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Coexistence of Dirac and massive carriers in α-(BEDT-TTF)2I3 under hydrostatic pressure
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Transport measurements were performed on the organic layered compound α-(BEDT-TTF)2I3 under
hydrostatic pressure. The carrier types, densities, and mobilities are determined from the magnetoconductance of
α-(BEDT-TTF)2I3. While evidence of high-mobility massless Dirac carriers has already been given, we report
here their coexistence with low-mobility massive holes. This coexistence seems robust as it has been found up to
the highest studied pressure. Our results are in agreement with recent DFT calculations of the band structure of
this system under hydrostatic pressure. A comparison with graphene Dirac carriers has also been done.
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I. INTRODUCTION

The layered organic material α-(BEDT-TTF)2I3 (aI3),
which has been studied since the 1980s,1–5 has recently
attracted renewed interest because it reveals low-energy
massless Dirac fermions under hydrostatic pressure (P >

1.5 GPa).6 Compared to graphene, certainly the most popular
material with low-energy Dirac fermions7 or electronic states
at the surface of three-dimensional topological insulators,8 aI3
is strikingly different in several respects. Apart from the tilt of
the Dirac cones and the anisotropy in the Fermi surface,6,9 its
average Fermi velocity is roughly one order of magnitude
smaller than that in graphene. This, together with an ex-
perimentally identified low-temperature charge-ordered phase
at ambient pressure,1,2 indicates the relevance of electronic
correlations. Indeed, because the effective coupling constant
for Coulomb-type electron-electron interactions is inversely
proportional to the Fermi velocity, it is expected to be ten times
larger in aI3 than in graphene. The material aI3 thus opens
the exciting prospect of studying strongly correlated Dirac
fermions that are beyond the scope of graphene electrons.10

Another specificity of aI3 is the presence of additional
massive carriers in the vicinity of the Fermi level, as re-
cently pointed out in ab initio band-structure calculations.11

However, the interplay between massless Dirac fermions and
massive carriers has, to the best of our knowledge, not yet
been proven experimentally. Finally, one should mention a
topological merging of Dirac points that is expected for high
but experimentally accessible pressure.6,12

Here, we present magnetotransport measurements of
aI3 crystals under hydrostatic pressure larger than
1.5 GPa where Dirac carriers are present. We show not
only the existence of high-mobility Dirac carriers as reported
elsewhere,3,13,14 but we prove also experimentally the presence
of low-mobility massive holes, in agreement with recent
band-structure calculations.11 The interplay between both
carrier types at low energy is the main result of our studies.
Furthermore, we show that the measured mobilities for the
two carrier types hint at scattering mechanisms due to strongly
screened interaction potentials or other short-range scatterers.

The remainder of the paper is organized as follows. In
Sec. II, we present the experimental setup and the results
of the magnetotransport measurements (Sec. II A) under
hydrostatic pressure. Section II B is devoted to a discussion

of the temperature dependence of the carrier densities, in
comparison with the model of (A) massless Dirac fermions and
(B) massive carriers. Furthermore thermopower measurements
are presented to corroborate the two-carrier scenario. The
measured temperature dependence of the extracted carrier
mobilities is exposed in Sec. II C, and a theoretical discussion
of the experimental results, in terms of short-range (such as
screened Coulomb) scatterers may be found in Sec. III. We
present our conclusions and future perspectives in Sec. IV.

II. EXPERIMENTAL EVIDENCE FOR COEXISTING
DIRAC AND MASSIVE CARRIERS

The single crystals of aI3 used in our study have been
synthesized by electrocrystallization. Their typical size is
1 mm2 (ab plane) × 20 μm (c direction). Six 100 nm thick
gold contacts were deposited by Joule evaporation on both
sides of the sample, allowing for simultaneous longitudinal
and transverse resistivity measurements. A picture of one of
the three samples studied is shown in the inset of Fig. 1. The
resistivities were measured using a low-frequency ac lock-in
technique. The magnetic field H , oriented along the c axis,
was swept between −14 and 14 T at constant temperature
between 50 and 1.5 K. To account for alignment mismatch
of patterned contacts, the longitudinal (transverse) resistivity
has been symmetrized (antisymmetrized) with respect to the
orientation of H to obtain even [ρxx(H )] and odd [ρxy(H )]
functions, respectively. Hydrostatic pressure was applied at
room temperature in a NiCrAl clamp cell using Daphne 7373
silicone oil as the pressure-transmitting medium. The pressure
was determined, at room temperature, using a manganine
resistance gauge located in the pressure cell close to the
sample. The values given below take into account the pressure
decrease during cooling.

A. Magnetotransport measurements

The analysis of our data is based on the study of the
magnetoconductivity and is similar to the one presented
in Ref. 15 for multicarrier semiconductor systems. The
magnetoconductivity is obtained from the measured resistivity
tensor by means of σxx(H ) = ρxx(H )/[ρ2

xx(H ) + ρ2
xy(H )].
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FIG. 1. (Color online) Typical magnetoconductivity curve of
aI3 (open circles) that can be understood as a two-carrier system
(blue line: A-carrier conductance, green line: B-carrier conductance,
black line: conductance of a system with both A and B carriers).
The mobility of each carrier type is determined as the crossover
from a constant conductivity at low fields to the H−2 regime
at high fields. The left axis shows the square (2D) conductiv-
ity of each BEDT-TTF plane while the right axis shows the
“bulk” (3D) longitudinal conductivity (see text). Inset: Photograph
of one sample.

For a single carrier system, its analytical expression reads16,17

σxx(H ) = σxx(H = 0)

1 + μ2H 2
, (1)

where σxx(H = 0) = eμn, e is the electron charge, μ the
mobility, and n is the carrier density.

Figure 1 displays a typical magnetoconductivity curve of
aI3 under pressure, where two “plateaus” can be clearly seen.
As conductivity in aI3 has a strong 2D character, conductivity
is shown both as 3D conductivity (σxx) and as 2D conductivity
(σxx� of each BEDT-TTF plane) according to σxx� = σxxc.
As conductivity is additive, in a two-carrier system, the
contributions of each carrier type A and B can be added,

σxx(H ) = σxx,A(H = 0)

1 + μ2
AH 2

+ σxx,B (H = 0)

1 + μ2
BH 2

. (2)

The two “plateaus,” observed in Fig. 1, indicate the
existence of two different carrier types (γ = A or B) with
significantly different mobilities. From this curve, we can
extract the mobilities μγ of each carrier type, their zero-field
conductivities σxx,γ (H = 0), and their carrier densities nγ by
nγ = σxx,γ (H = 0)/eμγ .

Figure 2 shows magnetoconductivity curves of aI3 at a fixed
pressure for several temperatures. The previous analysis has
been repeated for each of these magnetoconductivity curves
to obtain the densities (Fig. 3) and mobilities (Fig. 4) for
each carrier type as a function of temperature and for three
different pressures, P = 1.6, 2.3, and 3.0 GPa. The strong
temperature dependence of the carrier density is a signature
that temperature is higher than TF for both A and B carriers
even at the lowest measured temperature, TF � Tmin = 1.5 K.
This low Fermi temperature hints at the absence of charge

FIG. 2. (Color online) Magnetoconductivity curves of aI3 at P =
2.3 GPa for different temperatures, from bottom to top: 1.5, 2.2, 3.0,
3.9, 6, 8, 9, 12, 15, 20, and 27 K. The left axis shows the square (2D)
conductivity of each BEDT-TTF plane while the right axis shows the
“bulk” (3D) longitudinal conductivity.

inhomogeneities that prevent the approach of the Dirac point
in graphene on Si02 substrates.18

B. Temperature dependence of the carrier densities

The carrier density can be calculated from nγ =∫
f (E)Dγ (E)dE, where f (E) is the Fermi-Dirac distribution

and Dγ (E) is the density of states for massive (γ = M) and
Dirac (γ = D) carriers:10

DM (E) = gv,Mgsm
∗

2πh̄2 , (3)

DD(E) = gv,Dgs

2π (h̄vF )2
E, (4)
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FIG. 3. (Color online) Temperature dependencies of the densities
for A and B carrier types (circles: 1.6 GPa, triangles: 2.3 GPa,
and squares: 3.0 GPa; blue thin symbols for A carriers and red
thick symbols for B carriers). The left axis shows the density for
each BEDT-TTF plane (n2D) while the right axis shows the bulk
density (n3D). The lines represent power-law fits which yield
exponents 0.9 (A carriers) and 2.2 (B carriers). Inset: Band structure
calculations at 1.7 GPa where both Dirac cones (A) and parabolic
bands (B) cross the Fermi level (adapted from Ref. 11).
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FIG. 4. (Color online) Temperature dependencies of the mobili-
ties for A and B carrier types (circles: 1.6 GPa, triangles: 2.3 GPa,
and squares: 3.0 GPa; blue thin symbols for A carriers and red thick
symbols for B carriers). The continuous lines represent power-law
fits which yield exponents −1.9 (A carriers) and −1.0 (B carriers).
The low-temperature dispersion of the data points for A carriers is
due to a decrease of the saturating mobility (dotted line) by increasing
pressure.

where gv,γ and gs are valley and spin degeneracies and
m∗ is the effective mass of massive carriers described by a
Schrödinger equation.

In aI3 under pressure, two Dirac cones but only one massive
band exist at the Fermi level.11 For large temperatures T � TF ,
the carrier density depends linearly on temperature for massive
carriers and quadratically for Dirac carriers:

nM = ln(2)m∗

πh̄2 kBT , (5)

nD = 2π

3

(
kBT

h̄vF

)2

. (6)

Figure 3 represents the measured temperature dependence
of the densities and reveals a power-law behavior, n ∼ T β .
Indeed one obtains an exponent of β � 0.9 for the low-
mobility carriers (B), in good agreement with what [Eq. (5)]
is expected for massive carriers, whereas one finds β � 2.2
for the high-mobility carriers (A), as roughly expected for
massless Dirac particles [Eq. (6)].

Besides, the nature of the carriers can be extracted from
Hall measurements. Furthermore, we have performed ther-
mopower measurements under pressure on a second sample
(Fig. 5). These data show a sign change for the Seebeck
coefficient (S) around 5 K. Thermopower is the voltage per
unit of temperature produced by a thermal gradient. The
carrier type determines the sign while the density and mobility
of the carriers establish the amplitude. Thus, a sign change
of the thermopower indicates that the relevant carriers at
low temperature have a different charge than those at high
temperature, requiring a two-carrier scenario.

In agreement with Ref. 14, A carriers which dominate
the low-field conduction are electrons. On the contrary, at
large fields the conduction is dominated by holes (B carriers).
Notice that our results are consistent with ab initio calculations
of the band structure of aI3 under a pressure of 1.76 GPa
(inset of Fig. 3)11 and do not depend on pressure (within the

FIG. 5. (Color online) Thermopower for a pressure of 1.5 GPa as
function of temperature for sample 2. The sign change observed as
sweeping temperature confirms the two-carrier picture.

range 1.6–3.0 GPa). This supports the idea that massless and
massive particles coexist in a broad pressure range. However,
since T > TF in the whole temperature range under study,
both Dirac electrons and Dirac holes are excited. Thus there
are indeed not two but three carrier types: Dirac holes, Dirac
electrons, and massive electrons. For T � TF , the electron and
hole densities are actually identical (semimetal with symmetric
band structure): nD,holes ≈ nD,electrons ≈ nD/2 = nA/2. The
absence of a third “plateau” in the magnetoconductivity data
allows us to consider that Dirac electrons and holes have
roughly the same mobilities: μD,holes ≈ μD,electrons ≈ μD =
μA. Therefore, the results obtained in Figs. 3 and 4 still hold
when we consider two types of Dirac carriers (electrons and
holes) in addition to the massive holes. This analysis allows us
to avoid using Hall effect measurements for the determination
of carrier densities. Indeed, Hall effect interpretation becomes
challenging as Dirac electron and hole contributions partially
compensate, leading to the determination of only an “effective”
Dirac carrier density, and they are both mixed with massive
carriers’ contribution. This problem is solved here by analyz-
ing the magnetoconductivity where all carriers’ contributions
are additive.

C. Mobilities

The effective mass of the massive carriers has been
extracted from Eq. (5). The obtained value is quite small
m∗ ≈ 0.3 me (me is the free electron mass). Meanwhile, from
Eq. (6), vF ≈ 1.1 × 105 m/s can be extracted, in agreement
with previous theoretical6,9 and experimental estimates.14 In
Fig. 3, no significant variation of this argument is observed
upon sweeping pressure (which should appear as a vertical
shift of the T 2 line). This indicates that vF does not change with
pressure. In principle, pressure should enhance hopping while
reducing the unit cell volume. Thus, an enhancement of vF

with pressure could be expected according to the approximate
expression vF � ta/h̄, where t is the hopping integral. This
expression can be simplified by means of Harrison’s law
(t ≈ h̄/mea

2) into vF ≈ h̄/mea. As pressure slightly modifies
the lattice constant (1.4%/GPa19), vF is expected to vary by
the same order of magnitude which is smaller than our current

245110-3



M. MONTEVERDE et al. PHYSICAL REVIEW B 87, 245110 (2013)

TABLE I. Dirac and massive carriers parameters in aI3 at high
pressure, in comparison with graphene electrons.

Massive Dirac Dirac carriers
carriers carriers in graphene/

Quantity in aI3 in aI3 SiO2
24

TF (K) <1.5 <1.5 ≈100
n2DMinimal (cm−2) 8 × 109 2 × 108 4 × 1011

vF (m/s) 1 × 105 1 × 106

μ(4 K) (cm2/V s) 2 × 103 2 × 105 103–104

m∗ (me) 0.3
τ (fs) 200 300 75

experimental uncertainty. This accounts for the apparent
absence of pressure effects on the carrier density in the range
1.6–3.0 GPa.

In Fig. 4, the mobility of the Dirac carriers (A) reaches
2 × 105 cm2/V s at low temperatures (4 K), a value comparable
to already published values.3 It is quite high compared to
typical graphene on SiO2 values (103 to 104 cm2/V s) but
similar to suspended graphene and graphene on BN mobilities
at very low carrier density.20–22 On the other hand, the mobility
for massive carriers is 2 × 103 cm2/V s at 4 K, which is
two orders of magnitude smaller than for Dirac carriers. The
temperature dependence of the mobility follows power laws
for both massive (exponent −1.0) and Dirac carriers (exponent
−1.9). Moreover, the Dirac carrier mobility seems to saturate
at T < 4 K. A similar saturation has been reported in other
Dirac systems.23 Table I summarizes the main parameters of
massive and Dirac carriers in aI3, in comparison with graphene
on SiO2.

III. THEORETICAL DISCUSSION IN TERMS OF
SCREENED COULOMB OR SHORT-RANGE

SCATTERERS

In order to better understand the difference in the mobility,
we investigate the ratio μM/μD = τMmD/τDm∗, in terms of
the scattering times τD and τM for the massless Dirac and
massive carriers, respectively. Furthermore, mD = EF,D/v2

F

is the density-dependent cyclotron mass of the Dirac carriers,
in terms of the Fermi energy EF,D = kBTF,D . The scattering
times may be obtained from Fermi’s golden rule (for γ =
D,M)

(τγ )−1 = 2πnimp|Vγ |2Dγ (EF,γ ), (7)

in terms of the impurity density nimp, the matrix element
Vγ , and the density of states Dγ (4) for Dirac and (3) for
massive carriers. We consider implicitly that both carrier
types are affected by the same impurities, and the matrix
element is independent of γ for short-range impurity scat-
tering. Apart from atomic defects, screened Coulomb-type
impurities approximately fulfill this condition, as it may be
seen within the Thomas-Fermi (TF) approximation. Indeed,
the screening length of the Coulomb interaction is dominated
by the Thomas-Fermi wave vector kT F,M = 1/a0 � 1010 m−1

of the massive carriers, for an effective Bohr radius a0 =
h̄2/m∗e2, whereas the Thomas-Fermi wave vector for massless

Dirac carriers kT F,D = αDkF,D ∼ 108 m−1, for a density
2 × 108 cm−1 and a fine-structure constant αD = e2/h̄vF �
20. The Thomas-Fermi wave vector is thus roughly one
order of magnitude larger than the Fermi wave vector
of the massive carriers, which is itself much larger than
that of the Dirac carriers. The screened Coulomb poten-
tial for γ -type carriers may therefore be approximated by
its q = 0 value, VT F (q ∼ kF,γ ) = 2πe2/εεT F (q ∼ kF,γ )q �
2πe2/kB

T F = VT F (q = 0), which is thus the same for both
carrier types, as mentioned above. Here, ε is the permittivity of
the dielectric environment and εT F (q) is the dielectric function
calculated within the Thomas-Fermi approximation.

In view of the above considerations, we thus obtain, for the
mobility ratio in the limit T → 0,

μM

μD

� 2πh̄2DD(EF,D)

gsgv,Mm∗ × EF,D

m∗v2
F

, (8)

which depends on neither the form of the matrix element nor
on the impurity density. One expects a ratio in the 10−3 range,
whereas the measured ratio is ∼ 10−2 at T = 4 K. Notice
that for T � TF , that is in the experimentally relevant regime
here, one may replace the energy dependence in the density
of states of the massless Dirac carriers by a linear dependence
in temperature, EF,D → kBT , such that one expects a linear
temperature dependence of the mobility ratio (8), in agreement
with our experimental findings (μM/μD ∝ T 0.9 for T > 4 K;
see Fig. 4).

IV. CONCLUSIONS

To conclude, we present an interpretation of magneto-
transport in aI3 that indicates that both massive and Dirac
carriers are present even at high pressures. Thermopower
measurements performed on one of the three studied samples
are also in agreement with this two-carrier scenario.

So far in the literature, the conduction in this system
has been attributed solely to Dirac carriers.3 Moreover,
this coexistence holds with little perturbation in the whole
range of pressure under study. As Dirac carriers have high
mobility, they dominate the conduction at low magnetic field
and high temperatures. On the contrary, for high magnetic
fields and low temperatures, the massive holes drive the
conduction properties. This crossover can be clearly seen from
our magnetoconductivity curves and is responsible for their
peculiar “plateau” shape. It should also be noted that a proper
separation of massive carriers has to be done prior to using
any expression that concerns solely Dirac carriers. In order to
confirm the picture of coexisting Dirac and massive carriers,
complementary studies, such as spectroscopic measurements,
are highly desirable but beyond the scope of the present
paper.
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