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Reduced density matrix after a quantum quench
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We consider the reduced density matrix (RDM) ρA(t) for a finite subsystem A after a global quantum quench in
the infinite transverse-field Ising chain. It has been recently shown that the infinite time limit of ρA(t) is described
by the RDM ρGGE,A of a generalized Gibbs ensemble. Here, we present some details on how to construct this
ensemble in terms of local integrals of motion, and show its equivalence to the expression in terms of mode
occupation numbers widely used in the literature. We then address the question of how ρA(t) approaches ρGGE,A

as a function of time. To that end, we introduce a distance on the space of density matrices and show that it
approaches zero as a universal power law t−3/2 in time. As the RDM completely determines all local observables
within A, this provides information on the relaxation of correlation functions of local operators. We then address
the issue of how well a truncated generalized Gibbs ensemble with a finite number of local higher conservation
laws describes a given subsystem at late times. We find that taking into account only local conservation laws with
a range at most comparable to the subsystem size provides a good description. However, excluding even a single
one of the most local conservation laws in general completely spoils this agreement.
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I. INTRODUCTION

Recent advances in systems of optically trapped ultracold
atomic gases have made it possible to observe the nonequi-
librium time evolution of isolated many particle systems
over long time scales.1–6 A key property of such cold
atomic clouds is their weak coupling to the environment and
resulting smallness of external dissipative processes. To a
good approximation, one is dealing with isolated quantum
mechanical many particle systems, which are prepared in
generally mixed states, and one is interested in the time
dependence of observables, in particular at late times. The
experimental results have stimulated theoretical efforts aimed
at understanding the principles underlying the nonequilibrium
dynamics of isolated many particle systems. Some of the
most basic questions are whether observables generally relax
to time-independent values and, if they do, whether their
stationary values are described by a statistical ensemble.
Other prominent issues concern the roles of dimensionality
and conservations laws. Experiments on trapped 87Rb atoms2

established that three-dimensional condensates rapidly relax
to a stationary state characterized by an effective temperature,
whereas constraining the motion of atoms to one dimension
leads to a much slower relaxation to a nonthermal distribution.
It was argued that this observed difference has its origin in
the presence of additional (approximate) conservation laws,
related to quantum integrability, in the one-dimensional case.
Theoretical efforts aimed at understanding these and related
questions7–45 indicate that in translationally invariant models
there are at least two basic types of behaviors at late times:
subsystems either thermalize,46 i.e., are characterized by a
Gibbs distribution with an effective temperature, or they are
described by a generalized Gibbs ensemble (GGE).8 There is
evidence that the latter applies to integrable models, while the
former constitutes the “generic” situation.

A popular protocol for analyzing nonequilibrium evolution
is a so-called quantum quench: here the system is originally
prepared in the ground state |�0〉 of some local, short ranged
Hamiltonian H (h0), where h0 is a system parameter such as

a magnetic field or an interaction strength. At time t = 0,
h0 is then suddenly “quenched” to h, and the subsequent
time evolution under the new Hamiltonian H (h) is studied.
Under this protocol the system remains in a pure state
|�t 〉 = exp[−iH (h)t]|�0〉 at all times, and as a whole can
clearly never be described by a Gibbs or generalized Gibbs
distribution. This can be seen by considering the Hermitian
operators

O(n,m) = |n〉〈m| + |m〉〈n|, (1.1)

where |n〉 and |m〉 are eigenstates of H (h) with energies En

and Em, respectively. Then the expectation values

〈�t |O(n,m)|�t 〉 = 〈�0|n〉〈m|�0〉ei(En−Em)t + H.c. (1.2)

are oscillating in time and never become stationary. A useful
and intuitive point of view is to focus on local properties of
a given system in the thermodynamic limit, i.e., ask ques-
tions only about observables contained in a finite subsystem
A.13,31,32 Here, the (infinitely large) complement Ā of A can
act as an effective bath, and probability may freely dissipate
from A to Ā. As a result A may be described by a mixed state.
Arguably the most precise and convenient description of this
situation is in terms of the reduced density matrix ρA(t) of
subsystem A. The latter is obtained from the density matrix
ρ(t) = |�t 〉〈�t | of the entire system as

ρA(t) = TrĀ [ρ(t)] . (1.3)

A central question is then whether for any finite subsystem A

lim
t→∞ ρA(t) = ρstat,A, (1.4)

where ρstat,A is a time-independent reduced density matrix
obtained as

ρstat,A = TrĀ [ρstat] . (1.5)

If (1.4) holds, then the system evolves towards a stationary
state described by the distribution ρstat. In particular, (1.4)
implies that the expectation values of any local operator OA
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acting only within subsystem A are given by

lim
t→∞〈�t |OA|�t 〉 = Tr [ρstat OA] . (1.6)

An efficient way of investigating whether a given RDM
approaches a known stationary distribution at late times was
introduced in Ref. 20 by considering the operator norm
‖ ρA(t) − ρstat,A ‖op. If this approaches zero at late times, then
the system relaxes locally to the stationary distribution ρstat.
Reference 20 was concerned with the case where ρstat describes
a thermal ensemble with a given effective temperature, and
considered very small subsystems. Here, we are interested in
a quench to a quantum integrable model. As we have alluded
to before, the stationary state for such quenches is believed to
be described locally by a generalized Gibbs ensemble (for the
model we consider below this was established in Ref. 32).
More precisely, the density matrix of the entire system is
expected to be of the form

ρstat = ρGGE = 1

Z e−∑
n λnIn , (1.7)

where Z is a normalization47 and In are local conserved
quantities, operators with local densities such that

[In,Im] = 0 = [Im,H (h)]. (1.8)

The Lagrange mutipliers λn are fixed by the requirements

〈�0|In|�0〉 = Tr [ρGGEIn] . (1.9)

We stress that the GGEs considered in the quench context
are fundamentally different from thermal ensembles because
through the specific values of the Lagrange multipliers they
retain an infinite amount of information about the initial
state. Above, we have stipulated that only local (in space)
conservation laws In are to be included in the definition of
ρGGE, but it is in fact a matter of ongoing debate as to whether
locality is a necessary or even desirable requirement.48 In this
context, a result obtained in Ref. 31 is rather illuminating: there
it was demonstrated for a particular example, the transverse-
field Ising chain, that different statistical ensembles can have
identical local properties. The two ensembles considered were
a GGE of the form (1.7), and the so-called “pair ensemble”
obtained by time averaging the quench density matrix ρ(t).
Given that ρstat is generally not unique, it is clearly desirable
to identify the simplest description. To that end, we introduce
truncated generalized Gibbs ensembles of the form

ρ
(n0)
tGGE = 1

Z e
−∑

n<n0
λnIn , (1.10)

and investigate how well such ensembles describe the station-
ary state for quenches to integrable models.

The outline of this paper is as follows. In Sec. II we review
some relevant results for the transverse-field Ising chain.
Local conservation laws are presented in Sec. III and used
in Secs. IV, V, and VI to define several classes of generalized
Gibbs ensembles. Properties of corresponding reduced density
matrices are discussed in Sec. VII. In Sec. VIII we discuss
general properties of distances on the space of reduced density
matrices and introduce the distance used in the remainder of
the paper. In Secs. IX, X, XI, and XII we present results for
the distance between quench and generalized Gibbs reduced

density matrices. We summarize our results in Sec. XIII.
Various technical issues are discussed in four Appendices.

II. SOME FACTS ABOUT THE TRANSVERSE-FIELD
ISING CHAIN (TFIC)

Here we briefly review some relevant results on the
TFIC. The latter is an important paradigm for quantum
phase transitions in equilibrium49 as well as nonequilibrium
dynamics.14,24,29,31,32,36,50 In the latter context, experimental
realizations range from cold atomic gases51 to circuit QED.52

The Hamiltonian of the model on a ring is

H (h) = −J

L∑
j=1

[
σx

j σ x
j+1 + hσ z

j

]
, (2.1)

where σα
L+1 = σα

1 . The quantum spins can be mapped to
(real) Majorana fermions by means of the Jordan-Wigner
transformation

a2� =
⎛⎝�−1∏

j=1

σ z
j

⎞⎠ σ
y

� , a2�−1 =
⎛⎝�−1∏

j=1

σ z
j

⎞⎠ σx
� , (2.2)

where {ai,aj } = 2δij . In terms of the Majorana fermions (2.2),
the Hamiltonian takes a block-diagonal form

H (h) = 1 + eiπN

2
HR + 1 − eiπN

2
HNS,

(2.3)

HNS/R = iJ

L−1∑
j=1

a2j [a2j+1 − ha2j−1] − iJ a2L[ha2L−1 ∓ a1].

Here, N is the number operator

N =
L∑

j=1

σ z
j − 1

2
=

L∑
j=1

ia2j a2j−1 − 1

2
, (2.4)

and by construction eiπN = ∏
j σ z

j commutes with HR,NS. The
two blocks HR and HNS correspond to periodic and antiperi-
odic boundary conditions on the fermions, respectively. They
can be diagonalized by Bogoliubov transformations

a2j−1 = 1√
L

∑
p

ei
θp

2 −ipj [αp + α
†
−p],

(2.5)

a2j = − i√
L

∑
p

e−i
θp

2 −ipj [αp − α
†
−p],

where the Bogoliubov angle θp is given by

eiθp = h − eip√
1 + h2 − 2h cos p

. (2.6)

The diagonal form of the Hamiltonian is

HNS(h) =
∑
p∈NS

εh(p)

(
α†

pαp − 1

2

)
, (2.7)

where the single-particle energy is given by

εh(k) = 2J
√

1 + h2 − 2h cos k. (2.8)

The ground states of HR,NS(h) are the fermionic vacua

αp|0; h〉R,NS = 0 . (2.9)
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Here, the momenta are p = πn
L

, where n are even/odd integers
for R and NS fermions, respectively.

A. Quantum quenches

Our quench protocol is as follows: we prepare the system
in the ground state |�0〉 for an initial value h0 of the transverse
magnetic field. At time t = 0 we instantaneously change the
field from h0 to h. The state of the system at times t > 0
is obtained by evolving with respect to the new Hamiltonian
H (h):

|�t 〉 = e−iH (h)t |�0〉. (2.10)

An important quantity is the difference �k = θk − θ0
k of

Bogoliubov angles required to diagonalize H (h) and H (h0),
respectively,

cos �k = 4J 2[1 + hh0 − (h + h0) cos k]

εh(k)εh0 (k)
. (2.11)

As we are interested in obtaining results in the thermodynamic
limit, we have to distinguish between two cases.

1. Quenches from the paramagnetic phase h0 > 1

Here the initial state in a large, finite volume is simply the
NS vacuum

|�0〉 = |0; h0〉NS. (2.12)

The time evolved state can then be written in the form31

|�t 〉 = 1

M exp

⎡⎣i
∑

0<p∈NS

tan

(
�p

2

)
e−2iεptα

†
−pα†

p

⎤⎦ |0; h〉NS ,

(2.13)

where |0; h〉NS is the ground state of HNS(h) and M a
normalization factor.

2. Quenches from the ferromagnetic phase h0 < 1

Here our initial state in a large, finite volume must reflect the
spontaneous symmetry breaking of the Z2 spin-flip symmetry
σx,y → −σx,y in the thermodynamic limit. The appropriate
choice is31

|�0〉 = |0; h0〉R + |0; h0〉NS√
2

. (2.14)

III. LOCAL CONSERVATION LAWS IN THE TFIC

We consider the one-dimensional transverse-field Ising
chain in the thermodynamic limit

H = −J

∞∑
n=−∞

σx
n σ x

n+1 + hσ z
n . (3.1)

Following Ref. 53 we can construct an infinite number of local
conservation laws I±

n ,[
Iα
n ,I β

m

] = 0, n = 0,1, . . . ,α,β = ±, (3.2)

where the Hamiltonian itself is H = I+
0 . Let us define

operators

Un>0 = 1

2

∞∑
j=−∞

σx
j

(
n−1∏
l=1

σ z
j+l

)
σx

j+n,

U0 = −1

2

∞∑
j=−∞

σ z
j , (3.3)

Un<0 = 1

2

∞∑
j=−∞

σ
y

j

(|n|−1∏
l=1

σ z
j+l

)
σ

y

j+|n|

and

Vn>0 = 1

2

∞∑
j=−∞

σx
j

(
n−1∏
l=1

σ z
j+l

)
σ

y

j+n,

(3.4)

Vn<0 = −1

2

∞∑
j=−∞

σ
y

j

(|n|−1∏
l=1

σ z
j+l

)
σx

j+|n|.

In terms of these operators the local conservation laws are

I+
n = −J (Un+1 + U1−n) + hJ (Un + U−n),

(3.5)
I−
n = J (Vn+1 + V−n−1) , n � 0.

They are local in the sense that the density of Iα
n involves only

spins on n + 2 neighboring sites. By virtue of their locality,
the conservation laws can all be expressed in terms of Jordan-
Wigner fermions (2.2):

I+
n = i

2

∞∑
j=−∞

Ja2j [a2j+2n+1 + a2j−2n+1]

−hJa2j [a2j+2n−1 + a2j−2n−1], (3.6)

I−
n−1 = − iJ

2

∞∑
j=−∞

a2j a2j+2n + a2j−1a2j+2n−1.

We now realize that all conservation laws (3.6) are in fact
quadratic in Majorana fermions! It is then a simple matter
to diagonalize them simultaneously by means of a Bogoli-
ubov transformation (2.5), where on the infinite chain the
Bogoliubov fermion operators have anticommutation relations

{αp,α
†
k} = 2πδ(p − k). (3.7)

The conservation laws take the simple form

I+
n =

∫ π

−π

dk

2π
cos(nk)εh(k)α†

kαk,

(3.8)

I−
n = −

∫ π

−π

dk

2π
2J sin[(n + 1)k]α†

kαk,

which furthermore shows that they are even/odd under spatial
reflections. Interestingly the conservation laws I−

n do not
depend on the transverse field h and are therefore shared by
the entire one-parameter family of Hamiltonians H (h). This
seems to be a generic feature of models with a free fermion
spectrum like the TFIC (see Appendix C and Ref. 59).
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A. Local conservation laws for periodic boundary conditions

Above we focused on the bulk contribution to the local
conservation laws. For a finite system on a ring there are
boundary contributions, which can be determined as follows.
In terms of the Bogoliubov fermions, the conservation laws
for periodic boundary conditions are

I+
n =

∑
k

cos(nk)ε(k)α†
kαk,

(3.9)
I−
n = −

∑
k

2J sin[(n + 1)k]α†
kαk,

where the momenta are taken to be either in the R or NS sectors.
By inverting the Bogoliubov transformation and Fourier trans-
forming back to position space, one obtains a representation
of the conservation laws in terms of the Majorana fermions
aj for periodic/antiperiodic boundary conditions, respectively.
Finally, inverting the Jordan-Wigner transformation gives the
desired expression in terms of spins.

IV. GENERALIZED GIBBS ENSEMBLE

We now define the density matrix of a generalized Gibbs
ensemble formally by the expression

ρGGE = 1

Z exp

(
−

∞∑
n=0

∑
σ=±

[
λσ

n I σ
n

])
, (4.1)

where Z is a normalization that ensures TrρGGE = 1. In
practice we need to regularize (4.1) in an asymptotically large,
finite volume L.

The Lagrange multipliers λσ
n are fixed through the require-

ments

lim
L→∞

1

L
Tr
[
ρGGEI σ

n

] = lim
L→∞

〈�0|I σ
n |�0〉
L

. (4.2)

Using translational invariance we can alternatively work with
the densities of the conservation laws

I σ
n =

∞∑
j=−∞

(
I σ
n

)
j,...,j+n+1 (4.3)

to rewrite (4.2) as

Tr
[
ρGGE

(
I σ
n

)
j,...,j+n+1

] = 〈�0|
(
I σ
n

)
j,...,j+n+1|�0〉. (4.4)

The solution to this system of equations is

λ+
l = (2 − δl,0)

∫ π

−π

dk

π

cos(lk)

εh(k)
arctanh(cos �k), λ−

l = 0,

(4.5)

where l � 0 and cos �k is defined in (2.11). In Fig. 1 we show
λ+

l for a quench from h0 = 0.1 to h = 0.7. The large l behavior
of Eq. (4.5) is determined by the regions k ∼ 0,π (where the
integrand has a logarithmic singularity) and one can show that

λ+
l ∼ 2

l

(
± 1

εh(0)
+ (−1)l

εh(π )

)
, (4.6)

where the sign is + for quenches within the same phase
and − otherwise. We see that the Lagrange multipliers λ+

n

decay rather slowly as a function of n.

5 10 15 20
n

0.5

1.0

1.5

2.0

λn

FIG. 1. (Color online) Parameters λn for a quench within the
ordered phase from h0 = 0.1 to h = 0.7.

A. GGE in terms of mode occupation numbers

In the literature, the generalized Gibbs ensemble is often
constructed from mode occupation numbers nk = α

†
kαk (see,

e.g., Refs. 8, 12, 18, 54, and 55). The latter are nonlocal
(in space) as they involve a Fourier transform. We will now
establish the relation between this and our definition (4.1). It
follows from (3.8) that the density matrix can be rewritten in
the form

ρGGE = 1

Z exp

(
−
∫ π

−π

dk

2π
γkα

†
kαk

)
, (4.7)

where

γk =
∞∑

n=0

λ+
n εh(k) cos(kn) − 2Jλ−

n sin[k(n + 1)]. (4.8)

This establishes the fact that the GGE density matrix can be
constructed either from the local conservation laws (3.6), or
from the mode occupation numbers nk . This relationship gen-
eralizes to interacting integrable models, where the appropriate
GGE can be formulated either in terms of the local integrals
of motion generated from the transfer matrix, or from the
mode occupation numbers na(k) = Z

†
a(k)Za(k), where Za(k)

are Faddeev-Zamolodchikov operators.56,57

V. TRUNCATED GENERALIZED GIBBS ENSEMBLES

In order to assess the importance of the various conserved
quantities, it is useful to define ensembles that interpolate be-
tween the Gibbs distribution and the GGE. We define particular
such truncated GGEs as follows. Given that the densities of
the conservation laws I±

n involve n + 2 neighboring sites, it is
natural to retain only the “most local” conservation laws, i.e.,

ρ
(y)
tGGE = 1

Zy

exp

(
−

y−1∑
n=0

∑
σ=±

[
λσ

n,yI
σ
n

])
. (5.1)

Here y is an integer and y = 1 (y = ∞) corresponds to the
Gibbs ensemble (GGE). The Lagrange multipliers λσ

n,y are
obtained from the requirements

Tr
[(

I σ
n

)
j,...,j+n+1 ρ

(y)
tGGE

] = 〈�0|
(
I σ
n

)
j,...,j+n+1 |�0〉 , (5.2)
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where 0 � n < y. Equation (5.2) is a consequence of
[I σ

n ,H ] = 0 and the assumption that the stationary state
after the quench is described by RDMs based on (5.1). For
transverse-field quenches we have λ−

n,y = 0, but the other
Lagrange multipliers are different from their respective values
in the full GGE, i.e.,

λ+
n,y �= λ+

n . (5.3)

We note that the correlation matrix of ρ(y) can be computed
efficiently using FFT algorithms. This is in contrast to the case
of theories with nontrivial scattering matrices, for which it
is extremely difficult to reconstruct the Lagrange multipliers
from the conservation laws.58

VI. DEFECTIVE GENERALIZED GIBBS ENSEMBLES

It is instructive to consider a second type of truncated GGE,
where we retain an infinite, but incomplete set of integrals of
motion. Such “defective” GGEs will allow us to ascertain
the role of a particular local conservation law. We define the
truncated defective GGE as the density matrix (q < y)

ρ
(+q),y
tdGGE = 1

Z(+q),y
exp

⎛⎜⎜⎜⎝−
y∑

n = 0
n �= q

[
λ+

n,(+q),yI
+
n

]
⎞⎟⎟⎟⎠ , (6.1)

in which the Lagrange multipliers λ+
n,(+q) are fixed by the

system (4.2) with n � y, n �= q, and we have used that
the Lagrange multipliers λ−

n,(+q),y must vanish as a conse-
quence of reflection symmetry around the origin. We then
define the defective GGE as the limit y → ∞ of truncated
defective GGEs:

ρ
(+q)
dGGE = lim

y→∞ ρ
(+q),y
tdGGE . (6.2)

In order to solve the system of equations (4.2) for the defective
GGE it is useful to work in the mode occupation number
representation (4.7), which reads as

ρ
(+q)
dGGE = 1

Z(+q)
exp

(
−
∫ π

−π

dk

2π
γ

(+q)
k α

†
kαk

)
, (6.3)

where the Lagrange multipliers γ
(+q)
k are subject to the set of

equations∫ π

−π

dk

2π

[
tanh

(
γ

(+q)
k

2

)
− cos �k

]
ε(k) cos(nk) = 0,

(6.4)∫ π

−π

dk

2π

[
tanh

(
γ

(+q)
k

2

)
− cos �k

]
sin[(n + 1)k] = 0.

Guided by the fact that cos(nk) and sin[(n + 1)k] form an
orthonormal set of functions on [−π,π ], we look for a solution
of the form

tanh

(
γ

(+q)
k

2

)
= cos �k − κ+

q

cos(qk)

ε(k)
, (6.5)

where κ+
q is a yet to be determined constant. We note that the

value of κ+
q affects the expectation values of local operators.

For some cases κ+
q can be easily determined as follows. Given

that | tanh(x)| � 1, (6.5) implies that∣∣∣∣cos �k − κ+
q

cos(qk)

ε(k)

∣∣∣∣ � 1, ∀k. (6.6)

Setting k = 0,π then gives

|2J (h − 1)sgn(h0 − 1) − κ+
q | � 2J |h − 1|,

(6.7)
|2J (h + 1) − (−1)qκ+

q | � 2J (h + 1) .

Equations (6.7) allow us to identify cases, in which κ+
q = 0:

(1) odd q and quenches within the same phase;
(2) even q and quenches across the critical point.
Importantly, κ+

q = 0 implies that ρ
(+q)
dGGE ≡ ρGGE, i.e., the

defective GGE is identical to the full GGE. This “GGE
reconstruction” is a peculiarity of free-fermion models and
can be traced back to the existence of conservation laws
independent of the quench parameter (see also Ref. 59).

For general quenches and values of q, κ+
q is determined

by Eq. (6.2). We find that it takes the value corresponding
to the maximal entanglement entropy (as shown in Fig. 9),
although the entanglement entropy may be nonstationary under
a variation of the excluded integral of motion (see Appendix D
for further details).

VII. REDUCED DENSITY MATRICES IN THE
TRANSVERSE-FIELD ISING CHAIN

In this section we summarize some basic features of RDMs
in the TFIC. We note that most of the following discussion
generalizes straightforwardly to other spin chains with free
fermionic spectra such as the quantum XY model. Our starting
point is a density matrix ρ describing the entire system, which
we take to be of size L with periodic boundary conditions. We
are interested in the limit L → ∞, but it is convenient to start
with a large, finite chain. The RDM of a subsystem consisting
of � spins 1

2 at sites xi , i = 1, . . . ,�, can be expressed in the
form

ρ{x1,...,x�} = 1

2�

∑
{α}�

Tr
[
ρ σα1

x1
. . . σ α�

x�

]
σα1

x1
. . . σ α�

x�
, (7.1)

where αi = 0,x,y,z and σ 0 ≡ I. The quantum spins are
mapped to (real) Majorana fermions by the Jordan-Wigner
transformation (2.2). The nonlocality of the transformation
(2.2) has important consequences for RDMs. First and fore-
most, if the spins are not adjacent, the map from spin to
fermionic degrees of freedom does not have a simple reduction
to the subspace of the Hilbert space formed by sites {x1, . . . ,x�}
because of Jordan-Wigner strings stretching between sites.60,61

However, the RDM of a block of adjacent spins can be mapped
one-to-one on a block of adjacent fermions,62 provided that the
first site of the block coincides with site 1, i.e., the origin of
Jordan-Wigner strings. Then (7.1) can be represented in the
form

ρ� = 1

2�

∑
{μ}

Tr
[
ρ a

μ1
1 . . . a

μ2�

2�

]
a

μ2�

2� . . . a
μ1
1 (7.2)
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with μj = 0,1. An important quantity in what follows is the
correlation matrix �,

�ij = Tr[ρ ajai] − δij , 1 � i,j � 2�. (7.3)

In the cases of interest to us, the correlation matrix is of block-
Toeplitz form

� =

⎡⎢⎢⎢⎢⎢⎣
�0 �−1 . . . �1−�

�1 �0
...

...
. . .

...

��−1 . . . . . . �0

⎤⎥⎥⎥⎥⎥⎦ , (7.4)

where

�l =
∫ π

−π

dk

2π
e−ilk

( −f (k) g(k)

−g(−k) f (k)

)
. (7.5)

The TFIC Hamiltonian exhibits a Z2 symmetry

aj −→ −aj . (7.6)

If the density ρ is invariant under the transformation (7.6)
we have Tr[ρ aj ] = 0, and as Wick’s theorem applies to the
Jordan-Wigner fermions we can express (7.2) as a Gaussian62

ρ� = 1

Z
e

1
4

∑
mn amWmnan , (7.7)

where Z ensures that Trρ� = 1 and W is a skew symmetric
2� × 2� Hermitian matrix related to � by

tanh
W

2
= �. (7.8)

We now turn to the three particular cases of interest, namely,
those where ρ in (7.1) is a thermal density matrix, a GGE
density matrix, or the density matrix after a global quantum
quench of the transverse field in the TFIC.

A. Thermal density matrix

On a very large ring, the Hamiltonian has a block-diagonal
structure (see Sec. II). The thermal density matrix is a function
of the Hamiltonian and therefore inherits the same block
structure

ρβ =
[

1 + eiπN

2

e−βHR

ZR
+ 1 − eiπN

2

e−βHNS

ZNS

]
. (7.9)

It follows from this that only even operators have nonvanishing
expectation values, i.e.,

Tr(ρβO) �= 0 → [eiπN ,O] = 0. (7.10)

In the thermodynamic limit the difference between expectation
values of local operators with respect to the R and NS sectors
tends to zero, so that we may work exclusively in, e.g., the R
sector. The resulting RDM of a contiguous block of spins is
then Gaussian (7.7), (7.8) with

(�β)ij = Tr

[
e−βHR ajai

ZR

]
− δij . (7.11)

It can be written in the form (7.4) with

f (k) = 0 , g(k) = −ieiθk tanh

(
βεh(k)

2

)
. (7.12)

B. GGE density matrix

It was shown in Ref. 32 (see also Refs. 24 and 31) that
the RDM of the generalized Gibbs ensemble (4.1), (4.7) is
Gaussian and can be expressed in the form (7.7), (7.8). The
correlation matrix is given by

(�GGE)ij = 1

Z Tr
[
e−∑

i,σ λσ
j I σ

j aj ai

] − δij . (7.13)

It can be written in the form (7.4) with

f (k) = 0 , g(k) = −ieiθk tanh

(
γk

2

)
. (7.14)

Here the γk’s are related to the λσ
m’s by (4.8) and the Bogoliubov

angle θk is given in (2.6).

C. Truncated GGE density matrix

The correlation matrix of the truncated GGE defined in
Sec. V is given by

(
�

(y)
tGGE

)
ij

= 1

Zy

Tr

[
exp

(
−

y−1∑
n=0

∑
σ=±

[
λσ

n,yI
σ
n

])
ajai

]
− δij .

(7.15)

It can be written in the form (7.4) with

f (k) = 0 , g(k) = −ieiθk tanh(Py−1[cos(k)]ε(k)) . (7.16)

Here Py−1(x) is a polynomial of order y − 1, which is
computed numerically.

D. Defective GGE density matrix

In Sec. VI we defined the defective GGE ρ
(q)
dGGE as the

ensemble that lacks in the conservation law I+
q . Its correlation

matrix is given by

[
�̄

(+q)
dGGE

]
ij

= 1

Z (d)
q

Tr

⎡⎢⎢⎢⎣exp

⎛⎜⎜⎜⎝−
∞∑

n = 0
n �= q

λ+
n,(+q)I

+
n

⎞⎟⎟⎟⎠ ajai

⎤⎥⎥⎥⎦ − δij .

(7.17)

It can be written in the form (7.4) with f (k) = 0 and [cf.
Eq. (7.14)]

g(k) = −ieiθk

[
tanh

(
γk

2

)
− κ+

q

cos(qk)

ε(k)

]
, (7.18)

where κ+
q is computed numerically maximizing the entangle-

ment entropy, which selects λ+
q,(+q) = 0 whenever it is allowed.

We note that the Fourier transform of Eq. (7.18), which is
required to compute the correlation matrix (7.5), can be easily
expressed in terms of the GGE correlators; for |�| < q we have∫ π

−π

dk

2π
e−i�kg(k) =

∫ π

−π

dk

2π
e−i�kgGGE(k)

+ iκq

4J
sgn(ln h)h�−1e−| ln h|q . (7.19)

Since κ+
q is a bounded function of q [cf. Eq. (6.7)], at fixed

� the fermionic correlators approach the GGE ones at least
exponentially fast in q.
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E. Quench density matrix

At zero temperature the ground state phase diagram of
the TFIC exhibits ferromagnetic (h < 1) and paramagnetic
(h > 1) phases, separated by a quantum critical point. In the
ferromagnetic phase, the Z2 symmetry of the Hamiltonian is
broken spontaneously. As we will see, this symmetry breaking
has important effects on the time evolution of the density
matrix.

1. Quenches originating in the paramagnetic phase

Here, at t > 0 the full quench density matrix is

ρ(t) = |�t 〉 〈�t |, (7.20)

where the state |�t 〉 is given in (2.13). As a result of
the squeezed-state form of |�t 〉, Wick’s theorem applies
to averages calculated with respect to ρ(t), and RDMs are
Gaussians of the form (7.7), (7.8), with correlation matrix

�(t) = NS 〈0|eiHNSt aj aie
−iHNSt |0〉NS − δij . (7.21)

This is of the form (7.4) with

g(k) = −ieiθk [cos �k − i sin �k cos(2εh(k)t)],
(7.22)

f (k) = sin �k sin(2εh(k)t),

where eiθk is given by (2.6).

2. Quenches originating in the ferromagnetic phase

Given the initial state (2.14), the post-quench density matrix
of the full system is

ρ(t) = |�t 〉〈�t |,
(7.23)

|�t 〉 = e−iHRt |0; h0〉R + e−iHNSt |0; h0〉NS√
2

.

Importantly, RDMs are no longer Gaussian in this case. We
will discuss how to cope with this complication in Sec. XI.
It is known32 that in the stationary state RDMs are Gaussian
with a correlation matrix equal to the t → ∞ limit of (7.21).

VIII. DISTANCES ON THE SPACE OF RDMS

In the following, we focus on RDMs for finite subsystems of
lattice models with a finite dimensional Hilbert space at each
site. In this case the RDMs are finite dimensional matrices,
and a simple way to define a distance between two density
matrices is by means of a matrix norm

da(ρ,ρ ′) = ‖ρ − ρ ′‖a . (8.1)

Here the index a labels different matrix norms. As we are
dealing with finite matrices, all norms are equivalent in the
sense that

cab‖ρ‖a � ‖ρ‖b � c−1
ba ‖ρ‖a , (8.2)

where cab and cba are positive numbers that depend on the
matrix dimension but are independent of ρ. One consequence
of (8.2) is that if the distance between two matrices approaches
zero when some external parameter p is tuned to a value p̄, the
dependence of the distance on p − p̄ is almost independent
of the norm. On the other hand, the dependence on matrix
dimension is in general very different for different norms. This

is important for our purposes because the matrix dimension is
related to the size of the subsystem under consideration, and it
is principally desirable to be able to compare distances between
different sizes.

From a technical point of view, the distance induced by the
Frobenius norm63

‖A‖F ≡
√

Tr[A†A] (8.3)

is generally the easiest to calculate. On the other hand, it has
the drawback that the physical interpretation of the distance
is less transparent than for some other norms. For instance,
given two density matrices ρ and ρ ′, a very natural question
is how different expectation values of local observables are
in the two ensembles. We now discuss this question for the
particular case of spin- 1

2 quantum spin chains. Here the most
important local observables are products of Pauli matrices.
These are particular cases of involutions Ô2 = I, for which
the following inequality holds:

|Tr[(ρ − ρ ′)Ô]| � ‖ρ − ρ ′‖1 . (8.4)

Here

‖A‖1 ≡ Tr[
√

AA†] (8.5)

is the trace norm. From Eq. (8.4) it is evident that the trace
distance provides an upper bound for the difference between
the expectation values of observables in the two states: if
‖ρ − ρ ′‖1 < ε, then the expectation values of all (local)
observables will agree in the two ensembles within accuracy
ε. In terms of the Frobenius distance we have instead (here we
use that the local Hilbert space is two dimensional)

|Tr[(ρ − ρ ′)Ô]| � ‖ρ − ρ ′‖1 � 2�/2‖ρ − ρ ′‖F . (8.6)

On the other hand, we have

|Tr[(ρ − ρ ′)Ô]| � |Tr[ρÔ]| + |Tr[ρ ′Ô]| � 2, (8.7)

where in the last step we have used that for involutions Ô

|Tr[ρÔ]| �
∑

j

| (ρ)jj | = tr
√

ρ†ρ = 1. (8.8)

Combining (8.7) and (8.6) we see that as long as ‖ρ − ρ ′‖F �
21−�/2, the Frobenius distance does not provide useful infor-
mation about expectation values. It is shown in Appendix A
that for sufficiently large � this is always the case.

A second problem with using the Frobenius norm as a
distance is that the norms of RDMs at late times after a quantum
quench, as well as the norms of RDMs describing Gibbs
or generalized Gibbs ensembles, generally are exponentially
small in the subsystem size. Given the upper bound derived in
Appendix A

‖ρ − ρ ′‖F �
√

‖ρ ‖2
F +‖ρ ′‖2

F , (8.9)

this implies that in these cases of interest ‖ρ − ρ ′‖F is
exponentially small in subsystem size. This shows that the
Frobenius norm itself is not a convenient measure for the
distance between two density matrices. The same problem
occurs for the operator norm ‖A‖op = √

λmax, where λmax

is the largest eigenvalue of A†A. This norm was used for
example in Ref. 20 to analyze the relaxation properties of
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small subsystems after a quench into a nonintegrable model.
Indeed we have

‖ρ − ρ ′‖op � ‖ρ‖op + ‖ρ ′‖op , (8.10)

and the maximal eigenvalues of RDMs for large subsystems
are generally exponentially small in subsystem size.

A. Definition of the distance

In order to circumvent the problem described above, we
define our “distance”64 on the space of RDMs as

D(ρ,ρ ′) ≡ ‖ρ − ρ ′‖F√
‖ρ‖2

F + ‖ρ ′‖2
F

. (8.11)

An upper bound. Using the upper bound derived in (A1), we
see that

D(ρ,ρ ′) � 1. (8.12)

A lower bound. A lower bound for D(ρ,ρ ′) can be established
by means of the triangle inequality ‖ρ − ρ ′‖F � | ‖ρ‖F −
‖ρ ′‖F |. Using that the Frobenius norm of a RDM is related to
the second Rényi entropy by

S2 ≡ − ln Tr[ρ2] = − ln ‖ρ‖2
F , (8.13)

we find that

‖ρ − ρ ′‖ �
∣∣∣∣exp

(
−S2

2

)
− exp

(
−S ′

2

2

)∣∣∣∣ . (8.14)

This provides the desired lower bound

D(ρ,ρ ′) � |e−S2/2 − e−S ′
2/2|√

e−S2 + e−S ′
2

. (8.15)

We note that the bound (8.15) is independent of subsystem size
� as long as the second Rényi entropies of the two ensembles
differ at least by a constant (when viewed as functions of �).

B. Distance between two thermal ensembles

In order to establish a benchmark for (8.11), it is useful
to consider the distance between the RDMs of two thermal
ensembles at slightly different inverse temperatures β and β ′
(but the same Hamiltonian). Then

D(ρβ,ρβ ′ ) ≈
∥∥ ∂ρβ

∂β

∥∥
F

‖ρβ‖F

1√
2
|β − β ′|. (8.16)

For a sufficiently large subsystem (and a local Hamiltonian),
the first factor on the right-hand side can be expressed as∥∥ ∂ρβ

∂β

∥∥2
F

‖ρβ‖2
F

= ‖ρβ (〈H 〉β − H )‖2
F

||ρβ ||2F
= Tr

[
ρ2

β(〈H 〉β − H )2
]

Trρ2
β

= 〈(〈H 〉β − H )2〉2β, (8.17)

where 〈O〉β = Tr(ρβO). For a large subsystem, this is propor-
tional to the square of its size, and hence∥∥ ∂ρβ

∂β

∥∥
F

‖ρβ‖F

∝ �. (8.18)

We conclude that the distance between two thermal RDMs on
a subsystem of size � and β ≈ β ′ is

D(ρβ,ρβ ′ ) ∝ �|β − β ′|. (8.19)

As expected, this is proportional to the difference in temper-
atures, but there is also a factor of �. The latter is important
if one is interested in comparing the distance between two
ensembles for different subsystem sizes.

C. Distance between two GGEs

The above discussion carries over to the case of two
generalized Gibbs ensembles (4.1), with slightly different
values of Lagrange multipliers λσ

m. The leading contribution
to the distance is given by

D(ρGGE,ρ ′
GGE) ≈

∑
m,σ

∥∥ ∂ρGGE

∂λσ
m

∥∥
F

||ρGGE||F
1√
2

∣∣λσ
m − λ′σ

m

∣∣. (8.20)

A calculation similar to the thermal case shows that for large
subsystem size ∥∥ ∂ρGGE

∂λσ
m

∥∥
F

||ρGGE||F ∝ �. (8.21)

D. Information on observables contained in the distance

Let us consider the situation where the distance between two
reduced density matrices ρ1 and ρ2 defined on an interval of
length � becomes small, and denote the corresponding averages
of local operators on said interval by

〈O〉a = Tr[ρaO], a = 1,2. (8.22)

By expanding the density matrices in a complete basis of
Hermitian involutions we can show that

D(ρ1,ρ2) =
√∑

O(〈O〉2 − 〈O〉1)2∑
O
( 〈O〉2

2 + 〈O〉2
1

) . (8.23)

Defining an average

f (O) ≡
∑
O

P (O)f (O), P (O) = 〈O〉2
1 + 〈O〉2

2∑
Q 〈Q〉2

1 + 〈Q〉2
2

,

(8.24)

we can express the distance (8.11) as

D(ρ1,ρ2) = ([R(O)]2)1/2. (8.25)

Here,

R(O) ≡ | 〈O〉1 − 〈O〉2 |√
〈O〉2

1 + 〈O〉2
2

(8.26)

is the relative difference between the ensembles described by
ρ1 and ρ2, respectively. This implies that D(ρ1,ρ2) measures
the mean relative difference of the expectation values of
all local operators, averaged with respect to the probability
distribution (8.24).
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E. Distance between two Gaussian density matrices

The distance (8.11) between two Gaussian RDMs ρ[�] and
ρ[�′] can be expressed in terms of their correlation matrices
following Ref. 60. Given the definition of the distance

D(ρ,ρ ′) =
√

Tr(ρ2 + ρ ′2 − 2ρρ ′)√
Tr(ρ2) + Tr(ρ ′2)

, (8.27)

we require tractable expressions for the quantities

Tr(ρ[�]ρ[�′]). (8.28)

This is achieved in two steps. First, we note that the product
of two Gaussian RDMs (7.7) is itself Gaussian:60

exp

⎛⎝1

4

∑
i,j

Wij aiaj

⎞⎠ exp

⎛⎝1

4

∑
i,j

W̃ij aiaj

⎞⎠
= exp

⎛⎝1

4

∑
i,j

[ln(eWeW̃ )]ij aiaj

⎞⎠ . (8.29)

This can be seen by expanding the left-hand side of (8.29) by
means of the Baker-Campbell-Hausdorff formula in terms of
multiple commutators, and then observing that the commutator
of quadratic operators is quadratic and gives rise to a
commutator between the matrices W that characterize the
2-forms⎡⎣1

4

∑
i,j

Wij aiaj ,
1

4

∑
i,j

W̃ij aiaj

⎤⎦ = 1

4

∑
i,j

[[W,W̃ ]]ij aiaj .

(8.30)

Second, using results for the second Rényi entropy,65 one
can relate the Frobenius norm of a Gaussian RDM to the
correlation matrix by

Tr[ρ[�]2] =
(

det

∣∣∣∣ I + �2

2

∣∣∣∣)
1
2

. (8.31)

Combining (8.31) and (8.29), one can then show60 that

{�,�̃} ≡ Tr[ρ[�]ρ[�̃]] =
(

det

∣∣∣∣ I + ��̃

2

∣∣∣∣)
1
2

. (8.32)

Here, we have used that Tr [ρ1ρ2] � 0, which is a consequence
of density matrices being positive semidefinite operators.
Finally, substituting (8.32) into (8.27), we obtain the following
result for the distance between two Gaussian RDMs:

D(ρ[�],ρ[�̃]) =
[

1 − 2{�,�̃}
{�,�} + {�̃,�̃}

] 1
2

. (8.33)

Given that the correlation matrices are only 2� dimensional
(with � the subsystem size), (8.33) provides a very efficient
way of computing distances for large subsystem sizes.

IX. SINGLE-SITE SUBSYSTEM

It is instructive to consider the time evolution of the RDM
describing a single-site subsystem in some detail. In this case,

the RDM of site 1 can be expressed in the form

ρ1(t) = I

2
+ �m(t) · �σ1 , (9.1)

where �m(t) is the magnetization per site at time t after the
quench, i.e.,

mα(t) = 1
2 〈�t |σα

1 |�t 〉. (9.2)

The RDM of the generalized Gibbs ensemble describing the
stationary state is

ρGGE,1 = I

2
+ mz

statσ
z
1 , (9.3)

where

mz
stat =

∫ π

−π

dk

4π
eiθk cos �k. (9.4)

Finally, the RDM of the thermal ensemble described by ρβ ,
whose inverse temperature β is fixed by the requirement

lim
L→∞

1

L
〈�0|H (h)|�0〉 = lim

L→∞
1

L
Tr[ρβH (h)], (9.5)

is given by

ρβ,1 = I

2
+ mz

βσ z
1 . (9.6)

Here the transverse magnetization per site is

mz
β =

∫ π

−π

dk

4π
eiθk tanh

(
βεk

2

)
. (9.7)

A. Quenches originating in the paramagnetic phase

Here the Z2 symmetry enforces

mx(t) = my(t) = 0. (9.8)

The z component of the magnetization per site is

mz(t) =
∫ π

−π

dk

4π
eiθk [cos �k − i sin �k cos(2εkt)]. (9.9)

For late times we may evaluate the integral by means of a
stationary phase approximation, which gives

mz(t) � mz
stat + c(t)

(J t)3/2
, (9.10)

where

c(t) = (h − h0) cos(4J t |1 − h| − π/4)

8|h0 − 1|√π |h − 1|
+ (h − h0) cos(4J t |1 + h| + π/4)

8|h0 + 1|√π |h + 1| . (9.11)

The distance between ρ1(t) and the generalized Gibbs RDM at
late times then decays to zero like a power law with exponent
3
2 :

D(ρ1(t),ρGGE,1) =
√

2|mz(t) − mz
stat |√

1 + 2[mz(t)]2 + 2
(
mz

GGE

)2

∼
√

2c2(t)

1 + 4
(
mz

stat

)2 (J t)−
3
2 . (9.12)
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On the other hand, the distance between ρ1(t) and the thermal
RDM approaches a constant at late times

D(ρ1(t),ρβ,1) =
√

2
∣∣mz(t) − mz

β

∣∣√
1 + 2[mz(t)]2 + 2

(
mz

β

)2

∼
√

2
∣∣mz

stat − mz
β

∣∣√
1 + 2

(
mz

stat

)2 + 2
(
mz

β

)2

+O[(J t)−
3
2 ]. (9.13)

B. Quenches originating in the ferromagnetic phase

Here all three components of the magnetization per site are
nonzero. The component along the transverse field direction is
again given by (9.9), while the late-time asymptotics of mx(t)
has been calculated in31

mx(t) = 1
2

√
Cx

FF et
∫ π

0
dk
π

ln cos �kε
′
k . (9.14)

Here, Cx
FF is a known amplitude and ε′

k = dεh(k)
dk

. Finally, the
Heisenberg equation of motion for σx

1 (t) relates the y and x

components:

my(t) = 1

2Jh

dmx(t)

dt
. (9.15)

Importantly, mx,y(t) exhibit exponential decay in time. In
contrast, mz(t) again decays like a power law with exponent 3

2
and therefore will dominate the late-time behavior. Hence, at
sufficiently late times, the distances of ρ1(t) to GGE and ther-
mal RDMs are again given by (9.13) and (9.12), respectively.
So, for a single-site subsystem the spontaneous symmetry
breaking only modifies the intermediate time behavior of
the distances. As we will see, this holds true also for larger
subsystems.

X. LARGER SUBSYSTEMS FOR QUENCHES FROM THE
PARAMAGNETIC PHASE

For quenches with h0 > 1 and in the thermodynamic limit,
we determine the distance between the quench RDM and that
of an appropriate thermal or generalized Gibbs ensemble by
means of relation (8.33). The correlation matrices for all cases
are of the form (7.4), (7.5) with elements given in (7.12), (7.14),
and (7.22), respectively. For a subsystem of size � this requires
the calculation of determinants of 2� × 2� matrices, which
is done numerically. Results for a quench from h0 = 1.2 to
h = 3 and subsystem sizes � = 10,20,30, . . . ,150 are shown
in Figs. 2 and 3. We see that the distance between quench and
Gibbs RDMs tends to a �-dependent constant at late times.
This establishes that subsystems do not thermalize. On the
other hand, as can be seen from Fig. 3, at sufficiently late
times the distance between ρ�(t) and ρGGE,� decays to zero in
a universal power-law fashion

D(ρ�(t),ρGGE,�)
J t�1→ k(�)(J t)−3/2 + · · · . (10.1)

The quality of the fit (10.1) is shown in Fig. 4. The large-�
asymptotics of the function k(�) can be inferred as follows. On
surfaces with constant, small D the time scales as t ∼ �4/3 as

1 10 100 1000
t

0.1

1

10
150

D

h0=1.2 h=3

(Gibbs)

FIG. 2. (Color online) Normalized distance DGibbs =
D(ρ�(t),ρ

β

� ) after a quench within the paramagnetic phase for
subsystem sizes � = 10,20, . . . ,150. As � increases, the color fades
from brown to green, the symbols become smaller, and the curves
narrower. At late times the distances tend to constants depending on
subsystem size.

is shown in Fig. 5. This in turn implies that

k(�) ∼ �2. (10.2)

A. Relaxation time

We may extract a relaxation time from the behavior of the
distance by using the connection to averaged differences in the
expectation values of local operators established in Sec. VIII D.
The distance can be written as

D(ρGGE,�,ρ�(t)) = ([R(O)]2)1/2, (10.3)

10 100 1000
t

0.001

0.01

0.1

1

10
150

D

h0=1.2 h=3

(GGE)

FIG. 3. (Color online) Normalized distance DGGE =
D(ρ�(t),ρGGE

� ) after a quench within the paramagnetic phase
for subsystem sizes � = 10,20, . . . ,150. As � increases, the color
fades from brown to green, the symbols become smaller, and the
curves narrower. At late times, D(ρ�(t),ρGGE

� ) tends to zero in a
universal power-law fashion ∝ (J t)−3/2.
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0 400 800 1200 1600
t

0

0.1

0.2

70
150

D

h0=1.2 h=3

~t-3/2

(GGE)

FIG. 4. (Color online) Distance DGGE = D(ρ�(t),ρGGE
� ) after a

quench within the paramagnetic phase for two representative values
� = 70,150. We used the same notations of Fig. 3. The black dashed
curves are best fits to the form D = at−3/2.

where

R(O) ≡ | 〈O〉t − 〈O〉GGE |√
〈O〉2

t + 〈O〉2
GGE

, (10.4)

and the bar denotes the average (8.24). Using that

R(O) �
√

[R(O)]2 = D(ρGGE,�,ρ�(t)), (10.5)

and then substituting the asymptotic behavior (10.1), (10.2)
into the right-hand side, we obtain

R(O) � �2t−3/2. (10.6)

Bounding the right-hand side by a (small) constant, we obtain
a time scale t∗rms associated with the relaxation of the average
relative error with respect to the distribution (8.24):

t∗rms ∼ �4/3 . (10.7)

0 100 200 300

0

2000

4000

6000

h0=1.2 h=3

t 

D = 0.01(GGE)

FIG. 5. (Color online) Dependence of time on subsystem size
at fixed distance D(ρ�(t),ρGGE

� ) = 0.01 for the same parameters as
in Fig. 3. The dashed curve is the best fit to the functional form
t = a + b�4/3.

It is not simple to identify the observables that give significant
contribution to the average since it depends both on their
“multiplicity” in the subsystem (produced by translational
invariance and other symmetries) and on the expectation
values. We note that the relaxation time t∗rms is very different
from the time scales identified in Ref. 32 in the time evolution
of the two point functions of spin operators for quenches within
the paramagnetic phase.

B. Distance from truncated generalized Gibbs ensembles

Having established that the distance between quench and
GGE reduced density matrices tends to zero as a universal
power law at late times, a natural question is how close the
quench RDM is to the truncated GGEs (5.1), which retain
only finite numbers of conservation laws.

A representative example for a quench within the param-
agnetic phase is shown in Fig. 6. We see that at sufficiently
late times, the distances converge to constant values. However,
increasing the range (and number) of conservation laws, the
values of these plateaux decrease, signaling that retaining
more conservation laws gives better descriptions. In an
intermediate time window, the extent of which grows with y,
the distance decays in a universal t−3/2 power-law fashion. In
Fig. 7 we consider the distance

D(y)
∞ = lim

t→∞D
(
ρ�(t),ρ(y)

tGGE,�

) = D
(
ρGGE,�,ρ

(y)
tGGE,�

)
(10.8)

between the RDMs of the truncated and full generalized Gibbs
ensembles as a function of the parameter y. For a given
subsystem size �, this corresponds to plotting the values of
the plateaux seen in Fig. 6 against the corresponding values
of y. The distance is seen to start decaying exponentially as a
function of y as soon as y � �.

1 10 100

0.001

0.01

0.1

1

GGE
16
8
4
2
1 (Gibbs)

h0=1.2 h=3=10 t

D(y)

FIG. 6. (Color online) Distance D(y) = D(ρ�(t),ρ
(y)
tGGE,�) at fixed

length � = 10 between quench and truncated GGE reduced density
matrices for y = 1,2,4,8,16 and a quench within the paramagnetic
phase. Here y is the maximal range of the densities of local
conservation laws included in the definition of the ensemble. As
the number of conservation laws is increased, the time window, in
which the distance decays as t−3/2, increases. At very late times all
distances with finite y saturate to nonzero values.
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0 10 20 30 40 50

1x10-7

0.001

5
50

h0=1.2 h=3y

D(y)

FIG. 7. (Color online) Distance D(y)
∞ = D(ρGGE,�,ρ

(y)
tGGE,�) be-

tween the GGE and the truncated GGEs obtained by imposing local
conservation laws with densities involving at most y + 1 consecutive
sites. The quench is from h0 = 1.2 to h = 3 and the subsystem
size ranges from � = 5 to 50. Colors and sizes change gradually
as a function of the size �. For y > �, the distance starts decaying
exponentially in y, with an �-independent decay constant.

There are two main conclusions of the above analysis:
(1) Including more local conservation laws improves the

description of the stationary state.
(2) The description of the stationary state improves rapidly,

once the range y + 1 of all conservation laws not included in
the truncated GGE exceeds the subsystem size �.

C. Distance from defective generalized Gibbs ensembles

We now turn to the role played by particular local
conservation laws. We find that the distance between quench
and defective GGE reduced density matrices for a given quench
and subsystem size tends to a constant at late times, i.e.,

lim
t→∞D

(
ρ�(t),ρ(q)

dGGE,�

) ≡ Dd(+q)
∞ . (10.9)

The dependence of this asymptotic value on the subsystem size
� and the integer q is shown in Fig. 8 for a quench within the
paramagnetic phase. We see thatDd(+q)

∞ exhibits an exponential
decay in q as soon as q � �. This is similar to the behavior
observed in the truncated GGE case. The decay length can
be calculated from the large-q asymptotics of Eq. (7.19). By
series expanding Eq. (8.33) to second order in �

(+q)
dGGE − �GGE

we obtain

Dd(+q)
∞

y��∼ |κ+
q |e−| ln h|(q−�) . (10.10)

Numerically we find that κ+
q ∼ 1/q2.

1. “GGE reconstruction”

In Sec. VI we discussed the issue that, for certain quenches
and omitted conservation laws I+

q , the corresponding defective
GGE is identical to the full generalized Gibbs ensemble. We
now return to this point. In Fig. 9 we consider the truncated,
defective GGE for a quench across the critical point from
h0 = 2 to h = 0.5 for a subsystem of length � = 5. We plot
the distance between the reduced density matrices of the

0 20 40 60

1x10-10

1x10-7

1x10-4

0.1 5
50

h0=1.2 h=3q

D d(+q)

FIG. 8. (Color online) Distance Dd(+q)
∞ = D(ρGGE,�,ρ

(+q)
dGGE,�) for

a quench within the paramagnetic phase, for subsystem lengths � =
5,10, . . . ,50. The excluded conservation law is I+

q with even q. Colors
and sizes change gradually as a function of the length. When y > �,
the distance starts decaying exponentially with a decay length given
by Eq. (10.10).

appropriate GGE and the truncated, defective GGE with y

integrals of motion, where I+
q (q < y) has been excluded, i.e.,

Dd(+q),y
∞ = D

(
ρGGE,�,ρ

(+q),y
tdGGE,�

)
. (10.11)

As discussed in Sec. VI, for even q we expect this distance
to approach zero, when the number y of conservation laws
goes to infinity. This behavior is clearly observed in Fig. 9.
This implies that the corresponding conservation laws do not
affect averages of local operators. As discussed before, this is
a particular feature of free theories, where H (h0) and H (h)
generically share certain local conservation laws.

1 10

1x10-4

0.01

1

0    
1
2
3
4
5
6
7
8
9

h0=2 h=1/2y

Dd(+q),y

= 5

FIG. 9. (Color online) Distance Dd(+q),y
∞ = D(ρGGE,�,ρ

(+q),y
dtGGE,�) for

a quench across the critical point between the GGE and the defective
truncated GGE RDMs for a subsystem of five consecutive spins,
as a function of the number y of retained conservation laws. Each
symbol corresponds to a different excluded conservation law I+

q

(the legend indicates the value of q). The distance approaches
zero for even q, whereas it remains finite for odd q, in agreement
with the discussion of Sec. VI. The lines are the distances from
the corresponding defective generalized Gibbs ensemble ρ

(+q)
dGGE with

maximal entanglement entropy.
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2. More local conservation laws are more important

On the other hand, for odd q we find that Dd(+q),y
∞

approaches constant values when y becomes large. This value
agrees with the distance between the GGE and the defective
GGE with maximal entanglement entropy (we stress that for
the considered quench the defective GGE does not always
correspond to a stationary point of the entanglement entropy
under a variation of the excluded integral of motion, as shown
in Fig. 20 of Appendix D).

The fact that Dd(+q),y
∞ tends to a constant at large y shows

that retaining an infinite number of local conservation laws
while excluding one of them is insufficient for describing the
stationary state. By comparing distances for different values of
q we observe that for a given value of y, Dd(+q),y

∞ decreases as
a function of q. This implies the more local the conservation
law, the more important it is for describing the stationary state.

XI. QUENCHES FROM THE FERROMAGNETIC PHASE:
EFFECTS OF SPONTANEOUS SYMMETRY

BREAKING

We now turn to quenches originating in the ferromagnetic
phase, i.e., h0 < 1. In this case, the time evolved initial state
is given by

|�t 〉 = |ψt 〉R + |ψt 〉NS√
2

,

(11.1)
|ψt 〉a = e−iHat |0; h0〉a , a = R,NS

where |0; h0〉R/NS are the ground states of the Hamiltonian
H (h0) with periodic/antiperiodic boundary conditions. In
order to analyze reduced density matrices after a quantum
quench from the ferromagnetic phase we will make use of the
following facts:

(a) The fermion parity eiπN = ∏
j σ z

j [Eq. (2.4)] is fully
factorized in space.

(b) The states |ψt 〉R and |ψt 〉NS are eigenstates of eiπN with
eigenvalues 1 and −1, respectively.

(c) The difference between the expectation values of local
operators in the states |ψt 〉R and |ψt 〉NS tends to zero in the
thermodynamic limit.

(d) The RDMs TrĀ [|ψt 〉aa〈ψt |], a = R,NS, where A is a
single interval and Ā its complement, are Gaussian.

Property (b) allows us to express the full density matrix in
the form [cf. Eq. (7.1)]

ρ(t) = 1

Z

{∑
Oe

[R〈ψt |Oe|ψt 〉R + NS〈ψt |Oe|ψt 〉NS]Oe

+
∑
Oo

2 Re[〈Oo〉NS〈ψt |Oo|ψt 〉R]Oo

}
, (11.2)

where Z ensures that Tr[ρ(t)] = 1 and {Oe} ∪ {Oo} is a
complete set of Hermitian involutions with the property

[eiπN ,Oe] = 0, {eiπN ,Oo} = 0. (11.3)

We will refer to Oe/o as even and odd operators, respectively.
The main difference between even and odd operators is that
the latter are not local in terms of fermions: a Jordan-Wigner
string is attached to them. We are interested in the RDM of a

block A of � contiguous spins, which is obtained by tracing
out the degrees of freedom outside A:

ρ� = TrĀ[ρ]. (11.4)

A convenient representation for ρ� is obtained by restricting
the sums in Eq. (11.2) to involutions that act as the identity
operator outside the interval A, i.e.,

O → O(A) ⊗ I(Ā), (11.5)

where the superscript (A) indicates that the operators act on
the Hilbert space over all sites in A. As a result of property (a),
fermion parity has a simple restriction onto the interval A,

eiπNA ≡
∏
l∈A

σ z
l , (11.6)

and can be used to subdivide operators O(A) into even and odd
ones [

eiπNA,O(A)
e

] = 0,
{
eiπNA,O(A)

o

} = 0. (11.7)

This then implies that we can decompose the RDMs of (11.2)
into even and odd parts as well:

ρ� = ρ�,e + ρ�,o. (11.8)

In the thermodynamic limit we then may employ property (c)
to obtain the following expressions:

ρ�,e(t) = 1

2�

∑
Oe

R〈ψt |Oe|ψt 〉ROe,

(11.9)

ρ�,o(t) = 1

2�

∑
Oo

Re[NS〈ψt |Oo|ψt 〉R]Oo.

Importantly, the even part ρ�,e(t) is Gaussian (7.7) by virtue of
property (d), and has the same structure as RDMs for quenches
originating in the paramagnetic phase. On the other hand, the
odd part ρ�,o has its origin in the spontaneous breaking of
the Z2 symmetry. The commutation relations (11.7) imply
that Tr[ρ�,o(t)ρGa

� ] = 0 for any Gaussian density matrix ρGa
�

because the latter is by construction even. As a result, the odd
part ρ�,o of the RDM enters the distance from a Gaussian state
only through its norm

D
(
ρ�(t),ρGa

�

) =
√√√√∥∥ρ�,e(t) − ρGa

�

∥∥2
F

+ ‖ρ�,o(t)‖2
F

‖ρ�,e‖2
F + ‖ρ�,o‖2

F + ∥∥ρGa
�

∥∥2
F

. (11.10)

We will be interested in the cases where ρGa
� describe Gibbs

or (truncated) generalized Gibbs ensembles. The Frobenius
norms ‖ρ�,e(t) − ρGa

� ‖F , ‖ρ�,e‖F , and ‖ρGa
� ‖F can be effi-

ciently evaluated by means of Eq. (8.33). What remains
in order to determine the distance (11.10) is a method for
calcuating the Frobenius norm ‖ρ�,o‖F . This is a somewhat
involved technical problem, which is addressed in Sec. XI A
and Appendix B. The basic idea is to utilize a cluster
decomposition theorem at any finite time after the quench
(see also Ref. 36).

A. ‖ρ�,o‖F from cluster decomposition

The main difficulty in calculating the Frobenius norm of
ρ�,o is that the latter is not Gaussian. The idea is therefore to

245107-13



MAURIZIO FAGOTTI AND FABIAN H. L. ESSLER PHYSICAL REVIEW B 87, 245107 (2013)

nB

l r

A

FIG. 10. Geometry of the composite system A ∪ n used in
calculating ‖ρ�,o‖F , where ρ� is the RDM of subsystem A. The single
site at position n is separated from A by a block B of length r .

obtain ρ�,o as a reduction of a Gaussian operator. To that end,
we consider a composite system C = A ∪ n consisting of our
subsystem A and a single site at position n, which is separated
from A by a block B of length r (see Fig. 10).

The even part of the RDM ρC(t) can be expanded in a
complete basis of Hermitian involutions Oe/o as

ρC,e(t) = 1

2�+1

[∑
Oe

〈
Oeσ

z
n

〉
Oeσ

z
n +

∑
Oo

∑
α=x,y

〈
Ooσ

α
n

〉
Ooσ

α
n

]
,

(11.11)

where 〈. . .〉 = 〈�t | . . . |�t 〉 ≈ R〈ψt | . . . |ψt 〉R, since both
Oeσ

z
n and Ooσ

α
n in (11.11) are even operators with respect to

fermion parity. In the limit of large separation r , we may use
the cluster decomposition principle to simplify the expectation
values〈

Oeσ
z
n

〉 r→∞→ 〈Oe〉
〈
σ z

n

〉
, 〈Ooσ

α
n 〉 r→∞→ 〈Oo〉

〈
σα

n

〉
. (11.12)

This then leads to the following relation between RDMs in the
limit or large separation:

lim
r→∞ ρC,e(t) = ρ�,e(t) ⊗ ρ1,e(t) + ρ�,o(t) ⊗ ρ1,o(t), (11.13)

where ρ1 is the RDM of site n. The piece of interest to us is

ρ�,o ⊗ ρ1,o = lim
r→∞

1

2�+1

∑
Oo

∑
α=x,y

〈
Ooσ

α
n

〉
Ooσ

α
n . (11.14)

In the next step we move from spins to Majorana fermions by
means of the Jordan-Wigner transformation (2.2):

ρ�,o ⊗ ρ1,o = lim
r→∞

1

2�+1

∑
Ao

α = x,y

〈
aα

nA†
oe

iπNB
〉
Aoe

iπNB aα
n ,

(11.15)

where Ao are odd products of Majorana fermions acting on
sites within A. Importantly, the fermionic expression (11.15)
depends on the configuration of Majoranas in subsystem B

through the Jordan-Wigner string operator. The right-hand side
of (11.15) can be cast in the form

ρ�,o ⊗ ρ1,o = lim
r→∞ 〈eiπNB 〉 eiπNB

p − σ z
npσ z

n

2
, (11.16)

where p is a normalized, Gaussian operator (7.7) acting on the
Hilbert space over sites A ∪ n:

p ≡ TrA∪n[eiπNB |ψt 〉RR〈ψt |]
〈eiπNB 〉 . (11.17)

In writing (11.15) we are assuming 〈eiπNB 〉 �= 0. The fact that
p is Gaussian is a consequence of the particular form of |ψt 〉R
[which is the analog of (2.13) in the R sector] and NB being

quadratic in fermions. The odd part of the single-site RDM is
of the form

ρ1,o(t) = mx(t)σx
n + my(t)σy

n , (11.18)

and hence

[ρ1,o(t)]2 = ([mx(t)]2 + [my(t)]2)I2 ≡ m2
⊥(t)I2. (11.19)

Here the late-time behavior of mx,y(t) is given by (9.14) and
(9.15), respectively, and following Ref. 31 they can be easily
calculated numerically for all times. Combining (11.19) and
(11.16) we obtain

‖ρ�,o‖F = lim
r→∞

| 〈eiπNB 〉 |√
2|m⊥(t)|

∥∥∥∥p − σ z
npσ z

n

2

∥∥∥∥
F

= lim
r→∞

| 〈eiπNB 〉 |
2|m⊥(t)|

√
Tr
[
p2 − (

σ z
np
)2]

. (11.20)

Since both p and σ z
npσ z

n are Gaussian, their moments can be
written in terms of their respective correlation matrices

Gij ≡ Tr[pajai] − δij , Ḡij ≡ Tr
[
σ z

npσ z
najai

] − δij .

(11.21)

We note that the correlation matrices are related by Ḡ =
PnGPn, with Pn the diagonal matrix that changes the sign
of the last 2 × 2 block (Id is the d × d identity)

Pn = I2� ⊕ (−I2). (11.22)

Using (8.32) we have

Tr[p2] = {G,G} , Tr
[(

σ z
np
)2] = {G,Ḡ}. (11.23)

A slight complication arises because p is not positive semidef-
inite. To account for this we must use the more general
definition of {�,�′} as the product of the eigenvalues of
(1 + ��′)/2 with halved degeneracy.60 We may then recast
(11.20) in the form

‖ρ�,o‖F = lim
r→∞

| 〈eiπNB 〉 |
2|m⊥(t)|

√
{G,G} − {G,Ḡ}. (11.24)

While formally correct, (11.24) is not suitable for numerical
computations, because at large distances 〈eiπNB 〉 becomes
very close to zero. A more convenient expression derived in
Appendix B is

‖ρ�,o‖F = lim
r→∞

√
det(I2� ⊕ 02r ⊕ I2 + i�A∪B∪n)

21+�/2|m⊥(t)| . (11.25)

Here �A∪B∪n is the correlation matrix of the interval A ∪ B ∪ n

and is given by (7.4), (7.5), and (7.22). In order to utilize
(11.25), we in principle have to consider infinite separations r

and hence infinitely large matrices.
Crucially, in practice a finite separation r > 2vmaxt , where

vmax = maxkε
′
h(k) is the maximal propagation velocity, is

sufficient to recover the r → ∞ limit up to corrections that
are exponentially small in r/ξ . Here ξ is the correlation
length in the initial state. A representative example is shown
in Fig. 11. In practice, using a finite r > 2vmaxt + ξδ with
δ ≈ 20 provides an efficient way for calculating ‖ρ�,o(t)‖F and
then by means of (11.10) distances D(ρ�(t),ρGa

� ) for quenches
originating in the ferromagnetic phase.
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F,o

FIG. 11. (Color online) Difference ‖δρ�,o‖F = ‖ρ�,o‖F −
lim
r→∞

‖ρ�,o‖F as a function of the separation r for a quench from

h0 = 0.2 to h = 0.8. We see that for r > 2vmaxt the difference
becomes exponentially small in r/ξ , where ξ is the correlation length
in the initial state.

B. Results for quenches from the ferromagnetic phase

For quenches with h0 < 1 and in the thermodynamic
limit, we determine the distance between the quench RDM
and that of an appropriate thermal or generalized Gibbs
ensemble by means of relations (11.10) and (11.25). The
correlation matrices for all cases are of the form (7.4),
(7.5) with elements given in (7.12), (7.14), and (7.22),
respectively. For a subsystem of size � most terms require
the calculation of determinants of 2� × 2� matrices, which
is easily done numerically. The evaluation of ‖ρ�,o‖F is
significantly more costly, and in practice involves determinants
of at most 2(� + 2vmaxt + ξδ) × 2(� + 2vmaxt + ξδ) matrices,
as discussed above.

Results for a quench from h0 = 1
3 to 2

3 and subsystem sizes
� = 10,20,30, . . . ,150 are shown in Figs 12 and 13. We see
that the distance between quench and Gibbs RDMs tends to a

10 100 1000
t

0.1

1

10
150

D

h0=1/3 h=2/3

(Gibbs)

FIG. 12. (Color online) Distance DGibbs = D(ρ�(t),ρ
β

� ) after a
quench within the ferromagnetic phase for subsystem sizes � =
10,20, . . . ,150. As � increases, the color fades from brown to green,
the symbols become smaller, and the curves narrower. At late times
the distances tend to constants depending on subsystem size.

10 100 1000
t

0.001

0.01

0.1

1 10
150

D

h0=1/3 h=2/3

~t-3/2

(GGE)

50 150 250

0.01

0.1

1

FIG. 13. (Color online) Distance DGGE = D(ρ�(t),ρGGE
� ), after a

quench within the ferromagnetic phase for the subsystem lengths � =
10,20, . . . ,150. We used the same notations of Fig. 3. The behavior
is almost the same as that shown in Figs. 3 and 5, but the effect of the
spontaneous magnetization is visible at intermediate times, when the
distance decays exponentially (inset).

�-dependent constant at late times. On the other hand, as shown
in Fig. 13, at sufficiently late times the distance between ρ�(t)
and ρGGE,� decays to zero in a universal power-law fashion

D(ρ�(t),ρGGE,�)
J t�1→ k(�)(J t)−3/2 + · · · . (11.26)

The large-� asymptotics of the function k(�) can be inferred
in the same way as for quenches within the paramagnetic
phase. On surfaces with constant, small D, time scales as
t ∼ �4/3 as is shown in Fig. 14, which implies that

k(�) ∼ �2 . (11.27)

We conclude that the late-time behavior of the distance
between quench and generalized Gibbs RDMs is the same
as for quenches within the paramagnetic phase. The mean
relaxation time t∗rms is therefore again given by (10.7).

40 80 120
0

400

800

h0=1/3 h=2/3

t 

D = 0.01(GGE)

FIG. 14. (Color online) The time vs the subsystem length at fixed
distance D(ρ�(t),ρGGE

� ) = 0.01 (black solid line of the left plot). The
dashed curve is t = a + b�4/3, with a and b obtained by fitting the
numerical data. The filled region shows the effect of the spontaneous
magnetization.

245107-15



MAURIZIO FAGOTTI AND FABIAN H. L. ESSLER PHYSICAL REVIEW B 87, 245107 (2013)

Interestingly, this coincides with the result obtained in Ref. 32
for the relaxation of the order parameter two-point function
after quenches within the ferromagnetic phase. The effects
of the spontaneous symmetry breaking are important only at
short and intermediate times. It is shown in the inset of Fig. 13
that there is a time window, in which the odd part of the RDM
gives the dominant contribution to the distance, which decays
exponentially.

C. Magnitude of the contribution due to ρ�,o

The effects of the spontaneously brokenZ2 symmetry in the
initial state make themselves felt through the Z2-odd part ρ�,o

of the density matrix. The relative importance of ρ�,o for large
� can be estimated by considering the von Neumann entropy
of subsystem A

SvN[ρ�] = Tr [ρ� ln (ρ�)] . (11.28)

We recall that the von Neumann entropy after a global quench
grows linearly in time until the Fermi time tF = �/(2vmax),
and then saturates to a value proportional to the subsystem
size �.66,67 Using the commutation relations (11.8) we see that
the even part ρ�,e can be expressed in terms of the full RDM
ρ� as

ρ�,e = ρ� + eiπNAρ�e
iπNA

2
. (11.29)

Since for any set of density matrices ρi the von Neumann
entropy satisfies68 (λi > 0,

∑
i λi = 1)

∑
i

λi ln λi � SvN

[∑
i

λiρi

]
−
∑

i

λiSvN[ρi] � 0 ,

(11.30)

the following bounds on the von Neumann entropy of
subsystem A hold:

SvN[ρ�,e] − ln 2 � SvN[ρ�] � SvN[ρ�,e]. (11.31)

This demonstrates that at any time after the quench the
symmetry breaking contribution to the von Neumann entropy
will be at most ln 2. Given that for large subsystems the
von Neumann entropy at late times is proportional to �, we
conclude that the relative contribution of the odd part of the
RDM will be important only for small subsystem sizes.

1. A conjecture for ‖ρ�,o‖F in the limit of large � and J t

We now consider the space-time scaling limit31

�,J t → ∞ ,
�

J t
fixed. (11.32)

We observe that in this limit our numerical results for quenches
within the ferromagnetic phase are in excellent agreement with
the following relation:

ln ‖ρ�,o(t)‖F ≈ ln ‖ρ�,e(t)‖F +
∫ π

0

dk

2π
ln(cos �k)

× max
k

{0,2ε′
kt − � + O(�0,t0)}. (11.33)
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FIG. 15. (Color online) The ratio R = ‖ρ�,o(t)‖F

‖ρ�,e (t)‖F
after a quench

within the ferromagnetic phase for subsystem lengths � = 10,20.
The lines correspond to the analytic expression (11.33), where we
have included a correction O(�0) by shifting � → � − 1.2. The inset
presents the same data on a logarithmic scale.

Here we have highlighted the asymptotic nature of the
relation and indicated by O(�0,t0), where the most important
corrections will arise. Since ln ‖ρ�,e(t)‖F is proportional to
the Rényi entropy S2 [cf. Eq. (8.13)], we may use the known
results66 on the asymptotics of the latter

ln ‖ρ�,e(t)‖F = −S2/2 ≈
∫ π

0

dk

2π
ln

1 + cos2 �k

2
min(2ε′

kt,�)

+O(�0,t0). (11.34)

Combining (11.34) and (11.33) provides a conjecture for the
asymptotic behavior of ‖ρ�,o‖F . This conjecture is compared
to numerical results in Fig. 15. The agreement is clearly quite
good.

XII. QUENCHES ACROSS THE CRITICAL POINT

We now turn to quenches across the critical point. These
are of particular interest.14,31,42 In Fig. 16 we plot the
distance between quench and GGE reduced density matrices
for a quench from the ferromagnetic phase (h0 = 1

2 ) to the
paramagnetic phase (h = 3

2 ). The 15 data sets displayed
correspond to subsystem sizes between � = 10 and 150. We
find that the distance DGGE = D(ρ�(t),ρGGE

� ) again decays in
a universal t−3/2 power law. In Fig. 17 we consider the same
quench, but focus on very small subsystem sizes � = 1,2,3,4.
We observe that the distance displays an oscillatory behavior
on top of a power-law decay in time. This is in agreement with
the analytic results discussed in Sec. IX B for the � = 1 case.
Increasing the subsystem size leads to a rapid suppression of
the amplitude of the oscillations.

In Figs 18 and 19 we consider the reverse quenches, i.e.,
starting at h0 = 3

2 in the paramagnetic phase, and quenching
to h = 1

2 in the ferromagnetic phase. The behavior of the
distances is very similar to what we found for the quench
from h0 = 1

2 to h = 3
2 : at late times the distance decays as a
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FIG. 16. (Color online) Distance DGGE = D(ρ�(t),ρGGE
� ), after a

quench from ferromagnetic phase to the paramagnetic phase for the
subsystem lengths � = 10,20, . . . ,150. The conventions are the same
as in Fig. 3.
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FIG. 17. (Color online) Distance DGGE = D(ρ�(t),ρGGE
� ), after a

quench from ferromagnetic phase to the paramagnetic phase for the
small subsystems � = 1,2,3,4.
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FIG. 18. (Color online) Distance D(ρ�(t),ρGGE
� ), after a quench

from paramagnetic phase to the ferromagnetic phase for the subsys-
tem lengths � = 10,20, . . . ,150. The conventions are the same as in
Fig. 3.
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FIG. 19. (Color online) Distance D(ρ�(t),ρGGE
� ), after a quench

from paramagnetic phase to the ferromagnetic phase for the small
subsystems � = 1,2,3,4.

t−3/2 power law, and for small subsystem sizes we observe
oscillatory behavior on top of this decay.

XIII. SUMMARY AND CONCLUSIONS

In this work we have considered the evolution of reduced
density matrices after a quantum quench in the transverse-field
Ising chain. The main result of our work is to demonstrate that

lim
t→∞ ρ�(t) = ρGGE,�, (13.1)

where ρ�(t) is the reduced density matrix of a subsystem
consisting of � adjacent spins after a quench of the transverse
field, and ρGGE,� is the reduced density matrix of an appropri-
ately defined generalized Gibbs ensemble. The derivation of
(13.1) is based on defining an appropriate distance D(ρ,ρ ′) on
the space of reduced density matrices, and then establishing
that the distance between quench and GGE reduced density
matrices approaches zero at late times. For our particular
choice of distance we found that at late times this distance
approaches zero as a universal power law in time

D(ρ�(t),ρGGE,�) ∼ t−3/2. (13.2)

We have presented a detailed construction of ρGGE,� in terms
of the local (in space) integrals of motion I±

n of the TFIC. The
densities of these conservation laws involve only spins on n+ 2
consecutive sites. We proved that these local conservation laws
are related in a linear fashion to the occupation numbers of
the Bogoliubov fermions that diagonalize the Hamiltonian of
the TFIC. This linear relation establishes the equivalence of
our construction of the GGE to the one frequently used in the
literature, which is based on mode occupation numbers.

We then have addressed the question as to which of
the conservation laws are most important for obtaining an
accurate description of the stationary limit limt→∞ ρ�(t) of the
quench RDM. To that end, we introduced (defective) truncated
generalized Gibbs ensembles, which are missing some of
the local conservation laws. We found that the more local
the conservation laws (i.e., the fewer consecutive spins their
densities involve), the more important they are for describing
the stationary state of a given subsystem. Loosely speaking,
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we observed that in order to obtain a good description of the
stationary state RDM of a subsystem of size �, we need to retain
all local conservation laws, whose densities involve at most
≈ � + n0 neighboring spins, where n0 is a constant depending
on h0 and h. Leaving out “highly local” conservation laws
generally provides a very poor description of the stationary
state. We believe that this interesting connection between
locality of conservation laws and their importance in the GGE
context is not restricted to the transverse field Ising chain, but
will hold more generally for quantum quenches in integrable
models.

Our work raises a number of issues. First and foremost
is the dependence of the results obtained on the precise
definition of the distance on the space of reduced density
matrices. We have argued that the “best” distance is the
one based on the trace norm because it provides the most
direct and precise information on the time evolution of local
observables. Unfortunately, this distance is much harder to
handle analytically. It would however be very interesting to
implement it in purely numerical studies using iTEBD or
related algorithms.
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APPENDIX A: INEQUALITIES INVOLVING THE
FROBENIUS NORM OF RDMS FOR SPIN- 1

2 QUANTUM
SPIN CHAINS

In this Appendix we provide lower and upper bounds for
the Frobenius norm of the difference of two reduced density
matrices ‖ρ − ρ ′‖F in a translationally invariant system. An
upper bound is obtained as follows:

‖ρ − ρ ′‖2
F = Tr[ρ2 + ρ ′2 − 2ρρ ′]

= ‖ρ‖2
F + ‖ρ ′‖2

F − 2 Tr(ρρ ′)

� ‖ρ‖2
F + ‖ρ ′‖2

F . (A1)

Here we have used that both ρ and ρ ′ are positive semidefinite
and hence

Tr(ρρ ′) =
∑

λjρ
′
jj � λmin

∑
j

ρ ′
jj

= λminTrρ ′ = λmin � 0, (A2)

where 0 � λmin � λj are the eigenvalues of ρ. To derive a
lower bound we start by expressing the RDM of a block of �

spins in a spin- 1
2 chain in the form

ρ� = 1

2�

∑
{αj }

Tr
[
ρ σ

α1
1 . . . σ

α�

�

]
σ

α1
1 . . . σ

α�

� , (A3)

where αi = 0,x,y,z with σ 0 ≡ I, and ρ is the density matrix
of the full system; ρ� is only function of the length because of
translational invariance. By singling out the term with α� = 0,

we can express this in the form

ρ� = ρ�−1 ⊗ I

2
+

3∑
α�=1

δρ
α�

�−1σ
α�

� , (A4)

where ρ�−1 is the RDM of the block consisting of sites
1, . . . ,� − 1. We also write the RDM of the �th spin

ρ1 = I

2
+

3∑
α�=1

Tr
[
δρ

α�

�−1

]
σ

α�

� (A5)

and observe that

‖ρ1 − ρ ′
1‖2

F = 2
3∑

α�=1

(
Tr

[
�

α�

�−1

])2
. (A6)

Here we have defined �
α�

�−1 = δρ
α�

�−1 − δρ
′α�

�−1. Using (A4) we
have

‖ρ� − ρ ′
�‖2

F = ‖ρ�−1 − ρ ′
�−1‖2

F

2
+ 2

3∑
α�=1

∥∥�α�

�−1

∥∥2
F

�
‖ρ�−1 − ρ ′

�−1‖2
F

2
+

3∑
α�=1

(
Tr

[
�

α�

�−1

])2

2�−2

= ‖ρ�−1 − ρ ′
�−1‖2

F

2
+ ‖ρ1 − ρ ′

1‖2
F

2�−1
, (A7)

where we have used that for N × N matrices M we have
N TrM2 � (TrM)2 in the second step, and (A6) in the last.
Iterating Eq. (A7) � − 1 times we obtain

‖ρ� − ρ ′
�‖2

F � 21−��‖ρ1 − ρ ′
1‖2

F . (A8)

This implies that for sufficiently large subsystem size �, the
distance ‖ρ� − ρ ′

�‖F will generally be larger than 21−�/2.

APPENDIX B: DERIVATION OF EQ. (11.25)

Our starting point is Eq. (11.24), i.e.,

‖ρ�,o‖F = lim
r→∞

| 〈eiπNB 〉 |
2|m⊥(t)|

√
{G,G} − {G,Ḡ} . (B1)

Our task is to evaluate

〈eiπNB 〉2 {G,G} and 〈eiπNB 〉2 {G,G} , (B2)

where G = PnGPn and Pn is the diagonal involution defined
in (11.22). We recall that {Q,Q1} denotes the product of
the eigenvalues of (I + QQ1)/2 with halved degeneracy (the
eigenvalues of QQ1 are always double degenerate69 for
antisymmetric matrices Q and Q1). The correlation matrix G
defined in Eq. (11.21) turns out to be60 the Schur complement
of the block matrix �B of the matrix �A∪B∪n, i.e.,

G = �A∪n − �A∪n,B

1

�B

�B,A∪n. (B3)

Here, �R1, R2 denotes the matrix, whose rows and columns are
associated with spatial regions R1 and R2, respectively, e.g.,

[�A∪n,B]ij =
{
�i,j+2�, 0 � i � 2�

�i+2r,j+2�, i > 2� .
(B4)

Here, � is the size of subsystem A, while r is the distance
between A and site n (see Fig. 10).
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The first step is to find determinant representations for
{Q,Q} and {Q,PQP }, where P is a generic symmetric
involution (P 2 = I and P t = P ).

We first consider {Q,Q}. Since Q is antisymmetric, its
eigenvalues come in pairs ±q:

0 = det |Q − qI| = det |Qt − qI| = det | − Q − qI|. (B5)

Both eigenvalues ±q give rise to the same eigenvalue 1 + q2

of I + Q2, and hence

{Q,Q} =
∏
q�0

1 + q2

2
. (B6)

Here the product is over all positive eigenvalues of Q

(including half of the zero eigenvalues). Using that

det |I + iQ| =
∏
q>0

(1 + iq)
∏
q>0

(1 − iq) =
∏
q>0

(1 + q2), (B7)

it follows that

{Q,Q} = det |(I + iQ)/
√

2| . (B8)

Next we consider {Q,PQP }. The matrix

P
1
2 ≡ eiπ/4I + e−iπ/4P√

2
(B9)

satisfies (P
1
2 )2 = P and (P

1
2 )t = P

1
2 . Since we have

I + QPQP = (P
1
2 )−1[I + (P

1
2 QP

1
2 )2]P

1
2 , (B10)

the eigenvalues of I + QPQP and I + (P
1
2 QP

1
2 )2 coincide.

Therefore,

{Q,PQP } = {P 1
2 QP

1
2 ,P

1
2 QP

1
2 } = det

∣∣∣∣ I + iP
1
2 QP

1
2√

2

∣∣∣∣ ,
(B11)

where in the last step we used Eq. (B8). Since (P
1
2 )2 = P and

P 2 = I, (B11) can be rewritten in the form

{Q,PQP } = det |P | det |(P + iQ)/
√

2|. (B12)

Using (B8) and (B12), we can reexpress the quantities in (B2)
as follows:

〈eiπNB 〉2 {G,G} = det |i�B | det |(I + iG)/
√

2|,
(B13)

〈eiπNB 〉2 {G,G} = det |i�B | det |(Pn + iG)/
√

2|.
Here we have used that the expectation value of the string
operator in region B is related to the correlation matrix
�B by 〈eiπNB 〉2 = det |i�B |. A remaining problem is that
limr→∞ det |i�B | = 0, which precludes a numerical evaluation
of (B1) on the basis of expressions (B13). This complication
is overcome as follows. We recall the expression of the
determinant of a block matrix

det

∣∣∣∣(M11 M12

M21 M22

)∣∣∣∣ = det |M22| det
∣∣M11 − M12M

−1
22 M21

∣∣.
(B14)

We then substitute (B3) into (B13), and identify
2�+1 〈eiπNB 〉2 {G,G} and 2�+1 〈eiπNB 〉2 {G,G} as the

determinants of the matrices(
I + i�A∪n i�A∪n,B

i�B,A∪n i�B

)
and

(
Pn + i�A∪n i�A∪n,B

i�B,A∪n i�B

)
,

(B15)

respectively. Rearranging some of the rows and columns we
obtain

〈eiπNB 〉2 {G,G} = det |I2� ⊕ 02r ⊕ I2 + i�A∪B∪n|
2�+1

,

(B16)

〈eiπNB 〉2 {G,G} = det |I2� ⊕ 02r ⊕ (−I2) + i�A∪B∪n|
2�+1

.

The representations (B16) are suitable for numerical calcu-
lations even in the limit of large r . There is one further
simplification: in the limit r → ∞ we have

lim
r→∞ 〈eiπNB 〉2 {G,G} = − lim

r→∞ 〈eiπNB 〉2 {G,G}. (B17)

To see this, we expand the determinants in (B16) with respect
to the last 2 × 2 block (from here on we omit the subscript in
�A∪B∪n, i.e., � ≡ �A∪B∪n)

det |I2� ⊕ 02r ⊕ I2 + i�| + det |I2� ⊕ 02r ⊕ (−I2) + i�|
= 2 det |� + iI2� ⊕ 02r+2| − 2 det |�A∪B + iI2� ⊕ 02r |.

(B18)

Using properties of the correlation matrix one could show
that the determinants on the second line approach zero in the
limit of large distance. For the sake of simplicity we propose
a different proof, which is based on the assumption that the
limit

lim
r→∞ det |�A∪B + iI2� ⊕ 02r | (B19)

exists: we demonstrate that the limit can not be infinite, so
the expression in Eq. (B18) does tend to zero as r → ∞.
To this end we consider the (2� + 2r) × (2� + 2r) correlation
matrix G of a generic Gaussian density matrix, and show
that the determinant det |G + iI2� ⊗ 02r | has an upper bound
independent of r . Hence, it can not diverge in the limit r → ∞.
Our proof is based on the following facts:

(a) ‖G‖op � 1, and hence ‖G2‖op � 1 and ‖G + iI2� ⊗
02r‖op � ‖G‖op + 1 � 2;

(b) G + iI2� ⊗ 02r can not have more than 2� eigenvalues
with absolute values exceeding 1.

Property (a) is a consequence of G being the correlation
matrix of a positive semidefinite Gaussian. Property (b) can be
proved as follows: Let �w a normalized vector with wi = 0 for
any i � 2�. Then

�w†(G + iI2� ⊗ 02r )†(G + iI2� ⊗ 02r ) �w = �w†G2 �w � 1,

(B20)

where the inequality follows from property (a). If there were
more than 2� eigenvalues λ of G + iI2� ⊗ 02r with modulus
larger than 1, we could find a linear combination �W = ∑

i ci �vi

of the corresponding normalized eigenvectors �vi with the
property Wi = 0 for any i � 2�; this leads to a contradiction
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with (B20) since∑
i

c∗
i �v†

i (G + iI2� ⊗ 02r )†(G + i I2� ⊗ 02r )
∑

j

cj �vj

=
∑

i

|c2
i |λ2

i >
∑

i

|c2
i | = 1. (B21)

This completes the proof of property (b).
Properties (a) and (b) imply that

| det |G + iI2� ⊗ 02r || � 22�, (B22)

which establishes that the determinants in (B18) remain
finite in the limit r → ∞. Concomitantly, the expression in
Eq. (B18) approaches zero as r → ∞. This establishes (B17).
Putting everything together we see that (B16) can be written
as

‖ρ�,o‖F = lim
r→∞

√
det |I2� ⊕ 02r ⊕ I2 + i�A∪B∪n|

2
�
2 +1|m⊥(t)|

, (B23)

which is Eq. (11.25).
We stress that our assumption regarding the limit (B19)

is equivalent to the existence of the limit in (B23). From a
numerical point of view, this can be inferred from the scaling
analysis of

√
det |I2� ⊕ 02r ⊕ I2 + i�A∪B∪n|

2
�
2 +1|m⊥(t)|

, (B24)

which is still required to check the cluster decomposition
hypothesis (see Fig. 11).

The magnetization |m⊥(t)| can be computed writing a self-
consistent equation for Eq. (B23) in the case � = 1: From
Eq. (11.19) we have

‖ρ1,o‖F =
√

2|m⊥(t)|, (B25)

which together with Eq. (B23) gives

4m2
⊥(t) = lim

r→∞
√

det(I2 ⊕ 02r ⊕ I2 + i�1∪B∪n). (B26)

APPENDIX C: CONSERVATION LAWS IN SPIN MODELS
WITH FREE FERMION SPECTRA

In this Appendix we present a simple construction of the
bulk contribution to local conservation laws of the TFIC
on the infinite line. Our method readily generalizes to other
models with free fermionic spectrum such as the XY chain.
Ignoring boundary conditions, we can use the Jordan-Wigner
transformation to express the Hamiltonian as a quadratic form
in Majorana fermions

H = 1

2

∑
l,n

alHlnan. (C1)

Here, H is a skew symmetric block-circulant matrix

H =

⎡⎢⎢⎢⎢⎢⎣
Y0 Y1 . . . YL−1

YL−1 Y0
...

...
. . .

...

Y1 · · · . . . Y0

⎤⎥⎥⎥⎥⎥⎦ , (C2)

where Yn = −YT
L−n are 2 × 2 matrices. In Fourier space we

have

(Yn)jj ′ = 1

L

L∑
k=1

e
2πik

L
n(Yk)jj ′ , (C3)

where (Yk)jn = −(Y−k)nj . One can show that a complete set
of local conservation laws is obtained by taking

Ir = 1

2

∑
l,n

alIr;lnan. (C4)

From Eq. (8.30) we see that [H,Ir ] = 0 if and only if
[H,Ir ] = 0. Similarly one has [Ir ,Ir ′ ] = 0 if and only if
[Ir ,Ir ′ ] = 0. Hence the problem of constructing conservation
laws is equivalent to determining an appropriate set of mutually
commuting matrices that commute with H. Because the
projectors on the eigenvectors of block-circulant matrices
are block-circulant matrices, we seek Ir in block-circulant
form

Ir =

⎡⎢⎢⎢⎢⎣
Ȳ (r)

0 Ȳ (r)
1 . . . Ȳ (r)

L−1

Ȳ (r)
L−1 Ȳ (r)

0

...
...

. . .
...

Ȳ (r)
1 . . . . . . Ȳ (r)

0

⎤⎥⎥⎥⎥⎦ . (C5)

Imposing [H,Ir ] = 0 and [Ir ,Ir ′ ] = 0 we obtain the condi-
tions [

Yk,Ȳ
(r)
k

] = 0 ,
[
Ȳ

(r)
k ,Ȳ

(r ′)
k

] = 0, ∀k (C6)

where Ȳ
(r)
k is the Fourier transform (C3) of Ȳ (r). In the quantum

Ising model Yk are 2 × 2 traceless matrices, so Eq. (C6) has
the simple solution

Ȳ
(r)
k = ω

(r)
k I + q

(r)
k Yk, (C7)

where ω
(r)
k = −ω

(r)
−k and q

(r)
k = q

(r)
−k . Fourier transforming back

to position space we have

Ȳ (r)
n = 1

L

L∑
k=1

e
2πik

L
nω

(r)
k I + 1

L

L∑
k=1

e
2πik

L
nq

(r)
k Yk. (C8)

We define the “range” of a local conservation as the maximal
number of neighboring spins involved in its density minus
one. By construction, the range is equal to the maximal |n|
such that Ȳ (r)

n is nonzero [cf. Eqs. (C1) and (C2)]. For the
TFIC one finds that Yn = 0 for |n| > 1, and concomitantly
the range of the Hamiltonian is rH = 1. It is straightforward
to identify the conservation laws with ranges � r + 1: from
Eq. (C8) they are such that

ωk =
r+1∑
n=1

c−
n sin(nk) , qk =

r+1−rH∑
n=0

c+
n cos(nk). (C9)

They can be divided in two classes: one with qk = 0, which
we denote by I−, and one with ωk = 0, which we denote by
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FIG. 20. (Color online) The difference of entanglement entropy
densities �σvN = σ

dGGE(+q)
vN − σ GGE

vN as a function of the parameter
κ+

q for the same quench shown in Fig. 9 (the legend indicates the
value of q). The points have the maximal entropy and correspond to
the lines plotted in Fig. 9. Only for q = 1 is the entanglement entropy
maximal at a stationary point.

I+. Finally, a complete set of conservation laws is given by

I+
r : Ȳ+,(r)

n = 1

L

L∑
k=1

e
2πik

L
n cos(rk)Yk,

(C10)

I−
r : Ȳ−,(r)

n = −2J

L

L∑
k=1

e
2πik

L
n sin[(r + 1)k]I.

These are exactly the conservation laws reported in Eq. (2.13).
We note that the conservation laws I−

r are independent of
the system details, and can be found in any noninteracting
model with a block-circulant structure (see also Ref. 59).
Indeed they are originated from the trivial solution of Eq.
(C6), namely, the identity.

APPENDIX D: PECULIAR ASPECTS OF DEFECTIVE GGEs

In this Appendix we discuss some properties of the
defective generalized Gibbs ensembles defined in Sec. VI. We
start by recalling the standard variational approach for deriving
statistical ensembles in quantum mechanics. One generally
seeks the density matrix that maximizes the entropy under a
given set of constraints on independent, additive conservation

laws Ij :

δ Tr

[
− ρ ln ρ − λρ −

∑
j

λj Ijρ

]
= 0. (D1)

The solution of (D1) is of the form ρ ∝ exp(
∑

j λj Ij ), which
shows that the ensemble is a function only of the conservation
laws appearing in Eq. (D1).

We now consider the density matrix after a quench. All
the ensembles defined in the main text are compatible with
the principle of maximal entanglement entropy, and the
GGE, the truncated GGE, and the truncated defective GGE
can be obtained (a posteriori) by means of the variational
approach (D1).

Some complications arise when we consider defective
GGEs, in which we exclude a single integral of motion.
From Eq. (6.5) we find that the entanglement entropy
density σ

dGGE(+q)
vN of the defective GGE ρ

(+q)
dGGE (Ref. 70) is

given by

σ
dGGE(+q)
vN =

∫ π

0

dk

π
H

(
cos �k − κ+

q

cos(qk)

ε(k)

)
, (D2)

where H (x) = − 1+x
2 ln 1+x

2 − 1−x
2 ln 1−x

2 . By writing the de-

fective GGE as in Eq. (4.2), one can easily show that ∂σ
dGGE(+q)
vN

∂k+
q

is the Lagrange multiplier associated to the conservation law
I+
q [cf. Eq. (4.5)]: if the maximum of the entanglement entropy

is not at the boundaries of the domain of k+
q , then the equation

∂σ
dGGE(+q)
vN

∂k+
q

= 0 has a solution, and ρ
(+q)
dGGE can be obtained from

Eq. (D1). In the absence of peculiar constraints, one would
expect the maximum to be generally a stationary point of the
entanglement entropy. However, quenches in translationally
invariant noninteracting models are very special since the
initial state is a simultaneous eigenstate of an infinite number of
local conservation laws. This substantially reduces the degrees
of freedom, and can result in an exceptionally small domain for
k+
q (which may not include a stationary point). In Fig. 20 we

show this paradoxical behavior for the same set of parameters
used in Fig. 9. Besides the pathological cases of even q, in
which the curves collapse to the point κ+

q = 0, the effect
of the reduction of degrees of freedom is reflected in the
“truncated” shape of the curves for q �= 1, which turn out to
be strictly decreasing functions of κ+

q . The limiting procedure
(6.2) selects the value of κ+

q corresponding to the maximal
entanglement entropy (the circles in Fig. 20).
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U. Schollwöck, J. Eisert, and I. Bloch, Nat. Phys. 8, 325 (2012).

5M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauss,
T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr, Nature
(London) 481, 484 (2012).

6M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. Adu Smith, E. Demler, and
J. Schmiedmayer, Science 337, 1318 (2012).

7A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Rev.
Mod. Phys. 83, 863 (2011).

8M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev.
Lett. 98, 050405 (2007); A. C. Cassidy, C. W. Clark, and M. Rigol,
ibid. 106, 140405 (2011).

9M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452, 854
(2008).

10P. Calabrese and J. Cardy, J. Stat. Mech. (2007) P06008.

245107-21

http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1038/nphys2232
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.106.140405
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1088/1742-5468/2007/06/P06008


MAURIZIO FAGOTTI AND FABIAN H. L. ESSLER PHYSICAL REVIEW B 87, 245107 (2013)

11V. Gritsev, E. Demler, M. Lukin, and A. Polkovnikov, Phys. Rev.
Lett. 99, 200404 (2007).

12M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006); A. Iucci and
M. A. Cazalilla, Phys. Rev. A 80, 063619 (2009).

13T. Barthel and U. Schollwöck, Phys. Rev. Lett. 100, 100601
(2008).

14D. Rossini, A. Silva, G. Mussardo, and G. Santoro, Phys. Rev. Lett.
102, 127204 (2009); D. Rossini, S. Suzuki, G. Mussardo, G. E.
Santoro, and A. Silva, Phys. Rev. B 82, 144302 (2010).

15A. Silva, Phys. Rev. Lett. 101, 120603 (2008).
16S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu, Phys.

Rev. B 79, 155104 (2009).
17M. Moeckel and S. Kehrein, Ann. Phys. (NY) 324, 2146 (2009).
18D. Fioretto and G. Mussardo, New J. Phys. 12, 055015 (2010).
19G. Biroli, C. Kollath, and A. M. Läuchli, Phys. Rev. Lett. 105,
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