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Measuring the quantum geometry of Bloch bands with current noise
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Single-particle states in electronic Bloch bands form a Riemannian manifold whose geometric properties are
described by two gauge invariant tensors, one being symmetric and the other being antisymmetric, that can
be combined into the so-called Fubini-Study metric tensor of the projective Hilbert space. The latter directly
controls the Hall conductivity. Here we show that the symmetric part of the Fubini-Study metric tensor also has
measurable consequences by demonstrating that it enters the current noise spectrum. In particular, we show that
a nonvanishing equilibrium current noise spectrum at zero temperature is unavoidable whenever Wannier states
have nonzero minimum spread, the latter being quantifiable by the symmetric part of the Fubini-Study metric
tensor. We illustrate our results by three examples: (1) atomic layers of hexagonal boron nitride, (2) graphene,
and (3) the surface states of three-dimensional topological insulators when gapped by magnetic dopants.
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The connection between geometry and quantum mechanics
was explored systematically during the 1980’s when it was
realized that the projective space of normalized quantum states
can be equipped with a distance, making it a Riemannian
manifold, and a symplectic form, making it a Kaehlerian
manifold.1–7 Berry famously showed that a quantum state
acquires a measurable phase factor of purely geometric origin
during a cyclic adiabatic evolution;3 i.e., he showed that the
symplectic form (the Berry curvature) on the projective space
of normalized quantum states is proportional to the phase
acquired by a state under an infinitesimal adiabatic cycle.
As this description applies to any subspace of the projective
Hilbert space that smoothly depends on a set of external
parameters, it is also of relevance to noninteracting Bloch
bands,2,8–13 where the crystal momentum parametrizes the
manifold of quantum states.

Most known measurable consequences of the quantum
geometry of band insulators are limited to the Berry curvature.
For example, the integral over the Brillouin zone (BZ) of the
Berry curvature is quantized and proportional to the Hall con-
ductivity of a band insulator.2 It also enters the semiclassical
equations of motion of electronic wave packets.14 Here, we
show that the quantum geometric tensor, also known as the
Fubini-Study metric tensor of complex projective spaces in
the mathematical literature,15 is an observable that can be
measured via the current noise spectrum of a band insulator.

We consider the family of single-particle Bloch Hamiltoni-
ans

H(k) :=
N∑

a=1

εa(k) |ua(k)〉〈ua(k)|, (1)

labeled by the momentum k from the d-dimensional BZ of
volume �BZ acting on the Hilbert space CN . For any mo-
mentum k ∈ BZ, the single-particle Bloch eigenstates |ua(k)〉
labeled by the band index a = 1, . . . ,N are orthonormal
N -dimensional complex-valued vectors that span the Hilbert
space CN . The projective Hilbert space CPN−1 is obtained
from CN by identifying any two vectors v and w from CN

related to each other by the multiplication of a nonvanishing
complex number.

We first review how the Fubini-Study metric tensor on the
projective Hilbert space CPN−1 arises. To this end, we define
the normalized single-particle state

|�(k)〉 :=
Ñ∑

ã=1

cã(k) |uã(k)〉,
Ñ∑

ã=1

|cã(k)|2 = 1, (2)

whereby we assume that the first Ñ bands are separated from
the remaining N − Ñ bands by a spectral gap. We want to
compute the infinitesimal increment

(ds)2 :=
d∑

μ,ν=1

〈∂μ�(k)|∂ν�(k)〉 dkμ dkν, (3)

under the (adiabatic) assumption that the state |�(k + dk)〉 has
no overlap with any of the bands above the gap [geometrically,
we parallel transport the state |�(k)〉 to the state |�(k + dk)〉].
One finds that11

(ds)2 =
d∑

μ,ν=1

⎛
⎝ Ñ∑

ã,b̃=1

c∗
ã(k) Qãb̃

μν(k) c
b̃
(k)

⎞
⎠ dkμ dkν. (4a)

For any pair μ,ν = 1, . . . ,Ñ , the non-Abelian Fubini-Study
metric tensor Qμν(k) on the complex projective space CPN−1

is here the Ñ × Ñ Hermitian matrix

Qμν(k) := gμν(k) + iωμν(k). (4b)

It can be decomposed additively in a unique way into the
Hermitian Ñ × Ñ matrix gμν(k) with the components

gãb̃
μν(k) : = 1

2

[
〈∂μuã(k)|∂νub̃

(k)〉 −
Ñ∑

c̃=1

Aãc̃
μ (k) Ac̃b̃

ν (k)

+ (μ ↔ ν)

]
(4c)

and the Hermitian Ñ × Ñ matrix ωμν(k) with the components

ωãb̃
μν(k) := 1

2F ãb̃
μν . (4d)
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We have made use of the non-Abelian Berry connection

Aab
μ (k) := −i〈ua(k)|∂μub(k)〉 (4e)

together with its non-Abelian Berry field strength

Fab
μν := ∂μAab

ν (k) − ∂νA
ab
μ (k) + i[Aμ(k),Aν(k)]ab (4f)

for any a,b = 1, . . . ,N that we have projected onto the Ñ

lower bands by restricting the band labels to ã,b̃ = 1, . . . ,Ñ .
In the following, we shall consider the case of a band

insulator with Ñ = 1, i.e., with a single band a = 1 filled
and all other bands a = 2, . . . ,N empty and separated by an
energy gap from the lowest band.16

The current noise spectrum is the Fourier transform of the
current-current correlation function17–20

Sμν(ω) :=
∫

dt e−i ω t 〈0|Jμ(0)Jν(t)|0〉 (5a)

for any pair μ,ν = 1, . . . ,d. The insulating noninteracting
many-body ground state is here denoted |0〉. It has the
lowest band a = 1 filled and all other bands empty. The time
dependence of the current operator is

J(t) := ei Ht Je−i Ht . (5b)

The initial value of the current operator

J ≡ J(0) := i[H,X] (5c)

is proportional to the commutator between the noninteracting
Hamiltonian H with the single-particle representation (1) and
the position operator X with the single-particle representation

X =
∫

BZ

dd k
�BZ

|ua(k)〉[−iδab∂ + Aab(k)]〈ub(k)| (5d)

(the sum over the repeated band labels a,b = 1, . . . ,N is
implicit and �BZ denotes the volume of the BZ).

To proceed with the derivation of our main result, we
assume that the current in the ground state vanishes:

〈0|J(t)|0〉 = 0. (6)

With the help of the resolution of the identity

1 =
∞∑

n=0

|n〉〈n| = |0〉〈0| +
∞∑

m=1

|m〉〈m|, (7)

where |m〉 denotes any one of the many-body eigenstates
except for the ground state with the many-body eigenenergy
Em measured relative to the ground-state eigenenergy, we can
rewrite Eq. (5a) using Eqs. (5b), (5c), and (6) as

Sμν(ω) =
∑
m

∫
dt e−i (ω−Em)t 〈0|Jμ|m〉〈m|Jν |0〉. (8)

As J is a single-particle operator, it can only create particle-
hole excitations above the ground state with energy Em =
εa(k) − ε1(k′), where m = (a,k,k′); a > 1; and k,k′ ∈ BZ.

Thus,

Sμν(ω) =
∫

BZ

dd k
�BZ

∫
BZ

dd k′

�BZ

∑
a>1

∫
dt e−i [ω−εa (k)+ε1(k′)]t

×[εa(k) − ε1(k′)]2〈0|Xμ|m〉〈m|Xν |0〉

= 2πω2
∫

BZ

dd k
�BZ

∫
BZ

dd k′

�BZ

∑
a>1

× δ[ω − εa(k) + ε1(k′)]〈0|Xμ|m〉〈m|Xν |0〉. (9)

By inspection of Eq. (5d), we observe that the position
operator decomposes additively into a band-diagonal but
momentum-off-diagonal part (the derivative in momentum
space) and a band-non-diagonal but momentum-diagonal part
(the non-Abelian Berry connection). Only the latter contributes
to the matrix elements 〈0|Xμ|m〉, since the electron has to be
excited to an upper band a > 1. Hence,

Sμν(ω) = 2πω2
∫

BZ

dd k
�BZ

∑
a>1

δ[ω − εa(k) + ε1(k)]

×A1a
μ (k)Aa1

ν (k). (10)

To relate Eq. (10) to the quantum geometric tensor Qμν , we
would like to resort to the following manipulation (we need
the single-particle resolution of the identity to establish the
first equality):∑

a>1

A1a
μ (k)Aa1

ν (k) = A11
μ (k)A11

ν (k) − 〈∂μu1(k)|∂νu1(k)〉

= −Q11
μν(k). (11)

However, in general we cannot perform the summation over
a > 1 in Eq. (10), for the energies εa(k) also depend on a =
1, . . . ,N , so that energetics and quantum geometry combine
in Sμν(ω). We will now discuss two ways to distill the
contribution from the quantum geometry.

On the one hand, we have the sum rule

Sμν :=
∫

dω

2π

Sμν(ω)

ω2
= −

∫
BZ

dd k
�BZ

Q11
μν(k) (12)

that relates the frequency integral of the current noise spectrum
divided by ω2 to the integral of the quantum geometric tensor
over the BZ. On the other hand, when N = 2, i.e., for exactly
two bands,

Sμν(ω) = −2πω2
∫

BZ

dd k
�BZ

δ[ω − ε2(k) + ε1(k)] Q11
μν(k),

(13)

so that Sμν(ω)/ω2 equals the integral of the quantum geometric
tensor over the region in momentum space where the direct
band gap equals ω. The reduction to a two-band model with
a = 1,2 is justified when the orbital character of the bands
a � 3 is sufficiently different from the band a = 1, such that

[P1,Pa] ≈ 0, a � 3 (14)

holds, where Pa := ∫
dd k �−1

BZ |ua(k)〉〈ua(k)| is the projector
on the single-particle states of the band a = 1,2, . . .. In this
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case A1a
μ (k) is negligible for a � 3, and so are its contributions

to Eq. (10).
Equations (12) and (13) establish a connection between

the quantum geometry of the Bloch states and the physically
measurable current noise spectrum. On the one hand, the
frequency dependence of the noise can reveal information
on the Fubini-Study metric tensor. On the other hand, in
multiorbital systems or materials with spin-orbit interactions
(in which the quantum metric tensor is generically nontrivial),
there are interesting structures in the noise spectra even at
equilibrium. To illustrate the latter case, we consider three
examples that can be realized experimentally.

(1) In example 1, we consider atomic layers of hexagonal
boron nitride. In the tight-binding approximation, the elec-
tronic structure is described by the gapped Hamiltonian

HBN(k) :=
(

μs −t γ (k)
−t γ ∗(k) −μs

)
, (15)

where γ (k) = 1 + e−ia1·k + e−ia2·k, t = 2.92 eV is the nearest-
neighbor hopping; μs = 2.90 eV is the difference in chem-
ical potential between boron and nitrogen sites; and a1 =
(
√

3,3)T/2, a2 = (−√
3,3)T/2 are the primitive lattice vectors

(in units of the atomic spacing). Hamiltonian Eq. (15) has two
bands separated by the band gap 2μs. While neither of these
bands has a nontrivial topological attribute, they still represent
a nontrivial quantum geometry. The off-diagonal components
of the quantum geometric tensor are nonzero but average to
zero along equal energy contours in momentum space, so that
S12(ω) = 0 according to Eq. (13). As far as the Berry curvature
is concerned, this averaging is a consequence of time-reversal
symmetry. On the other hand, Sμμ(ω), μ = 1,2, are nonzero
and shown in Fig. 1. Finally,Sμμ, μ = 1,2, defined in Eq. (12),

are given by S11 = −1.54 a2 and S22 = −3.56 a2, where the
lattice spacing a has been reinstated.

(2) In example 2, the limit μs → 0 in Eq. (15) delivers
a tight-binding two-band approximation to the bands of
graphene. When the chemical potential is tuned to the charge-
neutral point, graphene realizes a quantum critical point
characterized by a density of states that scales linearly with
the deviation in energy away from the charge-neutral point.
Correspondingly, the diagonal entries Sμμ(ω) with μ = 1,2
scale linearly with ω as ω → 0. It follows that Sμμ with
μ = 1,2 are logarithmically divergent due to the critical nature
of the Bloch states at the charge-neutral point.

(3) In example 3, we consider a single species of massive
Dirac elections in d = 2 dimensions, as a model for the
surface states of the three-dimensional topological insulator
Bi2Se3,21 when doped with ferromagnetically ordered ions.
The Hamiltonian is given by

HTI(k) :=
(

m v(k2 + ik1)
v(k2 − ik1) −m

)
, (16)

where v is the Fermi velocity and m is the magnetization out of
the plane of the surface. Hamiltonian (16) has two bands with

energies ±ε(k), ε(k) :=
√

v2k2 + m2, separated by the band
gap 2m. We regulate the theory with a high-energy cutoff
�  m such that �BZ = π (�/v)2. The quantum geometric
tensor reads

Q11 = v2

4ε(k)4

(
2k2 sin2 ϕ + 2m2 im ε(k) − k2 sin 2ϕ

−im ε(k) − k2 sin 2ϕ 2k2 cos2 ϕ + 2m2

)
.

(17)

G22(k) G12(k)

S11(ω)/ω2

S22(ω)/ω2

Sii(ω)
ω2

[eV −1] G11(k)

ω [eV ]

−2

2

5 10 15 20

0.01

0.02

0.03

0.04

FIG. 1. (Color online) Current noise spectrum computed using Eq. (13) and Hamiltonian (15) for longitudinal currents in boron nitride. It
is a direct measure for the Fubini-Study metric tensor times the density of states averaged over equal-energy contours in the BZ. The largest
contributions stem from the massive Dirac cones directly above the band gap of ω = 2μs = 5.8 eV and from the van Hove singularities at
ω = 2

√
t2 + μ2

s = 8.23 eV. The anisotropy is attributed to the fact that the honeycomb lattice lacks a fourfold rotational symmetry. Insets:
Distributions of the components of the Fubini-Study metric tensor over the BZ.
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Here, we used the parametrization vk = k(cos ϕ, sin ϕ)T. For
the current noise spectrum, we obtain (μ = 1,2)

Sμμ(ω) = −πv2

�2

(
ω + 4m2

ω

)


( ω

2m
− 1

)
, (18a)

S12(ω) = −i
2πv2m

�2


( ω

2m
− 1

)
, (18b)

while

S12 = −i
2π

�BZ

[
1

2
+ O

(
m

�

)]
(19)

reveals that the Chern number of a single species of Dirac
fermions is 1/2. In contrast, �BZ × Sμμ, μ = 1,2 is logarith-
mically divergent for � → ∞. One might wonder whether
bulk states, that have not been considered here, will spoil these
results. If fact, the results are valid as long as ω in Eq. (18) and
� in Eq. (19) are much smaller than the bulk energy gap.

The results for Sμν(ω) and Sμν obtained in these three
examples illustrate how the quantum geometry is manifest
in the noise. Notice that in example 2 there is no current noise
at equilibrium conditions, while in examples 1 and 3 there is
necessarily noise even at equilibrium.

We have shown that the tensorS defined by the first equality
of Eq. (12) is connected to the current noise spectrum by
the second equality of Eq. (12). In addition, we are going to
provide two complementary interpretations for this tensor.

Two physical quantities that are revealed in S are the
minimum spread of Wannier states and the Hall conductivity
of a Bloch band. As shown by Marzari and Vanderbilt,8 the
spread of the Wannier states can be broken into two positive
definite contributions �I + �̃, one of which (�I ) is gauge
invariant and is tied to the trace of the quantum geometric
tensor. It turns out that

�I =
∫

BZ

d2k
�BZ

tr g11(k) = −trS. (20)

Remarkably, current noise is present even at equilibrium for
any band insulator in which either multiorbital or spin-orbit
coupling causes the Wannier states to spread. Furthermore, the
imaginary part ofS is proportional to the Hall conductivity σ H

μν

with μ �= ν = 1,2 of the lower band a = 1:

σ H
μν = 2π

e2

h

∫
BZ

d2k
�BZ

F 11
μν(k) = −2π

e2

h
ImSμν. (21)

The fluctuation-dissipation theorem relates Sμν(ω) to the
frequency-resolved interband Kubo conductivity σμν(ω) per
unit volume V . At zero temperature,

σμν(ω) = i

2π V

∫
dω′

ω′
Sμν(+ω′) − Sνμ(−ω′)

ω − ω′ + i0+ . (22)

This implies sum rules relating the Fubini-Study metric
Qμν(k) and σμν(ω).22

The integrated noise spectrum S can also be interpreted as
the action of the CPN−1 nonlinear sigma model (NLσM).23

To this end, we note that the orthonormal eigenstates of the
N × N Bloch Hamiltonian (1) can be represented as points
z(k) on the surface of the unit sphere S2N−1. Any two points

z(k) and z(k′) from S2N−1 differing by a phase are not
distinct; i.e., it is the projective space CPN−1 that realizes
physical states. We can interpret CPN−1 as a (2N − 2)-
dimensional real Riemannian manifold, with the “angular”
coordinates φa(k), a = 1, . . . ,2N − 2. In this parametriza-
tion, the Fubini-Study metric tensor decomposes into the
symmetric

g11
μν = ∂μφa Gab(φ) ∂νφb = +g11

νμ (23)

and antisymmetric

F 11
μν = ∂μφa Fab(φ) ∂νφb = −F 11

νμ (24)

tensors, respectively (summation over repeated a,b =
1, . . . ,2N − 2 is implied). In d = 2 dimensions, given the
flat Euclidean metric tensor δμν = +δνμ and the Levi-Civita
antisymmetric tensor εμν = −ενμ, we can write (summation
over repeated indices is implied)

δμνSμν[φ] = −
∫

BZ

d2k
�BZ

∂μφa Gab(φ) ∂μφb (25a)

and

εμνSμν[φ] = − i

2

∫
BZ

d2k
�BZ

εμν ∂μφa Fab(φ) ∂νφb. (25b)

Equation (25a) is the kinetic term in the action of the CPN−1

NLσM in two-dimensional Euclidean space. Equation (25b)
is the Wess-Zumino term of the CPN−1 NLσM.24 The
quantization and with it the topological character of the
Wess-Zumino term are guaranteed by the quantization of
the first Chern number. Measuring all the components of the
tensor Sμν can thus be viewed as measuring the action of the
CPN−1 NLσM augmented by a topological term with the field
configuration φ(k) that is dictated by the Bloch Hamiltonian.

Finally, we point out that the Fubini-Study metric tensor
enters the algebra obeyed by the single-particle position
operator (5d), which we denote by X̃ after projection onto
the Ñ lower bands, according to

〈uã(k)|X̃μ X̃ν |u
b̃
(k)〉 = Qãb̃

μν(k) (26)

for any pair μ,ν = 1, . . . ,d and for any pair ã,b̃ = 1, . . . ,Ñ

from the lower bands. Furthermore, the Fubini-Study metric
tensor determines the algebra obeyed by the Fourier compo-
nents of projected density operators,

ρ̃(q) :=
∫

BZ

dd k
�BZ

|uã(k)〉〈uã(k)|u
b̃
(k + q)〉〈u

b̃
(k + q)|,

(27)

that reads in the limit of long wavelength, i.e., to second order
in the momenta q,q ′ ∈ BZ:

ρ̃(q)ρ̃(q ′) − ρ̃(q + q ′)

= qμq ′
ν

∫
BZ

dd k
�BZ

|uã(k)〉Qãb̃
μν(k)〈u

b̃
(k)|. (28)

In conclusion, we showed that the quantum geomet-
ric tensor of band insulators is related to a measurable
quantity, the current noise spectrum. We also introduced a
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frequency-weighted integral of the noise spectrum that can
be physically interpreted as the minimal spread of Wannier
orbitals and takes the form of the action of the CPN−1 NLσM
augmented by a topological term.
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