated with the soft
phonon mode (see text), as published in Ref. 13. Dashed lines are the
calculated energies of the LO1 and LO2 optic branches (see Fig. 1).

(2 + h,0,0). Scans in a different BZ showed phonon peaks at
slightly higher and lower energies compared to the ones of LO1
and LO2 modes, respectively, in agreement with our structure
factor calculations. Due to the limited amount of beam time,
however, we could not determine all dispersions completely
and focused on the branches detectable at Q = (2 + h,0,0). In
addition to the dispersion of the soft phonon reported earlier,13

we include the phonon energies of the lowest LO branch
with �1 symmetry. The intensity ratio of the soft mode and
this second-lowest energy branch is different in the two BZs
adjacent to τ = (3,0,0) and (3,0,1) [Fig. 3], in agreement with
DFPT. Therefore, an unambiguous assignment of the phonon
characters of the soft mode and the lowest LO branch was
possible in a simultaneous evaluation of energy scans at the
same q value in the two BZs, i.e., adjacent to τ = (3,0,1) and
(3,0,0). Apart from a small offset toward higher experimental
energies, we see good agreement between the observed and the
calculated phonon energies for the LO1 and LO2 branches. In
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FIG. 5. (Color online) (a) Observed phonon energies at T = 33 K
along a different high symmetry direction (different from [100]),
starting from the CDW vector qCDW. Energies are shown as function
of the distance from qCDW in absolute units. The solid line is a linear
fit of the data. The dashed lines indicate the corresponding phonon
energies along the (100) direction, as published in (Ref. 4) (two lines
for q < qCDW and q > qCDW). (b) Dispersion of the LO1 branch at
T = 33 K for different values of l along the [001] direction. The line
is a visual guide.

particular, the minimum in the dispersion of the LO1 mode is
observed. As discussed in Sec. IV A, the concurrence of the
dip in the dispersion of the LO1 branch and the maximum of
the dispersion of the soft mode at h = 0.2–0.25 r.l.u. might
suggest an exchange of eigenvectors between the two modes at
these wave vectors. However, the dispersion of the LO1 branch
does not change between T = 33 and 250 K. This is in contrast
to the huge temperature effect in the acoustic mode and speaks
against a sizable interaction of the branches, in agreement with
our theoretical analysis of the line width contributions.

To investigate a possible interaction of the optic and
acoustic modes more closely, we measured the soft mode
energies going radially away from qCDW in various directions
in reciprocal space [Fig. 5(a)]. We found that the dispersions
can be well approximated by a straight line regardless of
whether we move away from qCDW within the basal plane
or along the (001) direction. Results for the latter direction
demonstrate that the softening occurs only in a small region

FIG. 6. (Color online) (a) Wave vector-dependent line widths
(FWHM) at T = 33 K (filled symbols) and 250 K (open symbols) of
the LO1 and LO2 branches. (b) Calculated electronic contribution to
the phonon line width 2γ for the LO1 and LO2 branches with two
numerical smearing parameters: σ = 0.1 and 1.0 eV.

of reciprocal space. In our experimental setup, consecutive
analyzers of the HERIX spectrometer sampled different wave
vectors, which were spaced along the (h,0,l) line in reciprocal
space. Hence, we are able to construct a two-dimensional
dispersion surface of the LO1 branch in the (h,0,l) plane.
For simplicity, we show the results as line scans for different
values of 0 � l � 0.27 [Fig. 5(b)]. Apparently, the dispersion
does not depend on l. The qualitative discrepancy between the
l dependence of the soft mode and the LO1 branch further
indicates that an interaction between the two branches is small
or absent. These observations are in excellent agreement with
DFPT, which predicts a 4-meV higher energy of the soft
mode at q = qCDW + (0,0,0.5) [corresponds to |q − qCDW| ≈
0.25 Å−1 in Fig. 5(a)]. Furthermore, the LO1 branch shows no
l dependence in DFPT.

In Fig. 6(a), we plot the phonon line widths along the
� −M direction of the optic phonons at T = 33 and 250 K.
In phonon spectra taken at q = (h,0,0), h � 0.1, the LO2
mode dominates, whereas for h > 0.1, the LO1 mode shows
the larger spectral weight [e.g., see Fig. 4(a) for h = 0.2].
Though the determination of the phonon energies was almost
always possible for both phonons, the line widths could only
be measured accurately for the dominant peaks. Therefore, we
show line widths in Fig. 6(a) for the LO2 modes at h � 0.1
and for the LO1 modes at h � 0.15.

We observe a nearly constant line width of ∼1 meV at
T = 250 K, which we assign to the general imperfections
of the crystal and anharmonic effects. At low temperatures,
however, the line widths at wave vectors with h � 0.2 increase
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significantly, whereas for h � 0.25 we find the same values as
for high temperatures.

Here, we compare our results to calculations of the elec-
tronic contribution to the phonon line width 2γ in our DFPT
calculation. Although DFPT is a zero-temperature technique,
it was shown in several publications that the necessary
numerical smearing of the electronic states σ acts like a
thermal smearing in electronic momentum space and hence
can be used to qualitatively simulate temperature effects.26

Though temperatures equivalent to σ are at least one order
of magnitude too large, our previous investigation of the soft
mode in 2H -NbSe2 indicated that values of 0.1 eV � σ �
1.0 eV produce results that are consistent with a temperature
range of 30 K � T � 300 K.13

Fig. 6(b) shows the calculated values of 2γ (corresponding
to the FWHM) for the LO1 and LO2 phonon modes at the wave
vectors corresponding to Fig. 6(a). We see good agreement
regarding the wave vector dependence between the line widths
at low temperature and 2γ calculated with σ = 0.1 eV, although
the decrease of 2γ is somewhat more gradual than in the
observed line width. This wave vector dependence is much
reduced at T = 250 K, as well as in the calculations using
σ = 1.0 eV. In particular, the calculations nicely reproduce
the observed temperature effect at low values of h. Therefore,
we assign this observation to the presence of EPC in these
branches at h � 0.2.

In summary, the experimental results confirm the prediction
of substantial EPC in optic phonon branches at small reduced
wave vectors. The results of the phonon energies at different
temperatures and away from the (1,0,0) high symmetry line
do not indicate a strong interaction between the LO1 and the
LA branches, in agreement with DFPT.

V. DISCUSSION

CDW order is only stabilized through a coupling to the
lattice (EPC)27 and hence, the investigation of the lattice
degrees of freedom is a source of unique information in
compounds undergoing a CDW phase transition. Theoreti-
cally, CDW materials were investigated intensively in the
1970s7,27,28 and early 1980s8 and, more recently, using modern
ab initio methods.22,29

One important piece of information is the bare phonon
energy ωbare(q) in the absence of renormalization effects linked
to the CDW phase transition. ωbare(q) and the experimentally
observable renormalized phonon frequency ωq(q) are linked
by27

ω2
q = ω2

bare − 2N3g2
qRe{χq}

M[1 + (2Ūq − V̄q)Re{χq}] (2)

where N,M,Ūq, and V̄q are the Avogadro constant, ionic mass,
average coulomb, and exchange matrix elements, respectively.
In addition, χq is the electronic response function, and gq is the
EPC matrix element. Typically, the last term in Eq. (2) is small.
In CDW compounds, it is expected that χq becomes large at
qCDW, causing the collapse of the phonon mode. However, we
showed in a recent publication,13 for the case of 2H -NbSe2,
that the wave vector dependence of the EPC matrix element
gq can lead to a CDW instability.

For better understanding, it is instructive to explain the
bare phonon energy ωbare in more detail. The originally very
high phonon energies of the lattice of ionic nuclei are reduced
to the typical values in the millielectron volt range by the
general screening of all electrons in a solid. Our interest lies
in the additional screening due to the presence of the CDW
phase transition. These processes involve primarily the bands
forming the Fermi surface. Therefore, we consider in our
analysis only the contributions of the three bands crossing EF

to the electronic susceptibility χq,FS , the real part of which was
calculated, e.g., by Johannes et al.24 Accordingly, ωbare can be
related to the observed energy ωq by Eq. (2) if we replace Reχq

with Reχq,FS. The q dependence of the difference between ω2
q

and ω2
bare is governed by Reχq,FS, gq , or both, where gq is

the EPC matrix element involving the respective phonons and
electronic scattering processes. In a previous publication,13

we argued that, in the case of 2H -NbSe2, it is the latter,
which determines the soft mode dispersion and defines the
periodicity of the ordered phase, i.e., qCDW. This point of view
is corroborated by the results presented in this publication.

In Sec. IV, we showed that an exchange of eigenvectors
between LO and LA phonons with �1 symmetry is unlikely;
hence, an acousticlike assumption for the bare phonon disper-
sion ωbare(q) is justified for NbSe2.

Before we can apply Eq. (2) in order to estimate ωbare(q),
we need to take into account that the q dependence of γ is
largely due to scattering between the two Nb bands at the Fermi
surface and that the strong wave vector dependence of γ can
originate in the corresponding EPC matrix element, electronic
joint density of states (JDOS), or both.30 The JDOS varies
only by ±15% along � − M (not shown). Thus, the matrix
elements for the Nb1 – Nb2 interband scattering exhibit the
strong wave vector dependence. This is in good agreement with
experiments using angle-resolved photoemission spectroscopy
(ARPES), which reported the highest EPC strength on the
double-walled Nb 4d-derived Fermi surface sheet.31

Therefore, we can extract in a first approximation the
wave vector dependence of the EPC matrix element from
our measurements and apply this knowledge in Eq. (2). The
approximation originates in γ being proportional to the square
of the momentum-averaged EPC matrix element |gq |2,30

γq ∝ |gq |2 × JDOS. (3)

However, gq should in general have a weaker wave vector
dependence than gq , i.e., we expect to underestimate the real
wave vector dependence of gq . Concerning our discussion
of which electrons should be taken into account in order to
analyze the renormalization at the CDW phase transition, we
use the wave vector dependence of Reχq,FS, as calculated by
Johannes et al.,24 where only contributions from the three
electronic bands crossing the Fermi energy were taken into
account. It is also in good agreement with estimates based on
ARPES experiments.32

Fig. 7 displays our analysis of the renormalized and bare
phonon dispersions based on Eq. (2) in comparison to the
experimental energies at T = 33 and 250 K. We use Eq. (2) in
a parameterized form,

ω2
q = ω2

bare(h) − c1 × fg(h)
(

1
Reχq,FS(h) + c2

) (4)
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FIG. 7. (Color online) (a) Fit (solid line) of the observed square
soft mode energies at T = TCDW (dots) using Eq. (3) and Reχq,FS(h)
and gq (h) as extracted from DFPT. ωbare (dashed line) was approxi-
mated by a Brillouin function with two fit parameters.

where ωbare was approximated by a Brillouin function with
two parameters.33 fg(h) and Reχq,FS(h) are the wave vector
dependences of g2

q and Reχq , respectively. The latter was taken
from Ref. 24 [Fig. 7]. For fg(h), we used the functional form of
the contribution to γ calculated for the acoustic mode, which
is due to scattering between the two Nb 4d-derived bands at
the Fermi surface [red dots in Fig. 2(f)]. The fit was constraint
by c2 = 2Ūq − V̄q having a positive value. It turned out to be a
very small number, the exact absolute value having negligible
influence on the resulting bare dispersion, in agreement with
assumptions in Ref. 27. The parameter c1 takes care of the
prefactors given in Eq. (2), and the wave vector-dependent
function fg(h) is only proportional to the EPC matrix element
g2

q (see above).
Results of our analysis shown in Fig. 7 demonstrate that

the renormalized phonon dispersion at T = TCDW can be
well described based on an acoustic bare phonon dispersion
with a zone boundary energy of 11.2 meV. The fitted bare
dispersion is in reasonable agreement with phonon energies
measured near room temperature, although the dispersion at
T = 250 K is still renormalized, which is evident in the clearly
observable dip around qCDW.13 Our analysis of the phonons in
NbSe2 based on lattice dynamical calculations using DFPT
yields a sensible bare phonon dispersion, which is further
evidence for the accuracy of the model and proposed point
of view in Ref. 13 that the wave vector dependence of the EPC

drives the CDW transition in this compound. This was recently
corroborated by results from scanning tunneling microscopy
(STM).34 Apart from the usually observed triple-q CDW
vector qCDW = (0.329,0,0), STM revealed surface regions with
a unidirectional CDW vector q1Q ≈ (2/7,0,0). The minimum
of the fitted soft mode dispersion at T = TCDW is close to the
value of h = 2/7. However, we do not see a clear link between
our results and the single-q CDW order observed by STM.34

Experimentally, inelastic x-ray scattering is a bulk probe, and
the DFPT calculations even overestimate the position of the
CDW vector along the � − M direction, with the dispersion
minimum at q = (0.375,0,0) [Fig. 1(a), see also Fig. 4 in
Ref. 13 for more details].

VI. CONCLUSION

We have reported an inelastic x-ray scattering and ab
initio theoretical investigation of the lattice dynamics of
NbSe2, focusing on longitudinal phonon modes across the
CDW-ordering wave vector qCDW = (0.329,0,0), i.e., in the
(100) direction. We derive an acousticlike bare dispersion
ωbare(q) of the CDW soft phonon mode from the wave vector
dependence of the EPC matrix element gq and the response
of the electrons forming the Fermi surface. Although our
measurements provide evidence for EPC in optic branches as
well, we demonstrate that there is no significant intermode hy-
bridization. Furthermore, our analysis shows that the observed
wave vector-dependent EPC originates from one particular
electronic scattering process between two Nb – 4d-derived
bands at the Fermi surface. Together with a corresponding
quasiconstant electronic JDOS for these scattering processes,
this is evidence of the strong wave vector dependence of the
EPC matrix elements.
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P. Krüger, A. Mazur, and J. Pollmann, Phys. Rev. B 64, 235119
(2001).

24M. D. Johannes, I. I. Mazin, and C. A. Howells, Phys. Rev. B 73,
205102 (2006).

25B. Renker, H. Rietschel, L. Pintschovius, W. Gläser, P. Brüesch,
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