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We use bosonization and renormalization group methods to determine the ground-state phase diagram of a
one-dimensional frustrated Kondo-Heisenberg system consisting of a one-dimensional spin- 1

2 Luttinger liquid
coupled by a Kondo exchange interaction JK to a frustrated quantum antiferromagnetic Heisenberg chain, with
a nearest-neighbor exchange coupling J1 and a next-nearest-neighbor (frustrating) exchange interaction J2. We
analyze the interplay of quantum frustration in the antiferromagnetic chain with the Kondo exchange coupling
JK with the Luttinger liquid. We discuss the structure of the phase diagram of this system as a function of the
ratios JK/J1, J2/J1, and of the parameters of the Luttinger liquid. In particular, we discuss in detail the regimes
in which a pair-density-wave state may be realized and its relation with the spin correlations in the frustrated
antiferromagnetic chain.
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I. INTRODUCTION

Kondo-Heisenberg chains are simple model systems in
which a (one-dimensional) Luttinger liquid is coupled to
a one-dimensional antiferromagnetic system by a Kondo
exchange interaction. Systems of this type display a variety
of nontrivial ground states with a dazzling array of uncon-
ventional behaviors.1–7 In particular, they have phases that
exhibit a spin gap and have superconducting correlations with
the peculiar aspect that their only viable order parameters are
made of observables from the spin chain and of the Luttinger
liquid which separately have only short-range correlations.
Kondo-Heisenberg systems constitute an ideal testing ground
in which the physics of strongly correlated electronic systems
can be studied using controlled analytic approximations and
powerful numerical methods.

One of the phases that is well established to exist in
the Kondo-Heisenberg chain is a state with a spin gap and
long-range (power-law) superconducting correlations with
finite momentum (which is commensurate with the lattice
of Kondo-Heisenberg spins). This state was identified in
Ref. 7 as a pair-density-wave (PDW) superconducting state,
i.e., a Larkin-Ovchinnikov state without an external Zeeman
(magnetic) field. In this paper, we will consider the effects
of next-nearest-neighbor antiferromagnetic exchange interac-
tions in the spin chain. In the presence of such interactions,
the spin chain is frustrated and can be regarded as a zigzag
spin ladder. The purpose of this paper is to determine the
phase diagram of this system as a function of the ratio of
the Kondo exchange interaction JK to the nearest-neighbor
exchange interaction J1 in the spin chain and of the ratio
between the next-nearest-neighbor exchange interaction of the
spin chain J2/J1, as well as the interaction coupling constants
of the Luttinger liquid.

One motivation for considering the role of frustration is
to examine the mechanisms that determine the ordering wave
vector Q of a pair-density-wave state. In a one-dimensional

fermionic system with at least two bands (or species of
fermions) with attractive interactions it is possible to have
a Larkin-Ovchinnikov state with any wave vector provided
that the Fermi points of the two species are different. This is
possible since in one-dimension (1D) there is always nesting of
the Fermi points. However, if the strongly correlated system
has only repulsive interactions, this problem is more subtle.
For example, Berg and co-workers7 found that in Kondo-
Heisenberg chain the ordering wave vector Q of the PDW is the
same as the wave vector of the antiferromagnetic order, which
in turn is determined by the spacing of the Kondo spins. This is
true even though in such a spin-gap phase the magnetic order
is short ranged. A similar result was obtained in Ref. 8 in the
context of doped antiferromagnetic two-leg spin ladders, with
the only difference that the ordering wave vector is determined
by spontaneous symmetry breaking of translation invariance
rather than the explicit breaking of translation invariance of the
Kondo-Heisenberg chain. Thus, in both cases the PDW order
is commensurate.

It is apparent that this commensurate state is the result of the
magnetic origin of the mechanism of the PDW order, provided
the SU(2) magnetic symmetry is exact. This is true even in
the case of the frustrated chain which, for J2 larger than a
critical value, at the classical level the frustrated Heisenberg
chain has a ground state with incommensurate spiral magnetic
order. On the other hand, at the quantum level, in the case
of a chain of spin- 1

2 degrees of freedom, the ground state is
dimerized and has short-ranged spin order.2 The short-range
magnetic order becomes incommensurate order for J2 >

J1/2, the Majumdar-Ghosh point,9 where the dimerization is
strongest.

This behavior naturally poses the question of whether in a
strictly one-dimensional system an incommensurate phase is
possible at all. A ground state with incommensurate magnetic
order requires the existence of an additional gapless collective
mode. In a one-dimensional system, this is possible only if the
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effective low-energy theory has an exactly marginal operator.
However, the effective field theories of models with an exact
SU(2) symmetry (and their generalizations) are nonlinear
sigma models with compact target space manifolds. These
target manifolds do not have flat directions and hence their
ground states can only have massive (gapped) excitations.10

The only alternative to this gapped ground state is that the
generalized nonlinear sigma models may have a topological
term. In this case, the RG flows drive the system to a nontrivial
finite conformally invariant fixed point. The only available
fixed points with SU(2) symmetry are Wess-Zumino-Witten
(WZW) models with current algebras SU(2)k (where k is an
integer) (or generalizations of these fixed points). However,
fixed points of this class also do not have any exactly marginal
operators. These arguments suggest that it is not possible to
have a state with incommensurate magnetic order with exact
SU(2) spin invariance in one spatial dimension. The only way
to circumvent this problem is either to break the magnetic
symmetry explicitly, from SU(2) down to a U(1) subgroup, as
in the presence of magnetic anisotropy, which allows for mag-
netic spiral phases,11 or to consider a quasi-one-dimensional
system in which the symmetry breaking is spontaneous in
the higher-dimensional system (or by an explicit symmetry
breaking by a uniform magnetic field).12–14 Nevertheless,
although magnetic frustration in an SU(2)-invariant system
does not lead to an incommensurate PDW phase in the 1D
case we are discussing here, we will see that it does lead to
nontrivial and interesting phases that will be discussed in some
detail in this paper.

In this paper, we investigate the nature of the ground state of
a frustrated Kondo-Heisenberg model and the resulting phase
diagram (see Fig. 1). Our results are based on a combination
of bosonization methods (both Abelian and non-Abelian) with
perturbative renormalization group arguments. Our strategy is
to investigate the behavior of the system in limiting regimes of
the parameter space. Thus, we will first consider the extension
of the results of Ref. 7 account for the effects of weak
next-nearest-neighbor interactions J2 in the spin chain. Next,
we consider the opposite regime in which the nearest-neighbor
interactions J1 of the spin chain are weak. This regime turns
out to be quite rich. Finally, we consider the regime in which J1

is weak compared with the Kondo exchange coupling. In this
regime, we find a finite nontrivial fixed point of the Toulouse
type, investigated earlier on for a somewhat different system
by Azaria and Lecheminant.15 By considering the leading
perturbations around the Toulouse fixed point, we show that it
controls a stable phase with the character of a fractionalized
spin liquid. At some finite value of J1, this phase becomes
unstable and has a phase transition to a pair-density-wave
phase.

This paper if organized as follows. In Sec. II, we introduce
the frustrated Kondo-Heisenberg model and discuss how the
order parameters of the different phases of interest are realized.
In Sec. III, we consider the weak frustration regime J2 � J1,
which is treated using bosonization methods (both Abelian
and non-Abelian) and renormalization group calculations.
Here, we discuss the interplay between the PDW phase of
the unfrustrated system and the dimerized phase. In Sec. IV,
we discuss the opposite regime J2 � J1, which can also be

treated by bosonization and renormalization group methods.
In this regime, the phase diagram turns out to be quite rich and
the construction of the order parameters is nontrivial. Here,
we find a stable phase with a gapless fractionalized fluid in the
spin sector, a fractionalized spin-liquid phase, and discuss the
quantum phase transition from this phase to the PDW phase of
the weakly frustrated regime. We close this paper by discussing
the resulting phase diagram of this system, shown in Fig. 1,
in Sec. V as well as several open questions. The Toulouse
point solution of the strong coupling regime of this system is
summarized in the Appendix.

II. MODEL

The frustrated Kondo-Heisenberg chains a model of a one-
dimensional interacting system of spin- 1

2 fermions coupled
by a Kondo exchange coupling to a one-dimensional array
of localized spin- 1

2 degrees of freedom whose Hamiltonian
is a Heisenberg antiferromagnet with both nearest- and
next-nearest-neighbor exchange interactions. When the latter
interactions are larger than a critical value, the resulting
magnetic chain is frustrated and can equivalently be depicted
as a zigzag ladder.

The model is described by the Hamiltonian of Eq. (2.1)
which is a sum of three terms: (a) HF that represents the
interacting system of fermions [Eq. (2.2)], (b) HHeis for the
frustrated Heisenberg [Eq. (2.3)], and (c) HK that describes
the Kondo exchange interaction between the spin degrees of
freedom in these two subsystems [Eq. (2.4)]:

H = HF + HHeis + HK, (2.1)

HF = −t
∑
i,σ

(c†iσ ci+1σ + c
†
i+1σ ciσ ) + Hint, (2.2)

HHeis = J1

∑
i

Si · Si+1 + J2

∑
i,σ

Si · Si+2, (2.3)

HK = JK

∑
i

Si · si . (2.4)

In Eq. (2.2), Hint represent local interactions in the system of
1D fermions, e.g., a Hubbard interaction U , a nearest-neighbor
(Coulomb) repulsion V , and a nearest-neighbor (Heisenberg)
exchange interaction J . Here, we will assume that the 1D
system of fermions is gapless and hence described by a
Luttinger liquid with charge and spin excitations. Thus, the
1D fermionic system has a U(1)× SU(2) global symmetry
(accounting for the charge and spin sectors). The Heisenberg
spin chain has an SU(2) global symmetry. The Kondo coupling
between the two systems, represented by HK in Eq. (2.4) with
coupling constant JK , reduces the symmetry to a U(1) × SU(2)
global symmetry. In principle, the lattice spacing of the
magnetic chain is different than that of the 1D system of mobile
fermions. For simplicity here we will take the lattice spacings
of the two subsystems to be the same. In this case, there is no
explicit breaking of translation invariance.

In Eq. (2.2), we introduced a set of fermion creation
and annihilation operators c

†
i,σ and ci,σ at each site i for

electrons with spin σ = ↑,↓. The three components of the
spin operator of the itinerant electrons at the ith site are given
by sa

i = 1
2

∑
α,β c

†
i,ασ a

α,βci,β , where a = 1,2,3. Here, σa
α,β is the
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(α,β) element of the ath Pauli matrix. Similarly, the operators
Si represent the spins of the frustrated Heisenberg spin chain
with coupling constants J1 (for the nearest-neighbor exchange
coupling) and J2 for the next-nearest-neighbor exchange
coupling.

As we noted before, the frustrated chain can also be
regarded as a zigzag two-leg spin ladder with J2 representing
the interactions on the rungs. In this picture, the frustrated
chain is a 1D version of an asymmetric triangular lattice.
This picture is appropriate for quasi-one-dimensional systems
such as Cs2CuCl4.16 Both coupling constants are taken to be
antiferromagnetic. Hence, the spin chain is frustrated. On the
other hand, in what follows we will take the Kondo coupling to
be the same for all sites, which is appropriate for the frustrated
chain.

Several limits of this model have been considered before.
In the case in which the Kondo coupling is zero, JK = 0,
it is known17 that the frustrated chain has a quantum phase
transition at a critical value J2c of J2. For J2 < J2c, frustration
has essentially no effect on the low-energy properties. In
this regime, next-nearest-neighbor interaction is marginally
irrelevant and the system behaves effectively as the spin- 1

2
Heisenberg model chain. Thus, in this regime the decoupled
spin chain is gapless, and hence critical, and exhibits power-
law correlations. When J2 exceeds a critical value of the
next-nearest-neighbor coupling J2c, the interaction becomes
marginally relevant. The resulting ground state is a spin singlet
and there is a finite energy gap in the spectrum.2 In this
regime, the translational order is spontaneously broken by the
appearance of a magnetic dimerization of the chain. The order
parameter for the dimerized phase is

ε ≡ (−1)i 〈Si · Si+1 − Si+1 · Si+2〉 , (2.5)

which acquires a nonzero, position-independent value in this
phase. The value J2c

J1
= 0.241 is known from numerical studies.

At J2c

J1
= 0.5, known as a Majumdar-Ghosh point, the ground

state could be analytically obtained. It corresponds to the
formation of spin singlets between each site and one of its
neighbors. In this limit, the dimerization (and the frustration)
is largest. Inside the dimerized phase there is short-range
incommensurate spiral-spin order. Since there is a finite spin
gap, not only electron tunneling between the two chains is
suppressed, but also the exchange Kondo coupling becomes
irrelevant up to a finite value of the order of the spin gap.
Hence, in this regime the gapless 1D electron system and the
frustrated spin chain are effectively decoupled at low energies.

On the other hand, for J2 = 0 and JK 	= 0, the system
is the Kondo-Heisenberg chain. For small JK , the Kondo
coupling is a marginally relevant perturbation and flows under
the RG to a strong coupling fixed point with a finite spin
gap and short-range commensurate magnetic correlations.3 In
this system, only composite order parameters have power-law
correlations.1,5,6 It has been realized recently7 that in the spin-
gap phase (usually referred to as the “Kondo singlet” regime in
the heavy-fermion literature), the strongest correlations (i.e.,
with the smallest exponent) describe a pair-density-wave state,
a superconducting order with finite wave vector. In the case in
which the two lattice spacings are the same, the ordering wave
vector is Q = π .

Finally, the limit in which J1 = 0 but with J2 and JK finite
has also been studied in some detail. This limit is quite rich. It
has an unstable fixed point at JK = 0. For finite JK , this system
flows to a nontrivial finite infrared stable fixed point which in
some ways resembles the physics of the multichannel Kondo
problem.15,18,19 This fixed point is equivalent to two decoupled
chirally stabilized systems.20 In the phase governed by this
nontrivial fixed point, the only allowed order parameters (i.e.,
operators with power-law correlations) are also composite.

In the subsequent sections, we will examine the phase
diagram of the full system by expanding about these two limits
J2 � J1 and J2 � J1 with JK finite (and with the parameters
of the 1D gapless electronic system fixed).

III. J2 � J1

In this section, we will look at the effects of the next-
nearest-neighbor exchange coupling J2 on the physics Kondo-
Heisenberg chain. In the regime with small JK and small J2,
one can look at the effective field theory in a naive continuum
limit and analyze the role of various operators. Bosonization
(Abelian and non-Abelian) is a very useful tool to understand
the physics of this regime.1,5,6 The low-energy excitations of
the electronic chain can be taken into account by linearizing the
free-fermion band around the Fermi level. In this regime, the
fermionic operators can be written in terms of the continuum
right and left fields ψ1

σR(x) and ψ1
σL(x) (here the label 1 denotes

the 1D system of mobile electrons) as :
cnσ√

a
∼ eikF nψσR,1(x) + e−ikF nψσL,1(x), (3.1)

where a is the lattice spacing and kF is the Fermi momentum
of the chain. The local spin operator of the electrons sn =
1
2c

†
nασαβcnβ can also be decomposed into a slowly varying

piece (with Fourier components near zero wave vector) and
a rapidly varying piece (with Fourier components near 2kF )
which represent the spin-density wave order parameter. More
explicitly,

sn ∼ a[JL,1(x) + JR,1(x) + e−i2kF nN1(x) + H.c.], (3.2)

where

JR,1 = 1
2ψ

†
αR,1σ α,βψβR,1, JL,1 = 1

2ψ
†
αL,1σ αβψβL,1 (3.3)

are the chiral spin currents of the right- and left-moving
electrons, and

N1 = 1
2ψ

†
αR,1σ αβψβL,1. (3.4)

For general kF , the order parameter operator N1 of the 1D
electronic system is a three-component complex vector and,
for general filling of the 1D electronic system, the spin-density
wave has an ordering wave vector Q = 2kF . In the special case
in which the 1D electronic chain is half-filled, where there is
a Mott charge gap, the Kondo-Heisenberg chain is a Kondo
insulator. In this case, the ordering wave vector of the 1D
electronic system is Q = π and N1 is real (self-adjoint) and
is a Néel order parameter. We will not discuss this interesting
case here and we will focus on the case in which the electronic
system is metallic.

On the other hand, the degrees of freedom of the Heisenberg
spin chain can also be decomposed into slowly and rapidly
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varying components.21 In this case, the spin operators of the
Heisenberg chain could also be represented by fermionic fields
starting from a half-filled Hubbard model (with kF = π ) and
gapped (and hence frozen) charge degrees of freedom (due to
the Mott gap). The decomposition of the local spin operators
of the Heisenberg chains is

Sn ∼ a[JL,2(x) + JR,2(x) + (−1)nN2(x)], (3.5)

where the label 2 now denotes the spin chain. The expressions
for the chiral spin currents of the Heisenberg chain JL,2 and
JR,2 are the same as the previous ones by changing 1 for 2.
The (real) Néel order parameter (the staggered magnetization)
is

N2 = 1
2 [ψ†

αR,2σ α,βψβL,2 + ψ
†
αL,2σ α,βψβR,2]. (3.6)

The effective Hamiltonian for the low-energy regime can
be determined from the Hamiltonian of Eqs. (2.2)–(2.4). As
it is common in 1D problems, here too in the low-energy
regime there is a separation between charge and spin degrees
of freedom and the effective Hamiltonian is a sum of two terms,
one for the charge sector and one for the spin sector. (For a
general discussion on bosonization, see, e.g., Ref. 22.) The
charge sector is described by a conventional (compactified)
boson φc whose Hamiltonian density Hc is parametrized by a
charge Luttinger parameter Kc and a charge velocity vc, both
of which depend in a nonuniversal way on the microscopic
parameters of Eqs. (2.2)–(2.4):

Hc = vc

2Kc

	2
c + 1

2
Kcvc(∂xφc)2, (3.7)

where 	c is momentum canonically conjugate to the field φc.
The (normal-ordered) charge density j0 and charge current are
related to the field φc by the usual bosonization formula.

The Hamiltonian density for the spin sector Hs can be
written in terms of the right- and left-moving spin currents of
the magnetic and electronic chains.2 We obtain

Hs = H0 + Hint,

H0 = 2πv1

3
(: JR,1 · JR,1+ : JL,1 · JL,1 :)

+ 2πv2

3
(: JR,2 · JR,2 : + : JL,2 · JL,2 :),

Hint = g1JR,1 · JL,1 + g2JR,2 · JL,2

+ g3(JR,1 · JL,2 + JL,1 · JR,2)

+ g4(JR,1 · JR,2 + JL,1 · JL,2), (3.8)

where 1 and 2 label the electronic system and the spin chain,
respectively, and v1 ∼ 2at and v2 ∼ aJ1. All the operators
that we have included are marginal, and they are marginally
relevant for g > 0 and marginally irrelevant otherwise. Notice
that in the effective interaction of Eq. (3.8) we have not
included a possible coupling between the spin-density-wave
order parameters of the 1D electronic system and of the
Heisenberg spin chain. For general filling of the 1D electronic
system, this interaction is not allowed (or, rather it is strongly
irrelevant) since the two systems have different ordering wave
vectors. However, it is a relevant perturbation in the case of
the Kondo insulator where it plays a key role.

The coupling constant g2 parametrizes the strength of the
backscattering term of the magnetic chain. According to the

discussion of Sec. II, this coupling is irrelevant in the absence
of the next-nearest-neighbor (frustrating) exchange interaction
J2 and should become relevant at some critical value J2c,
past which the spin chain becomes dimerized and has a
spin gap. Thus, the bare value of the coupling constant g2

should change sign at J2c, and close to this critical point it
should have the simple form g2 ∼ a(J2 − J2c). This will be
the initial value for our renormalization group (RG) analysis.
Instead, the backscattering interaction of the electronic chain is
marginally irrelevant (for repulsive microscopic interactions)
and hence the bare value of g1 is negative. Thus, although the
Hamiltonians for the spin sectors of the two subsystems have
the same form, they are not equivalent.

In Eq. (3.8), the Kondo term has been split into the g3

term for the coupling of currents with the different chirality,
and the g4 term for the coupling of currents of the same
chirality. Their initial (bare) values are g30 = g40 ∼ aJK .
Finally, g1 corresponds to a possible backscattering term in
the electronic chain induced by electronic correlations. For
repulsive interactions, it has a negative bare value g10 < 0.

The (chiral) spin currents of the electronic system and of
the spin chain generate, separately, an SU(2)1 Kac-Moody
algebra. Consequently, the chiral spin currents JaR,L (with
a = 1,2) have the operator product expansion23 (OPE)

J α
L (za)J β

L (wb) ∼ δabδ
αβ

8π (za − wb)2
+

∑
γ

δabε
αβγ J

γ

L (wb)

2π (za − wb)
,

(3.9)

J α
R (z̄a)J β

R (w̄b) ∼ δabδ
αβ

8π (z̄a − w̄b)2
+

∑
γ

δabε
αβγ J

γ

L (w̄b)

2π (z̄a − w̄b)
,

where α,β = x,y,z; a,b = 1,2 and za = ix + vaτ , where τ =
it is the imaginary time.

From Eq. (3.9) we can obtain the one-loop RG equations
using the procedure outlined in Appendix A of Ref. 24 (or the
general approach described in Refs. 22 and 25). It easy to see
that the g4 term does not contribute to the lowest-order RG
equations. The remaining equations are thus decoupled and
read as follows:

dg1

dl
= g2

1

2πv1
,

dg2

dl
= g2

2

2πv2
,

dg3

dl
= g2

3

π (v1 + v2)
. (3.10)

Thus, starting from a negative value, g1 (slowly) approaches
zero, and will be neglected in the sequel. For next-nearest-
neighbor (frustrating) exchange coupling J2 smaller than the
critical value g20 < 0, and g2 is also (marginally) irrelevant. In
this regime, the flow is controlled by the marginally relevant
Kondo coupling, and the system flows to the same fixed point
of the unfrustrated Kondo-Heisenberg chain. In this regime,
the system is in a PDW phase of the unfrustrated chain, as
discussed in Ref. 7 (using results from Refs. 1,5, and 6).

We now follow the results of White and Affleck2 to analyze
the situation for J2 > J2c. In this regime, the bare value of
g2 is positive, g20 > 0, and the backscattering interaction of
the spin chain is marginally relevant. We thus find two stable
phases depending on which coupling g2 or g3 reaches first its
strong coupling limit under the RG flow of Eq. (3.10). If g2

wins, the fixed point describes a dimerized spin chain (with
a spin gap) and a decoupled electronic system. In this limit,
the Kondo coupling is irrelevant. Conversely, if g3 reaches the
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strong coupling limit first, the system is again in the PDW
phase in which dimerization is suppressed.

We can see how these phases arise using Abelian bosoniza-
tion of the SU(2)1 Kac-Moody algebra.23 In this case, the
chiral spin currents can be represented in terms of the chiral
bosonic fields ϕsa (with s = R,L and a = 1,2 representing
each Heisenberg chain):

J±
sa = 1

2πa
e∓i

√
8πϕsa , J z

sa = 1√
2π

∂xϕsa. (3.11)

These chiral currents have (as they should) scaling dimension
1. In this representation, the spin chain backscattering interac-
tion, the g2 term in Eq. (3.8), becomes

g2JR2 · JL2 = g2

(2πa)2
cos(

√
8πϕ2) + g2

2π
∂xϕR2∂xϕL2,

(3.12)

where ϕa = ϕRa + ϕLa , and θa = ϕLa − ϕRa is its dual field.
In the regime in which the RG flow drives g2 to strong

coupling, the field ϕ2 is pinned at the minimum of the cosine,
i.e., at the values ϕ2 = (n + 1

2 )
√

π
2 . In this phase, the order

parameter ε defined in Eq. (2.5) has a nonvanishing expectation
value, and the system dimerizes (the D phase in what follows),
breaking the translational symmetry, and has a finite spin gap
in its spectrum. Since the magnetic chain has a spin gap,
its spin-spin correlation functions are short ranged. However,
White and Affleck2 found that in the dimerized phase the
spins of the magnetic chain have short-ranged incommensurate
antiferromagnetic order. On the other hand, the electronic
chain in this phase remains decoupled with gapless charge
and magnetic excitations.

In the opposite case, in which g3 flows to strong coupling,
the system flows to the pair-density-wave fixed point of the
unfrustrated Kondo-Heisenberg chain. Let us summarize, for
completeness, how this happens. The interchain backscattering
operators have the bosonized expression

JR1 · JL2 + JL1 · JR2

= 1

(2πa)2
{cos[

√
8π (ϕR1 +ϕL2)] + cos[

√
8π (ϕL1 + ϕR2)]}

+ 1

2π
[∂xϕR1∂xϕL2 + ∂xϕL1∂xϕR2]. (3.13)

The first term in Eq. (3.13) can be written in the form

1

(2πa)2
{cos[2

√
π (ϕ+ + θ−)] + cos[2

√
π (ϕ+ − θ−)]}, (3.14)

where ϕ± = 1√
2
(ϕ2 ± ϕ1) and θ± = 1√

2
(θ2 ± θ1).

The operator shown in Eq. (3.14) is the marginally relevant
interaction found in Ref. 5. Its presence in the effective action
drives the system to a fixed point in which the fields 2

√
πϕ+

and 2
√

πθ− are pinned at the values 2nπ and (2n + 1)π , or
(2n + 1)π and 2nπ . The corresponding phase was analyzed
in Refs. 5 and 7 where it was shown that it has a gap for all
spin excitations. In this phase, there still is a decoupled gapless
charge sector.

A remarkable feature of this phase is that the only order
parameters that exhibit quasi-long-range order (i.e., have
power-law correlations) are composite operators made from
observables of the electronic chain and the spin chain that,

separately, have short-range correlations since their correlation
functions fall off exponentially fast with distance. In particular,
this phase is characterized by the pair-density-wave order
parameter

�PDW = �TS · N2, (3.15)

where �TS = i
∑

α,β ψαR,1(x)(σσy)α,βψσL,1 is the spin-triplet
pairing operator of the electronic system (“chain 1”), and N2 is
the Néel order parameter of the spin chain (“chain 2”). Thus,
the PDW order parameter is a four-fermion operator. The PDW
operator of Eq. (3.15) has the bosonized form

�PDW = e−i
√

2πθc

2(πa)2
[2 cos(

√
4πθ−) + cos(

√
4πϕ+)

− cos(
√

4πϕ−)], (3.16)

where we have omitted an oscillatory factor with wave vector
QPDW = π . From this expression, it is apparent that in the
PDW phase the operators in brackets in Eq. (3.16) have finite
(and nonvanishing) expectation values and, as a result, the
PDW order parameter has power-law correlations of the form

〈�PDW(x)�†
PDW(0)〉 ∼ 1

xηPDW
. (3.17)

The exponent takes the value ηPDW = 1 if the electronic chain
is noninteracting, while for repulsive interactions (with Kc >

1) it increases to the value ηPDW = Kc > 1.
Berg et al.26 showed that an ordered PDW state with

ordering wave vector Q always has a subleading uniform
superconducting order but with charge 4e instead of 2e as
in a conventional superconductor. Reference 7 showed that
the spin-gap phase of the Kondo-Heisenberg chain has PDW
quasi-long-range order as well as charge-4e quasi-long-range
order (albeit with a larger critical exponent). For a PDW with
ordering wave vector Q = π (as in the present case), the
charge-4e superconducting order parameter �4e is simply the
square of the PDW order parameter. Hence, we can make
the identification

�4e ∼ const × ei2
√

2πθc . (3.18)

This order parameter has scaling dimension 2Kc, and its
correlation function falls off with an exponent η4e = 4Kc.

The RG flows of Eq. (3.10) determine the structure of
the phase diagram in this weak coupling regime. The RG
flows are marginally unstable on both coupling constants and
hence the effective couplings run to their strong coupling
regime. As usual, the velocities are only affected by irrelevant
operators and acquire at most a finite renormalization. Hence,
the velocities do not affect the RG flow of the dimensionless
coupling constants g2 and g3 since g1 is a marginally irrelevant
coupling. The dimensionless coupling constants have initial
values g20 ∼ (J2 − J2c)/t and g3 ∼ JK/t .

At the level of the one-loop RG of Eq. (3.10), which
is accurate for g2 and g3 small, the location of the phase
boundary (the separatrix of the RG flow) between PDW and
the dimerized phases is the straight line g3 = g2

2 (1 + v1
v2

) or,
equivalently, in terms of the macroscopic parameters JK =
1
2 (J2 − J2c)(1 + 2t

J1
). Above this phase boundary, the system

is in the PDW phase, and below this phase boundary, it is in
the dimerized phase. Along the phase boundary both coupling
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constants g2 and g3 flow to strong coupling at the same rate.
Thus, the quantum phase transition between the PDW phase
and the dimerized phase is likely to be first order.

We conclude that quantum frustration of the spin chain
leads to irrelevant and essentially unobservable effects in the
PDW phase. On the other hand, quantum frustration leads to
a dimerized phase and the Kondo coupling has essentially
irrelevant effects in this phase. This is so because in this
phase there is a spin gap in the (frustrated) spin chain
producing an effective decoupling from the electronic chain.
It is well known (and easy to see) that if the spin chain
is treated classically, its ground state is an incommensurate
spiral. The numerical [density-matrix renormalization group
(DMRG)] calculations of White and Affleck show that there is
short-range incommensurate order inside the dimerized phase.

IV. J2 � J1 REGIME

We now turn to the limit in which the next-nearest-neighbor
exchange interaction J2 is stronger than J1. In this regime,
the treatment used in the preceding section is not adequate.
Instead, it is convenient to think the magnetic chain as a zigzag
two-leg ladder, i.e., two spin chains with nearest-neighbor
exchange J2, and weakly coupled by an interchain (zigzag)
exchange interaction J1. In this picture, the frustrated spin
chain is a triangular (“trestle”) ladder. In the extreme case J1 =
0, the system we are considering becomes two Heisenberg
antiferromagnetic chains coupled with an electronic chain
by the Kondo exchange interaction. In the limit in which
the Kondo coupling is also weak, the starting point of our
treatment consists of three chains (two magnetic chains and
an interacting electronic chain) weakly coupled by JK and J1.
This regime turns out to be quite rich.

The zigzag antiferromagnetic ladder in the limit J2 � J1

was considered by White and Affleck2 who treated the system
as two weakly coupled Heisenberg chains. In this limit, the
effective low-energy theory of this zigzag ladder includes
a marginally relevant backscattering coupling between the
SU(2) spin currents of the two chains. However, due to
the special symmetry of this ladder, the (otherwise relevant)
interchain coupling of their Néel order parameters is absent.
White and Affleck also showed that the marginally relevant
interchain backscattering interaction causes the RG to flow to
a strong coupling fixed point with finite (albeit exponentially
small) dimerization and an also exponentially small spin gap.
These results were confirmed using a DMRG. Furthermore, in
this regime the zigzag ladder has short-range incommensurate
spiral order. Thus, for the problem of interest here, we conclude
that if the Kondo exchange interaction is also very small,
the low-energy physics is that of a dimerized zigzag chain
essentially decoupled from a one-dimensional Luttinger liquid
with gapless and decoupled charge and spin excitations. This
is the same phase that we encountered in the preceding section.

Another limit of interest is the case in which J1 → 0 while
holding JK finite (and small), in which the system reduces
to two antiferromagnetic chains and a conducting fermionic
chain coupled by a Kondo exchange interaction JK . Up to
some simple redefinitions, in this limit the problem we are
interested in is related to the problem of overscreened (or
multichannel) Kondo-Heisenberg chains considered by Azaria

and Lecheminant15 (who also considered the frustrated three-
leg Heisenberg ladder). We will see in the following that the
spin sector of the problem we are interested in is equivalent,
in the limit J1 → 0, to the spin sector of an overscreened
Kondo-Heisenberg model.

The main result of the work by Azaria and Lecheminant
is that the Kondo exchange interaction, which is marginally
relevant at J2 = 0, drives the spin sector to a finite infrared-
stable fixed point with nontrivial properties. This nontrivial
fixed point is a one-dimensional analog of the multichannel
Kondo problem. At this finite fixed point, the spin sector
decouples into two “chirally stabilized” spin liquids, first
discussed by Andrei, Douglas, and Jerez.20 We will use the
exact solution of Azaria and Lecheminant for the two-channel
case, which is relevant to our problem, and discuss the effects
of the coupling J1 at this nontrivial fixed point.

To see how this works, let us consider the effective
(bosonized) low-energy field theory of the frustrated Kondo-
Heisenberg chain in the limits J2 � J1 and J2 � JK . In
the low-energy limit, the frustrated Kondo-Heisenberg chain
system exhibits spin-charge separation. The total effective
low-energy Hamiltonian density H = Hc + Hs is a sum of
the Hamiltonian Hc for the charge sector and Hs for the spin
sector.

The charge sector is described, as in the preceding section,
by the charge Bose field φc and its dual field θc, with a fixed
charge Luttinger parameter Kc and a velocity vc. The effective
Hamiltonian for the charge sector Hc describes the charge
degrees of freedom of the fermionic system and, hence, is the
same as the one given in Eq. (3.7).

In this regime, the spin sector is described by the chiral spin
currents of the two weakly coupled legs of the zigzag ladder
and the chiral spin currents of the 1D electronic system. The
Hamiltonian density Hs of the spin sector is given by

Hs = H0 + Hint,

H0 = 2πv1

3
(: JR,1 · JR,1 + : JL,1 · JL,1 :

+ : JR,2 · JR,2 : + : JL,2 · JL,2 :)

+ 2πv2

3
(: JR,3 · JR,3 : + : JL,3 · JL,3 :), (4.1)

Hint = g1[(JR,1 + JR,2) · JL,3 + (JL,1 + JL,2) · JR,3]

+ g2(JR,1 · JL,2 + JR,2 · JL,1)

+ ḡ(JR,1 · JL,1 + JR,2 · JL,2) + ḡ′ JR,3 · JL,3. (4.2)

Here, 1 and 2 label the SU(2) spin currents the two magnetic
chains and 3 labels the SU(2) spin current of the electronic
chain. The bare values of the spin velocities v1 and v2 and
of the effective coupling constants g1 and g2 are, respectively,
given by v1 � aJ2, v2 � at , g1 � aJK , g2 � aJ1. The last line
in Eq. (4.2) represents the marginally irrelevant backscattering
intra-chain interactions of the spin currents of the two spin
chains. The effective coupling constants ḡ and ḡ′ are given by
ḡ ∼ −J1 < 0 for the spin chain and ḡ′ ≈ −2U/t < 0 for the
1D electronic system (where U and t are the onsite Hubbard
interaction and t is the nearest-neighbor hopping amplitude),
respectively. As in Sec. III, in Eq. (4.2) we have neglected
the redundant term that couples the spin currents with the
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same chirality, which leads to a finite renormalization of the
velocities.

Also as in Sec. III, here too we have not included in
Eq. (4.2) a coupling between the spin-density-wave order
parameter of the 1D electronic system and the Néel order
parameters of the weakly coupled spin chains since their
associated ordering wave vectors are different and hence
the coupling is not allowed in a system with translation
invariance. Similarly, we have not included the (relevant)
coupling between the Néel order parameters of the two weakly
coupled spin chains since it is forbidden by the symmetries
of the zigzag chain. The absence of these (potentially most
strongly relevant) interactions has important consequences for
the stability analysis of the fixed points and for the structure
of the phase diagram.

The representation of the degrees of freedom of the
frustrated quantum Heisenberg chain in terms of a zigzag chain
in the effective Hamiltonian of Eq. (4.2) is invariant under
the exchange of the two spin chains. This parity symmetry
is actually broken explicitly in the lattice model. Nersesyan,
Gogolin, and Essler27 have shown that in order to account
for these parity-breaking effects, it is necessary to include in
the effective Hamiltonian of Eq. (4.2) operators of the form
N1 · ∂xN2 − N2 · ∂xN1. However, they also showed (and was
more recently confirmed in numerical calculations28) that the
effects of these parity-breaking terms are suppressed unless
there is a large (easy-plane) magnetic anisotropy and hence do
not contribute in the SU(2)-invariant system. Operators with
a similar structure mixing the SDW order parameter of the
electronic chain and the Néel order partners of the spin chains
are not allowed by the mismatch of the ordering wave vectors
(which renders them strongly irrelevant). Nevertheless, we
find that there is an instability out of the phase governed by the
Toulouse point (discussed below) triggered by operators that
break parity. These operators can be regarded as a remnant of
the parity-breaking effects discussed by Nersesyan, Gogolin,
and Essler.

The effective field theory for the spin sector described by
Eqs. (4.1) and (4.2) has three SU(2)1 spin currents [two SU(2)’s
for each spin chain and one SU(2) for the electronic system].
Thus, it is a perturbed SU(2) × SU(2) × SU(2)1 conformal
field theory. In addition, the system has a U(1) charge sector
which (in the low-energy limit) is decoupled from the spin
sector. In the absence of the perturbations of Eq. (4.2), the spin
sector has central charge c = 3.

A. JK � J1 � J2: Dimerized phase

The effect of the perturbations is to open up gaps, thus
driving the system to a fixed point with a smaller central charge.
The RG equations for the effective field theory of Eq. (4.2) have
the same decoupled form as before, i.e.,

dg1

dl
= g2

1

π (v1 + v2)
,

dg2

dl
= g2

2

2πv1
. (4.3)

The RG flows are decoupled, as in the case of Sec. III.
Which gap opens up depends on the relative strengths of the
perturbations.

For JK � J1, g2 � g1, the RG flows to the strong coupling
fixed point (of g2) of the dimerized zigzag chain which is

now gapped. Since the perturbation with coupling constant
g2 is marginally relevant, the gap is exponentially small (up
to logarithmic corrections due to the marginally irrelevant
coupling ḡ).2 In this phase, the 1D electronic system and
the zigzag chain are decoupled at low energies. This is the
same dimerized phase we found in Sec. III with the only
difference that when J2 � J1 the zigzag chain has short-range
incommensurate spiral order.2 Thus, in this phase, we have a
gapless charge mode and a gapless spin mode, both belonging
to the decoupled electronic system.

On the other hand, for JK � J1 the RG flows to a
different strong coupling regime, which will be described in
the following. From the results of Sec. III, we know that one
possibility is that this phase may also be the PDW phase that
arises for JK � J1 (and J2 � J1). The other possibility is that
the strong frustration regime is in a different phase altogether.

The phase boundary that separates the dimerized phase
from the nontrivial phase is the separatrix of the RG flow of
Eq. (4.3). This flow has a separatrix at g1 = g2

2 (1 + v2
v1

) or,

equivalently, JK

J2
= 1

2
J1
J2

(1 + t
J2

).

B. J1 � JK � J2 regime

The nature of the phase in the J1 � JK � J2 regime can
not be accessed by the perturbative RG of Eq. (4.3) and must
be determined nonperturbatively. This regime is governed by
a finite, infrared-stable, fixed point that was first discussed
by Azaria and Lecheminant15,18 (who were interested in a
somewhat different problem) who constructed a nontrivial
fixed point of a type first discussed by Andrei, Douglas, and
Jerez20 using a nonperturbative approach. We will consider
first the case J1 = 0 and use the results of Refs. 15 and 18 to
construct the nontrivial fixed point at a finite value of the Kondo
coupling constant. Once this fixed point is identified, we will
assess the role of the perturbation with coupling constant J1 at
the nontrivial fixed point in order to determine the actual nature
of the phase. In particular, if the fixed point is unstable even
for small J1 we will see that the resulting phase has the same
properties as the pair-density-wave phase of the unfrustrated
Kondo-Heisenberg chain. However, if the nontrivial fixed point
is stable, then there is a new phase (for weak enough J1) which
is distinct from the PDW phase and from the dimerized phase.

1. J1 = 0: Nontrivial finite fixed point

We begin by considering first the case J1 = 0 and sum-
marize the construction of the nontrivial finite fixed point by
Azaria and Lecheminant.15 So, we will consider the spin sector
of our system with Hamiltonian Hs [see Eqs. (4.1) and (4.2)]
and set for now g2 = ḡ = ḡ′ = 0. The Hamiltonian density
now reads as

Hs = 2πv1

3

∑
i=1,2

(: Ji,R · Ji,R : + : Ji,L · Ji,L :)

+ 2πv2

3
(: J3,R · J3,R : + : J3,L · J3,L :)

+ g1

(∑
i=1,2

Ji,R · J3,L +
∑
i=1,2

Ji,L · J3,R

)
. (4.4)
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The free part of this Hamiltonian has an
SU(2) × SU(2) × SU(2)1 symmetry which is partially
broken by the interaction term. Since the interaction retains
the symmetry of the exchange of the spin sectors of the two
spin chains (here denoted by 1 and 2), it is natural to rewrite
this system in terms of the total chiral right- and left-moving
chiral currents IR,L = J1,R + J2,R . The chiral currents IR,L

are the generators of two chiral SU(2)2 Kac-Moody algebras
(one for each chirality).

We will first rewrite the two decoupled chains in terms of
a theory of four Majorana fermions.29,30 This is possible since
a conformal field theory with current algebra SU(2) × SU(2)1

is equivalent to a conformal field theory of the Wess-Zumino-
Witten model with current algebra SO(4)1. This model has
a well-known representation in terms of four free Majorana
fermions31

2πv1

3

∑
i=1,2

(: Ji,R · Ji,R : + : Ji,L · Ji,L :)

= −v1

2

∑
i=0,1,2,3

(
ξ i
Ri∂xξ

i
R − ξ i

Li∂xξ
i
L

)
, (4.5)

where ξ i
s (x) (with i = 0,1,2,3) denotes the four species of

Majorana fermions with both chiralities (s = R,L), and satisfy
canonical anticommutation relations {ξ i

s (x),ξ j

s ′ } = δij δ(x − y)
and {ξ i

R(x),ξ j

L(y)} = 0.
In terms of the Majorana fields, the chiral SU(2)2 currents

I a
s (with a = 1,2,3 and chirality s = R,L), which are three

of the six chiral currents of SO(4)1 (with both chiralities), are
given by

I a
s = J a

1,s + J a
2,s = − i

2
εabcξ b

s ξ c
s . (4.6)

The remaining three chiral currents of SO(4)1 are (with s =
R,L)

Ka
s = iξ a

s ξ 0
s , (4.7)

where KR,L = J1,R,L − J2,R,L. This decomposition allows us
to rewrite the two decoupled spin chains in terms of the SU(2)2

chiral currents. It is equivalent to the identification23,32,33

SU(2) × SU(2)1 � SU(2)2 × Z2, where the Z2 factor will be
represented by a critical Ising model, i.e., a massless Majorana
fermion which can not be written in the Sugawara form (as a
quadratic form in chiral currents).

Following Ref. 15, we now rewrite the Hamiltonian density
of Eq. (4.4) in the form

Hs = −v1

2

(
ξ 0
Ri∂xξ

0
R − ξ 0

Li∂xξ
0
L

) + H1 + H2, (4.8)

where

H1 = πv1

2
: IR · IR : + 2πv2

3
: J3,L · J3,L : + g1IR · J3,L,

H2 = πv1

2
: IL · IL : + 2πv2

3
: J3,R · J3,R : + g1IL · J3,R.

(4.9)

Obviously, H1 and H2 commute with each other: [H1,H2] =
0. The Hamiltonians H1 and H2 involve the chiral SU(2)2

currents IR,L and the chiral SU(2)1 spin currents J3,R,L of
the electronic system. In addition, these two Hamiltonians

also commute with the free Majorana Hamiltonian shown
in Eq. (4.8), which represents a Z2 (Ising) sector. The
Hamiltonians H1 and H2 have the form of the chirally
stabilized spin-liquid theory of Andrei, Douglas, and Jerez20

who showed that each describes a theory controlled by a finite
infrared-stable fixed point. Although the fixed point of the
theory of Hamiltonian H1 is not chirally symmetric, the sum
H1 + H2 is chirally symmetric.

The most direct way to identify the finite nontrivial fixed
point is to use the Abelian bosonization approach of Azaria and
Lecheminant15 which solves the problem by formally breaking
the SU(2) symmetry down to a U(1) subgroup. In order to
do this, we will formally break the SU(2) symmetry of the
interaction terms of the Hamiltonians H1 and H2 which will
now read as

H1,int = g1‖I z
RJ z

3L + g1⊥
2

(I+
R J−

3 + I−
R J+

3L),
(4.10)

H2,int = g1‖I z
LJ z

3R + g1⊥
2

(I+
L J−

3R + I−
L J+

3R)

with g1‖ = g1⊥ = g1 in the SU(2)-invariant case. The resulting
Hamiltonian is solvable at a particular point, known as a
Toulouse point, upon a simple unitary transformation. This
approach is well known from the theory of the Kondo problem,
and was used with great success by Emery and Kivelson
in the two-channel Kondo problem.34 The SU(2)-invariant
Hamiltonian of Eqs. (4.8) and (4.9) (solved by Andrei et al.
using Bethe ansatz methods20) and its U(1)-invariant version
are also related by an irrelevant operator at the Toulouse point.

A summary of the Azaria-Lecheminant solution at the
Toulouse point is presented in the Appendix. The upshot of
this solution is that the low-energy degrees of freedom at the
Toulouse point are a massless boson, that we denote by �̄1,
and two massless Majorana fermions, denoted by ξ 0 and χ1,
respectively. Since the Bose field �̄1 is at the SU(2)1 radius,
the Luttinger liquid Hamiltonian HLL is equivalent to a theory
of an SU(2)1 WZW model with right- and left-moving chiral
currents J R and J L:

J ±
R = 1

2πa
e∓i

√
8π�̄1,R , J z

R = 1√
2π

∂x�̄1,R,

(4.11)

J ±
L = 1

2πa
e±i

√
8π�̄1,L , J z

L = 1√
2π

∂x�̄1,L.

In the notation of the Appendix, the effective Hamiltonian at
the Toulouse point is

HTP = 2πu1

3

(
J 2

R + J 2
L

) + HF [ξ 0] + HF [χ1], (4.12)

where HF [ξ 0] and HF [χ1] are the Hamiltonians for the free
Majorana Fermi fields ξ 0 and χ1, given in Eqs. (A15) and
(A16). The effective low-energy Hamiltonian of Eq. (4.12) is
the chiral fixed point of Azaria and Lecheminant. It describes
a conformally invariant system with total central charge c = 2
(in the spin sector alone), down by one unit with respect to the
decoupled system.

2. Gapless fractionalized spin fluid

To assess the significance of this fixed point to the frustrated
Kondo-Heisenberg chain, we need to consider the stability of
this fixed point. The results of Azaria and Lecheminant will be
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useful but require some changes given the differences in the
two problems. In particular, they showed that the corrections
to the Toulouse point Hamiltonian that correct for the artificial
breaking of the SU(2) symmetry amount to an irrelevant
perturbation.

We will now see that for J1 weak enough there is a
novel gapless fractionalized fluid phase characterized, in
the spin sector, by the stable fixed point of Azaria and
Lecheminant. In this phase, we will find that in the charge
sector there is coexistence between the PDW order with the
singlet superconductor (and other more conventional orders).
However, both in the charge and spin sectors, the leading
operators, which have the smallest scaling dimension and
hence the more strongly divergent susceptibilities at low
temperatures, are unconventional. In this sense, this phase is
characterized for having intertwined orders in a fractionalized
fluid state.

As we stressed before, in the problem at hand we do not
have a coupling between the Néel order parameters of the spin
chains with each other and with the 1D electronic system.
We thus need to only consider the role of the backscattering
interactions between the two spin chains [with coupling
constant g2 in Eq. (4.2)], and the backscattering interactions
in each spin chain [with coupling constant ḡ in Eq. (4.2)]
and in the 1D electronic system [with coupling constant
ḡ′ in Eq. (4.2)]. We will further assume that the coupling
constants ḡ and ḡ′ are approximately equal to each other. The
results of Ref. 15 imply that in the low-energy limit, both
the interchain spin-current backscattering interactions and the
intrachain backscattering spin-current interaction (including
the 1D electronic system) map onto the operator J R · J L

(although with different effective coupling constants) where
J R,L are the chiral SU(2)1 currents defined in Eq. (4.11).

Given these considerations, we now can write the full
Hamiltonian for the charge and spin sectors H = Hc + Hs ,
whereHc is the Hamiltonian for the charge boson φc presented
in Eq. (3.7), and Hs is the Hamiltonian for the spin sector of
Eq. (4.2) at the chiral fixed point (the Toulouse point)

H = vc

2Kc

	2
c + 1

2
Kcvc(∂xφc)2 + 2πu1

3

(
J 2

R + J 2
L

)
+ geffJ R · J L − iv1

2

(
ξ 0
R∂xξ

0
R − ξ 0

L∂xξ
0
L

)
− iv1

2

(
χ1

R∂xχ
1
R − χ1

L∂xχ
1
L

)
, (4.13)

where geff = 3ḡ + 2g2 is the effective coupling constant
for backscattering interactions of the SU(2)1 currents of
Eq. (4.11). This interaction with coupling constant geff , which
in Abelian bosonization leads to an operator of the form
cos(

√
8π�̄1) in the effective Hamiltonian [see Eq. (4.11)], is a

marginal operator. It is a relevant perturbation for geff > 0 and
an irrelevant perturbation for geff < 0. Since g2 ∼ J1 > 0 and
ḡ ∼ −J2 < 0, the relevance or irrelevance of this interaction
depends on the relative strengths of these couplings. In the
limit that we are considering here geff < 0 until the interaction
J1 becomes large enough.

We then conclude that, at least for weak enough interchain
interaction J1, the chiral fixed point is perturbatively stable
provided geff < 0. Hence, in the regime J1 � JK � J2 there

is a new stable phase which is characterized by the finite
fixed point, which is described by the Toulouse Hamiltonian of
Eq. (4.13) (up to irrelevant operators). We will now look at the
behavior of the correlators of the frustrated Kondo-Heisenberg
chain. To this end, we need to find the form of the physical
observables of the Kondo-Heisenberg chain in this description.

Azaria and Lecheminant gave an identification15 at the
Toulouse point for the Néel order parameters N1 and N2, as
well as the SDW order parameter of the 1D electric chain
N3, and of the spin currents J1, J2, and J3. Here, we will
adapt these methods to identify at the Toulouse point, in
terms of the fields of Eq. (4.13), the observables of the 1D
electronic system �SS(x) and �TS(x), the singlet and triplet
superconductor operators, and its charge-density wave (CDW)
and SDW (Néel) order parameters ρCDW(x) and NSDW(x) (both
with ordering wave vectors 2kF ). We will also need the Néel
order parameters N1 and N2 of each magnetic chain (both
with ordering wave vector π ), and in the composite order
parameters �TS · (N1 ± N2), which describe a pair-density-
wave order parameter �PDW

± also with wave vector π . As in
the case of the unfrustrated Kondo-Heisenberg chain,5,7 the
PDW order parameters involve the degrees of freedom of the
1D electronic system and of the antiferromagnetic chains.

The spin currents J3 and the SDW (Néel) order parameter
N3 of the 1D electronic chain at the Toulouse point are
identified (to leading order) with the following operators:15

J z
3,R ∼ −J z

L, J±
3,R ∼ J ±

L ,

J z
3,L ∼ −J z

R, J±
3,L ∼ J ±

R ,
(4.14)

Nz
3 ∼ −iπa χ1

Rχ1
LN z,

N±
3 ∼ iπa χ1

Rχ1
LN±,

where the fields N z and N± are given by

N z ∼ − 1

πa
sin(

√
2π�̄1),

N± ∼ 1

πa
e±i

√
2π�̄1 , (4.15)

E ∼ 1

πa
cos(

√
2π�̄1)

are the components of the (spin- 1
2 ) primary field g (with scaling

dimension 1
2 ) of the SU(2)1 WZW conformal field theory

g ∼ E + iN · σ , (4.16)

where σ are the three Pauli matrices.
The spin currents J1 and J2 of the spin chains and the

associated Néel order parameters N1 and N2 have the following
(leading-order) operator identification at the Toulouse point15:

J±
1R ∼ J ±

R

(
1 + iaπχ1

Lξ 0
R

)
,

J±
2R ∼ J ±

R

(
1 − iaπχ1

Lξ 0
R

)
, (4.17)

J z
1R = J z

2R = J z
R,

where a is the short-distance cutoff (the lattice spacing).
Similar expressions hold for the left-moving components (with
the R and L labels exchanged).
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The Néel order parameters N1 and N2 have the following
identifications:15

Nz
1 ∼ N z(μ5μ0 + σ5σ0), Nz

2 ∼ N z(μ5μ0 − σ5σ0),
(4.18)

N±
1 ∼ N±(μ5μ0 − σ5σ0), N±

2 ∼ N±(μ5μ0 + σ5σ0).

Here, σ0 and σ5 and μ0 and μ5 are, respectively, the order and
disorder twist field operators associated with the critical Ising
models with Majorana fields ξ 0 and χ1 (see the Appendix).

We will now turn to the identification at the Toulouse point
of the order parameters involving the charge sector of the
frustrated Kondo-Heisenberg chain. They are the CDW order
parameter ρCDW of the 1D electronic system

ρCDW ∼ 1

πa
χ1

Rχ1
L e−i

√
2πφc cos(

√
2π�̄1), (4.19)

the singlet and triplet superconductor order parameters �SS

and �TS of the 1D electronic system

�SS ∼ 1

πa
χ1

Rχ1
L e−i

√
2πθc cos(

√
2π�̄1), (4.20)

�TS ∼ 1

πa
χ1

Rχ1
L e−i

√
2πθc N , (4.21)

and the PDW order parameters the frustrated Kondo-
Heisenberg chain �PDW

± = � · (N1 ± N2)

�PDW
+ ∼ σ5σ0 e−i

√
2πθc , (4.22)

�PDW
− ∼ μ5μ0 e−i

√
2πθc , (4.23)

where we used that the Majorana mass term iχ1
Rχ1

L ∼ ε1

where ε1 is the energy operator of the Ising model (the
scaling dimension 1 relevant “thermal” operator at the critical
point) and the operator-product expansion (OPE) σ5 ε1 ∼ σ5

(likewise the disorder operator satisfies μ5ε1 ∼ μ5). Similarly,
the Majorana bilinear iξ 0

Rξ 0
L is identified with the energy

density operator ε0 of another critical Ising model and satisfies
the same OPEs with its order and disorder operators σ0

and μ0.
Finally, the charge-4e uniform superconducting order pa-

rameter �4e [already discussed in Sec. III, Eq. (3.18)] which is
the square of the PDW order parameters [given in Eqs. (4.22)
and (4.23)] is in turn identified with �4e ∼ exp(i2

√
2πθc).

This operator has scaling dimension 2Kc. Notice that here we
used the fact that to leading order the Ising twist fields σ and
μ to leading order fuse into the identity operator. It is easy to
see that the next-to-leading term involves the energy density
operator ε of the Ising model. Since the energy density operator
ε has scaling dimension 1, the leading correction to the PDW
order parameter has scaling dimension 4Kc + 1.

We can now characterize the phase controlled by the
nontrivial (finite) chiral fixed point represented by the effective
Hamiltonian of Eq. (4.13) in the regime geff < 0. At this fixed
point (and in the low-energy regime of the entire phase which
it controls), the four fields φc, �̄1, ξ 0, and χ1 are massless
and hence critical. The only effect of the marginally irrelevant
perturbation J R · J L is to induce logarithmic corrections to
the correlators (except those that involve conserved currents).

Order parameters of the spin sector. The scaling dimension
of the spin currents Jk,R,L (with k = 1,2,3) is 1. The scaling
dimension of the SDW order parameter N3 [given in Eq. (4.14)]

is 3
2 since this operator is the product of the Ising energy density

operator ε1 (which has scaling dimension 1) and of the SU(2)1

primary field N (which has scaling dimension 1
2 ). Instead,

the Néel order parameters N1 and N2 [given in Eq. (4.18)] of
the spin chains are 3

4 since each disorder (and order) operator
has dimension 1

8 . In contrast, at the decoupled fixed point of
Eq. (4.2) with g1 = 0, the scaling dimensions of all three Néel
order parameters are 1

2 . Thus, the Kondo exchange coupling
has caused the scaling dimensions of the three Néel order
parameters to increase considerably and the critical exponents
of their correlation functions are now η1 = η2 = 3

2 and η3 =
ηSDW = 3.

We should also consider the spin-singlet composite op-
erators N± = N · (N1 ± N2). Both operators have ordering
wave vectors Q± = π − 2kF . Since these operators are spin
singlets, they can be interpreted as composite CDW order
parameters. A similar operator also exists in the weakly
frustrated case.7 In addition, the operator N− is odd under the
exchange of the two magnetic chains (as is also the odd PDW
order parameter �PDW

− ). It is easy to see that at the Toulouse
point the operators N± are identified (to leading order) with the
operators N+ ∼ μ5μ0 and N− ∼ σ5σ0, respectively. Hence,
both operators N± have scaling dimension 1

4 and hence their
critical exponent is ηN± = 1

2 . Therefore, in this phase, the
dominant order in the spin sector is given by the composite
order parameter N±, followed by the Néel orders of the
magnetic chains and by the SDW order parameter of the 1D
electronic system.

Order parameters of the charge sector. We can also read
off that the scaling dimensions of operators involve the charge
sector. The scaling dimension of the CDW order parameter is
1
2 (3 + 1

Kc
) at the Toulouse point, while the scaling dimension

of the singlet superconducting order parameter is 1
2 (Kc + 3)

(as it is for the triplet superconductor), and the scaling
dimensions of the PDW orders are 1

2 (Kc + 1
2 ) and for the

charge-4e superconductor is 2Kc. Their critical exponents are,
respectively, given by ηSS = ηTS = Kc + 3, ηCDW = 3 + 1

Kc
,

ηPDW = Kc + 1
2 , and η4e = 4Kc.

From this analysis we conclude that in this phase all of the
orders are present, with the composite CDW order parameters
N± and the PDW superconducting order parameter �PDW

having the correlation function that decays more slowly with
distance, and hence are the dominant orders in this phase.
In this sense, this phase is analogous to the PDW phase of
the weakly frustrated regime. However, in this phase these
unconventional orders also coexist with the more conventional
Néel orders of the chains and in the electronic system, as well
as the singlet (and triplet) superconducting orders, the CDW
order, and the charge 4e superconducting order. Therefore,
this phase has a gapless charge sector (with central charge
c = 1) and a partially gapped spin sector (with total central
charge c = 2). This fractionalized phase has a large number of
orders that are comparably strong and hence are intertwined
(instead of competing with each other). This is a feature that is
shared with the PDW phase of the weakly frustrated regime.
In contrast, in the dimerized phase, the frustrated Heisenberg
chain and the 1D electronic system are simply decoupled at
low energies, and the allowed orders are more conventional.
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3. Quantum phase transition to the PDW phase

We will now consider the case in which geff > 0 in which
case the operator J R · J L becomes marginally relevant. This
is a Kosterlitz-Thouless–type transition. In this phase, the
field �̄1 becomes pinned at the values (n + 1

2 )
√

π
2 , and its

fluctuations are massive. Consequently, there is a gap in most
(but not all) the spin degrees of freedom. This leads to a further
reduction of the central charge of the spin sector of at least from
c = 2 to 1, while the charge sector remains massless and has
central charge c = 1. We will see, however, that the spin sector
is fully gapped and that the resulting phase is equivalent to the
PDW phase we discussed in the weak frustration regime.

In the regime in which geff > 0, operators such as
cos(

√
2π�̄1) have vanishing expectation values in this phase,

while operator such as sin(
√

2π�̄1) do not. Moreover, in this
phase the dual field �̄1 fluctuates wildly and vertex operators
of the dual field have vanishing expectation values. Therefore,
in this phase the field �̄1 is massive and decouples from
the low-energy physics. The effective Hamiltonian for this
phase has the same form as the effective Hamiltonian at the
Toulouse point [Eq. (4.12)], except that the SU(2)1 currents
J R,L have been projected out. Hence, in this phase the
remaining massless degrees of freedom are the charge boson
φc and the Majorana fermions ξ 0 and χ1. We will see, however,
that these Majorana fermions actually become massive.

These considerations allow us to determine the behavior of
the observables of interest. It is easy to see that all the order
parameters that are not expressed as composite operators have
exponentially decaying correlators and are not condensed.
This includes the singlet and triplet superconducting order
parameters �SS and �TS, the SDW and CDW order parameters
N3 and ρCDW of the 1D electronic system, and the Néel order
parameters N1 and N2 of the spin chains [see Eqs. (4.14)
and (4.18)–(4.21)]. All these operators have exponentially de-
caying correlation functions. Nevertheless, several composite
operators have power-law correlation functions.

Order parameters of the spin sector. The only operators
from the spin sector that have power-law correlations in this
phase are the spin-singlet operators N±. As we saw, these
operators are given by products of Ising twist operators. Hence,
also in this phase these operators have scaling dimension 1

4
and critical exponent ηN± = 1

2 , and their correlation functions
oscillate with wave vector π − 2kF .

Order parameters of the charge sector. The only operators
in this phase with power-law correlations in the charge sector
are the PDW operators of Eqs. (4.22) and (4.23), and the
charge-4e uniform superconductor. Since, as we will see
below, the Majorana fermions ξ 0 and χ1 become massive, in
this phase the scaling dimensions of �PDW

± and �4e are the
same as in the PDW phase.

What is the difference between this regime and the PDW
phase? So far, it looks almost identical to the PDW phase
of the weakly frustrated Kondo-Heisenberg chain, albeit with
different critical exponents if the Majorana fermions ξ 0 and
χ1 remain massless. Microscopically, the main difference
between this phase and the PDW phase of the weakly frustrated
regime is that the latter phase in the symmetry of exchanging
the two spin chains is broken, whereas superficially here it
seems to be unbroken.

Let us examine this question more closely. From the
structure of the effective Hamiltonian, and of the observables,
we see that what distinguishes this possible phase from the
PDW phase is whether the product of Ising twist fields σ0σ5

has (or has not) a nonvanishing expectation value. This is
achieved by combining both Majorana fermions into a single
Dirac fermion ψ = 1√

2
(ξ 0 + iχ1) and generating a Dirac mass

term or, equivalently, a Majorana mass for both Majorana
fermions, i.e., the energy density operators of the two Ising
models. In particular, in the phase in which 〈σ0σ5〉 	= 0, the
disorder operators have vanishing expectation value 〈μ0μ5〉 =
0, and vice versa (by Kramers-Wannier duality). Consequently,
across the phase transition the symmetric PDW operator
�PDW

+ has short-range correlations, whereas the operator �PDW
−

becomes the PDW order parameter of the weakly frustrated
case.

However, for the expectation value of the product of twist
fields to be different from zero, the two remaining Majorana
fermions ξ 0 and χ1 must become massive. Such a mass term
can not be generated in the fractionalized fluid phase. However,
a term of this form is generated from nominally irrelevant
operators (whose scaling dimension at the Toulouse fixed
point is 3 and larger) once the operator J R · J L becomes
marginally relevant and the field �̄1 becomes massive. That
this is correct can be seen from the identification of the
spin currents, e.g., Eq. (4.17). These operators exist since at
the microscopic level the symmetry of exchanging the two
magnetic chains is explicitly broken. However, the operators
that break this symmetry are irrelevant at the Toulouse point
and hence do not destabilize the gapless fractionalized spin-
fluid phase. Irrelevant operators that break the symmetry of
a system at a fixed point are known as dangerous irrelevant
operators. Such operators do not change the universality class
of the phase transition but change the nature of the resulting
stable phase. Moreover, the backscattering current interactions
of the spin currents of the two magnetic chains and of the 1D
electronic system [Eq. (4.2)] contain operators that break this
symmetry but which are irrelevant at the Toulouse point and at
the quantum phase transition out of the fractionalized gapless
spin-fluid phase. Thus, the resulting phase is a PDW phase due
to the existence of these dangerous irrelevant operators which
are irrelevant at criticality but which lower the symmetry of
the stable phase.

V. PHASE DIAGRAM AND CONCLUSIONS

In this paper, we discussed the structure of the phase
diagram of the frustrated Kondo-Heisenberg chain. In addition
to the PDW phase discussed by Berg, Fradkin, and Kivelson,7

we find that quantum frustration of the Heisenberg chain leads
to the complex phase diagram shown in Fig. 1. In the preceding
sections, we found that the phase diagram has the following
phases:

(1) A PDW phase in the weak frustration regime J1 � J2.
This phase is controlled by a stable fixed point at large JK and
weak J2.

(2) For J2 > J2,c and JK small, there is a dimerized phase
of the spin chain (with a spin gap) coexisting with a spin-
1
2 Luttinger liquid in the 1D electronic system. The phase
boundary between the dimerized spin chain+Luttinger liquid
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FIG. 1. Schematic phase diagram for the frustrated Kondo-
Heisenberg chain. Here, J1 and J2, respectively, represent the nearest-
neighbor and next-nearest-neighbor exchange interactions and JK the
Kondo exchange interaction between the the spins of the frustrated
Heisenberg chain and the 1D electronic system. PDW denotes the
pair-density-wave superconducting phase, FSL the fractionalized spin
liquid [controlled by the Toulouse fixed point (TFP)], and D + LL the
phase with a dimerized Heisenberg chain coexisting with a Luttinger
liquid in the 1D electronic system. The quantum phase transition
between the D + LL phase and the PDW and FSL phases is most
likely first order (see text). The phase boundary between the FSL
and the PDW phases is of the Kosterlitz-Thouless class, for JK weak
enough, but may be first order for JK large enough. We have not
found any evidence of a phase transition at JK → ∞.

(D + LL) is most likely weakly first order since the system at
JK = 0 and J2 = J2,c is at a fixed point with two marginally
relevant operators.

(3) A fractionalized spin-liquid (FSL) phase with a gapless
(fractionalized) spin fluid coexisting with a decoupled charge
sector of the 1D electronic system. We investigated the nature
of the quantum phase transition between the dimerized and the
PDW phases and concluded that it is most likely a first-order
transition. We also investigated the stability of the gapless
spin-fluid phase (characterized by a stable fixed point of the
Toulouse form at finite JK ) and the nature of its correlation
functions. We also showed that, for weak enough JK , there
is a Kosterlitz-Thouless (KT) type quantum phase transition
from the gapless fractionalized spin fluid to another phase
which, due to a dangerous irrelevant operator, it is physically
equivalent to the PDW phase of the weakly frustrated regime.
This KT transition most likely becomes a first-order transition
at large enough JK since for JK → ∞ the system is unstable to
a flow either towards the Toulouse fixed point (TFP) or towards
the stable fixed point of the PDW phase. We have not found
evidence of a direct phase transition between the dimerized
phase and the gapless fractionalized spin fluid. This suggests
that either the PDW phase “sneaks in” between this phase and
the dimerized phase even in the strong frustration regime or,
what is far more likely, that there is a direct first-order phase
transition.

One of our motivations for looking at the role of frustration
in the spin chain was to find out if a magnetic mechanism
can give rise to an incommensurate PDW phase in a system

without attractive interactions. As we noted in the Introduction,
such a mechanism appears to be forbidden in 1D systems
with full SU(2) spin rotational invariance. Nevertheless,
such incommensurate phases are possible if the SU(2) spin
symmetry is explicitly broken down to its U(1) subgroup by a
magnetic anisotropy interaction in the spin chain.
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APPENDIX: SOLUTION AT THE TOULOUSE POINT

The Hamiltonian of Eqs. (4.8) and (4.9) can be treated
using Abelian bosonization as follows. We will first describe
the spin degrees of freedom of the electronic system in terms
of a Bose field that we will denote by ϕ and whose dual field
is ϑ . Their chiral components are, as usual, ϕR = (ϕ + ϑ)/2
and ϕL = (ϕ − ϑ)/2, respectively. The chiral fields ϕR,L are
defined at the SU(2)1 compactification radius, such that the
chiral spin currents of the electronic system J±

3,s and J3,s are
given by the expressions of the form of Eq. (3.11) in terms of
the chiral fields ϕs (with s = R,L):

J±
3,s = 1

2πa
e∓i

√
8πϕs , J z

3,s = 1√
2π

∂xϕs. (A1)

We will also need an expression for the chiral SU(2)2

currents I a
s of Eq. (4.6) in Abelian bosonization. This is

accomplished by combining two of the Majorana Fermi fields
ξ1,s and ξ2,s into a single free Dirac (complex) Fermi field ψs =
(ξ 2

s + iξ 1
s )/

√
2. The free Dirac fermion has a representation in

terms of a chiral Bose fields φR and φL:

ψR = 1√
2

(
ξ 2
R + iξ 1

R

) = 1√
2πa

ei
√

4πφR ,

(A2)

ψL = 1√
2

(
ξ 2
L + iξ 1

L

) = 1√
2πa

e−i
√

4πφL .

In this language, the chiral SU(2)2 currents of Eq. (4.6) are
given by

I±
R = i√

πa
ξ 3
RFRe±i

√
4πφR , I z

R = 1√
π

∂xφR,

(A3)

I±
L = i√

πa
ξ 3
LFLe∓i

√
4πφL, I z

L = 1√
π

∂xφL,

where FR,L are two (anticommuting) Klein operators. It is easy
to see that the SU(2)2 chiral currents have scaling dimension
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1 (as they should) and obey an SU(2)2 Kac-Moody current
algebra.

In this formulation, the Hamiltonians H1 and H2 of
Eq. (4.9) take the form

H1 =v1(∂xφR)2 + v2(∂xϕL)2 + g1‖√
2π

∂xφR∂xϕL − iv1

2
ξ 3
R∂xξ

3
R

+ ig1⊥
2π

√
πa

ξ 3
RFR cos(

√
4πφR +

√
8πϕL), (A4)

H2 =v1(∂xφL)2 + v2(∂xϕR)2 + g1‖√
2π

∂xφL∂xϕR + iv1

2
ξ 3
L∂xξ

3
L

+ ig1⊥
2π

√
πa

ξ 3
LFL cos(

√
4πφL +

√
8πϕR). (A5)

The derivative couplings in the Hamiltonian H1 in Eq. (A4)
can be eliminated by means of a canonical transformation of
the form (

φR

ϕL

)
=

(
cosh α − sinh α

− sinh α cosh α

)(
�̄1R

�̄2L

)
(A6)

provided we choose

tanh(2α) = g1‖
π

√
2(v1 + v2)

. (A7)

Similarly, the derivative couplings in the Hamiltonian H2 of
Eq. (A5) can be eliminated by a canonical transformation of
the same form (with the same value of α)(

ϕR

φL

)
=

(
cosh α − sinh α

− sinh α cosh α

)(
�̄2R

�̄1L

)
. (A8)

For general values of g1‖, the cosine terms in Eqs. (A4) and
(A5) have nontrivial scaling dimension. The Toulouse point is
defined as the value of g1‖ for which the scaling dimension of
the cosine operators is 1

2 . This happens for

tanh αTP = 1√
2
, gTP

1‖ = 4π

3
(v1 + v2). (A9)

At the Toulouse point, the Hamiltonian H1 + H2 of Eq. (4.9)
becomes

H1 + H2

= u1[(∂x�̄1R)2 + (∂x�̄1L)2] + u2[(∂x�̄2R)2 + (∂x�̄2L)2]

− iv1

2

(
ξ 3
R∂xξ

3
R − ξ 3

L∂xξ
3
L

) + ig⊥
2π

√
πa

× [
ξ 3
RFR cos(

√
4π�̄2L) + ξ 3

LFL cos(
√

4π�̄2R)
]
, (A10)

where u1 = (2v1 − v2)/3 and u2 = (2v2 − v1)/3 are the renor-
malized velocities at the Toulouse point.

Since the cosine operators of Eq. (A10) have scaling
dimension 1

2 , they can be refermionized (exactly as in the
case of the two-channel Kondo problem34). Let χ (x) denote a
Dirac Fermi field, whose chiral components are

χR = 1√
2

(χ2,R + iχ1,R), χL = 1√
2

(χ2,L + iχ1,L), (A11)

respectively, where χj,s are the two Majorana components
(j = 1,2) with both chiralities (s = R,L) of the Dirac fermion.
In turn, the chiral Dirac fermions χR and χL are related to the

chiral bosons �̄2,R and �̄2,L by an expression of the same form
as in Eq. (A2), i.e.,

χR = 1√
2πa

F̄Rei
√

4π�̄2,R , χL = 1√
2πa

F̄Le−i
√

4π�̄2,L ,

(A12)

where F̄R and F̄L are two Klein factors.
In this basis, at the Toulouse point the Hamiltonian Hs

of Eq. (4.8) can be written as a sum of four decoupled
Hamiltonians, respectively, consisting of the Luttinger liquid
Hamiltonian for the Bose field �̄1 (and its dual field �̄1),
the Hamiltonians for the free Majorana fermions ξ 0 and χ1,
and the Hamiltonian for the Majorana fermions ξ 3 and χ2

coupled to each other through a mass term

Hs = HLL[�̄1] + HF [ξ 0] + HF [χ1] + HF [ξ 3,χ2], (A13)

where

HLL[�̄1] = u1

2
[(∂x�̄1)2 + (∂x�̄1)2], (A14)

HF [ξ 0] = − iv1

2

(
ξ 0
R∂xξ

0
R − ξ 0

L∂xξ
0
L

)
, (A15)

HF [χ1] = − iv1

2

(
χ1

R∂xχ
1
R − χ1

L∂xχ
1
L

)
, (A16)

HF [ξ 3,χ2] = − iv1

2

(
ξ 3
R∂xξ

3
R − ξ 3

L∂xξ
3
L

)
− iu2

2

(
χ2

R∂xχ
2
R − χ2

L∂xχ
2
L

)
+ im

(
ξ 3
Rχ2

L − χ2
Rξ 3

L

)
, (A17)

where we have defined the mass m = g1⊥/(2πa). The Hamil-
tonian HF [ξ 3,χ2] of Eq. (A17) represents a theory of two free
Majorana fermions coupled through the mass term shown in
the last term on the right-hand side of Eq. (A17). The spectrum
of single-particle states of the Hamiltonian HF [ξ 3,χ2] is

E±±(k) = ±u1k ±
√(

v1 + v2

2

)2

k2 + m2. (A18)

This spectrum is massive with a single-particle gap of
m

√
1 − (u1/v+)2 < m, where u1 = (2v1 − v2)/3 and v+ =

(v1 + v2)/3.
Therefore, at the Toulouse point, the Majorana fermions

ξ 3 and χ2 become massive and decouple from the other low-
energy degrees of freedom, represented by the massless boson
�̄1 and the massless Majorana fermions ξ 0 and χ1.

The 2D classical Ising model and, equivalently, the 1D
(quantum) Ising model in a transverse field is equivalent to
a theory of Majorana fermions with a Majorana mass term
which is tuned to zero at criticality.35,36 In the language of
2D conformal field theory, the Ising order parameter which
we will denote by σ , and its Kramers-Wannier dual, the
disorder operator which we will denote by μ, respectively,
have nonvanishing expectation values on each of the order
and disorder phases of the Ising model.37,38 In the fermionic
language, the two phases correspond to the two possible
signs of the Majorana mass term (also known as the energy
operator of the Ising model, which we will denote by ε).23

In addition to labeling the order and disorder phases, the
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order and disorder operators twist the boundary conditions
of the Majorana fermion from periodic to antiperiodic, and
hence are called twist fields.39 The scaling dimensions of the
order and disorder operators at the Ising critical point, where
the Majorana fermion is massless, are 1

8 . In the construction
outlined in this appendix, we encountered six Majorana

fermions ξ 0, ξ 1, ξ 2, ξ 3, χ2, and χ1. Therefore, we will also
have six associated twist fields σ 0, . . . ,σ 5 (in this order), and
their associated Kramers-Wannier duals μ0, . . . ,μ5. These
order and disorder twist fields enter in the definition of the
observables of the frustrated Kondo-Heisenberg chain in this
description.
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