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Extremely correlated Fermi liquids: Self-consistent solution of the second-order theory

Daniel Hansen and B. Sriram Shastry
Physics Department, University of California, Santa Cruz, California 95064, USA

(Received 5 November 2012; revised manuscript received 10 May 2013; published 6 June 2013)

We present detailed results from a recent microscopic theory of extremely correlated Fermi liquids, applied
to the t-J model in two dimensions, developed recently by Shastry [Phys. Rev. Lett. 107, 056403 (2011); Phys.
Rev. B 87, 125124 (2013)]. The second-order theory in the parameter λ, related to the density, is argued to
be quantitatively valid in the overdoped regime for 0 � n � 0.75, with n denoting the particle density. The
calculation involves the self-consistent solution of equations for an auxiliary Fermi liquid Green’s function and
an adaptive spectral weight. We present numerical results at low as well as high T , at various low to intermediate
densities in the normal phase, using a minimal set of band parameters relevant to the cuprate superconductors.
We display the momentum space occupation function mk , energy dispersion curves locating the peaks of spectral
functions, the optical conductivity, relaxation rates for quasiparticles, and the electronic spectral functions on
an absolute scale. The line shapes have an asymmetric shape and a broad background that is also seen in
experiments, and our calculations validate approximate recent versions of the theory. The results also display the
experimentally noted high-energy kink and provide an in-depth understanding of its origin and dependence on
band parameters.
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I. INTRODUCTION

The t-J model describes the physics of very strongly inter-
acting electrons, made especially difficult by the requirement
of (at most) single occupancy of the lattice sites. It is the
subject of many recent works in the context of the cuprate
superconductors, and also other correlated systems such as
sodium cobaltates. This problem is very hard since it precludes
the application of standard perturbative methods. This conun-
drum has motivated a new strong-coupling approach, resulting
in the theory of extremely correlated Fermi liquids (ECFLs).1,2

Previous applications of the methodology of Ref. 1 to the
cuprates has given encouraging results. These include spectral
functions that compare very well with the experimental
angle-resolved photoemission spectroscopy (ARPES) data,3–6

providing natural explanations of the “high-energy kink,” and
also the more subtle “low-energy kink” seen in experiments.
The theory also has led to interesting predictions for the
asymmetry of line shapes.6

The formalism initiated in Ref. 1 charted out an approach
to the problem of the t-J model using basic insights from
Schwinger’s powerful approach to field theory, using source
fields to write down exact functional differential equations for
the propagator. In the next crucial step, it was recognized
that complexity arising from the noncanonical nature of
the (projected) electrons can be circumvented by a product
ansatz. This involves decomposing the propagator as the
space time convolution of a canonical electron propagator,
and an adaptive spectral weight factor termed the caparison
factor satisfying coupled equations of motion. A recent work2

develops this idea in a systematic fashion, emphasizing the
role of expanding in a parameter λ (0 � λ � 1), related to
the particle density, or more closely to λ ∼ (1 − 4

n2 d), where

d is the double occupancy (0 � d � n2

4 ). It further explores
the implications of a novel set of identities for the t-J model,
termed the shift identities. These simple but crucial identities
provide an important constraint on the λ expansion. A method
for generating a systematic set of equations for the propagator

to any orders in λ is given, along with explicit equations
to second order in λ that manifestly obey the shift identity
constraints. We will refer to this theory as (I) here and prefix
equations of that paper with (I). A detailed numerical solution
of this O(λ2) ECFL propagator is the main focus of this work.
We obtained and benchmark the results of these equations
against known results, and thereby provide a solid platform for
further developments of the method, as well as a validation of
the phenomenological versions of ECFL. With the confidence
gained by the benchmarking, we further study and report the
hopping parameter sensitivity of the kink effect.

Broadly speaking, the O(λm) equations resemble the
fully self-consistent mth-order skeleton diagram expansion
of the standard Feynman-diagram-based theory, as described
in standard texts,7–9 but generalize to the case of extreme
correlations. Summarizing the arguments in Refs. 1 and 2,
a low-order theory in λ is already expected to capture features
of extreme correlations. This perhaps initially surprising
expectation arises in view of the non-Dysonian representation
of the Green’s function in terms of two self-energies � and �,
within the ECFL formalism. The self-energy � resides in the
numerator of the Green’s function, as in Eqs. (1) and (2) . It
plays the role of an adaptive spectral weight that balances
the somewhat opposing requirements of the “high-energy”
weight 1 − n

2 and the low-energy Luttinger theorem. The latter
requires a greater magnitude of the numerator than 1 − n

2 to
accommodate the particles into a Fermi surface (FS) with the
same volume as in the Fermi gas. A further tactical advantage
of this method is due to the finite range of variation of λ,
namely, 0 � λ � 1, that suffices to interpolate between the
Fermi gas and the extreme correlation limit. This is in contrast
to controlling the double occupancy d using a repulsive energy
U , with its range of values 0 � U � ∞. Experience shows
that U must be tuned to a very large value U � |t | in
order to achieve the same end, thereby invalidating low-order
expansions in U . In summary, within the present formalism, a
low-order theory in λ seems well worth examining in detail;
this is our task here.
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We note that apart from a few exact solutions in one
dimension and some calculations for finite-sized systems (see
below), we are aware of no systematic analytical calculations
in higher dimensions, for the dynamics of the physically
relevant spin- 1

2 version of the t-J model, working directly in
the thermodynamic limit. An earlier body of work in Ref. 10
shares some of the objectives and features of our approach but
is technically very different. It relies on an expansion in the in-
verse number of components 1

N and is thus somewhat removed
from the physical case of interest, where N = 2. Therefore
while the importance of the t-J model was understood many
years ago, there has been little detailed comparison with the
ARPES experiments until recently.3,4 This gap is one of the
main motivations for this (and our related) work. In this paper,
we present a controlled calculation for the spectral functions
of the t-J model by solving the above O(λ2) equations. We
evaluate thermodynamical variables, the spectral functions,
ARPES line shapes, and optical conductivity of the t-J model.
The ECFL formalism and the λ expansion method provides
an in-built criterion to judge the validity of the expansion
at any order. Using this criterion we argue that our present
O(λ2) calculations are valid in the high-hole-doping limit,
known as the overdoped regime. Clearly this corresponds to
low and intermediate electron density, since the hole doping is
related to the particle density as x = 1 − n. Future work will
be aimed at higher-order calculations in λ in order to enable us
to address densities closer to optimal doping (n ∼ 0.85). The
results are compared with other approximations as well as a
few experiments. Needless to say, even in such an overdoped
regime, experimental evidence points to the important role of
strong correlations.11,12

While analytical methods beyond crude mean-field the-
ories have been in short supply, there is a valuable
body of numerical results for the t-J model from exact
diagonalization,13 high-temperature series expansions,14 vari-
ational wave functions,15–17 and finite temperature Lanczos
methods.18–21 Noteworthy are the results of Ref. 19 from
Prelovsek and co-workers, who handle the series expansion in
inverse temperature in a stochastic fashion, thereby obtaining
results down to fairly low temperatures. Owing to finite size
effects and the inherent nature of the high-T expansion, the
results from this theory, although broadly comparable to ours,
seem more grainy.

The Hubbard model for large on-site coupling U tends to
the t-J model [apart from O(t2/U ) correction terms], so the
large U studies of this model are of interest. Quantum Monte
Carlo methods, despite the difficulties associated with the sign
problem, yield some valuable insights into the spectral features
such as kinks.22 We note that the dynamical mean-field theory
(DMFT) for the Hubbard model23,24 gives a numerically exact
solution in high enough dimensions of the Hubbard model.
Although the strong coupling (i.e., U > W ) relevant to the
t-J model results is challenging, there is impressive progress
overall. A recent DMFT study25 at strong coupling obtains
detailed spectral functions that are roughly comparable to what
we find here for the t-J model.

The ECFL formalism has several advantages, since it is
essentially an analytical method with a computational aspect
that is lightweight, in comparison with other methods listed
above. The only present limitation is the density attainable with

the second-order theory. When possible, we present absolute
scale results that are encouragingly close to experimental data
with no other fitted parameters.

We finally note that the present O(λ2) results for the
location of the energy peaks has been recently tested in
Ref. 26, against an independent theory with overlapping
validity. Reference 26 studied the infinite-coupling Hubbard
model in two dimensions by using a highly efficient computer
program to generate a series expansion in hopping of the exact
Green’s function and its various moments to high order. The
locations of the dispersion peaks can be estimated from these.
These dispersion relations match quantitatively the ones found
from the present theory, with J → 0 for the densities quoted
in this paper. This suggests a high degree of reliability of the
spectral functions discussed herein.

The plan of the paper is as follows: In Sec. II, we present a
summary of the equations solved here from Sec. I. In Sec. III,
we discuss the computational strategy and explain the scheme,
using the fast Fourier transform method (FFT), so that the
spectral functions can be computed efficiently. Section IV
presents the detailed results of the calculation. Section V con-
tains a summary and concluding comments. The Supplemental
Material in Ref. 27 details the results for thermodynamics and
the wave-function renormalization Zk , and also gives further
details of the computational method employed.

II. SUMMARY OF THE O(λ2) THEORY

In the ECFL formalism developed in (I) (i.e. Ref. 2), the
physical Green’s function G can be factored in the momentum
space as

G(k) = g(k) μ(k), where (k) ≡ (�k,iωk). (1)

Here the caparison factor μ(k) plays the role of an adaptive
spectral weight, while g(k) is the auxiliary canonical Fermion
propagator. These objects are expanded in powers of a
parameter λ, relating to density, and finally we set λ → 1.
As shown in Eqs. (I-83), (I-84), and (I-85), the second-order
equations for the ECFL Green’s function are as follows:

μ(k) = 1 − λ
n

2
+ λ2 n2

4
+ λ2�(k), (2)

�(k) = −
∑
p,q

(εp + εk+q−p + εk + εq + Jk−p − u0)

× g(p) g(q) g(q + k − p), (3)

g−1(k) = iωn + μ′ − εk − λ2 �(k), (4)

εk =
(

1 − λ n + λ2 3n2

8

)
εk + λ

∑
q

1
2Jk−q g(q), (5)

�(k) = −
∑
q,p

g(q) g(p) g(k + q − p)

× (εk + εp + εq + εk+q−p + Jk−p − u0 )

× {
εk + εp + εq + εk+q−p + 1

2 (Jk−p + Jp−q ) − u0
}
,

(6)

where
∑

k ≡ 1
βNs

∑
�k,ωn

, with Ns being the number of lattice
sites and β is inverse temperature. These expressions for the
Green’s function satisfy the “shift invariances” described in
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Ref. 2, i.e., any uniform shift in εk or Jk can be absorbed
in μ′ and u0 such that the spectral function is invariant.
These second-order equations are the lowest-order ones where
nontrivial frequency dependence arises and are the focus of
this work. Below we discuss in detail the criterion for the
quantitative validity of the present second-order expansion.

As written here, μ(k) and g(k) have acquired a variety of
static terms as well as frequency-dependent terms called �

and �, respectively. This is written with a slight change of
notation [�(k)]1 → �(k) from (I-85), and we have introduced
the effective band energy εk in Eq. (5) that gets a static
contribution from shrinking of the bare energies εk , as well
as from the exchange energy J . The role of the parameter u0

as a second chemical potential is described below. All terms
are understood to be correct up to O(λ2), and hence possess
corrections of O(λ3) that are ignored here.

The number of the physical electrons is fixed by the
number sum rule:

n

2
=

∑
k

G(k) eiωn0+
. (7)

In order for G to satisfy the Luttinger volume theorem, the
auxiliary Fermions described by g must be equal in number
and therefore satisfy a second sum rule:

n

2
=

∑
k

g(k) eiωn0+
. (8)

In contrast to canonical theories, here we have two independent
sum-rule constraints requiring two Lagrange multipliers. The
first Lagrange multiplier μ′ is a standard chemical potential
in that it sits next to the band energies εk in the denominator
of g. A second Lagrange multiplier u0 arises naturally in the
ECFL formalism, thanks to the role of the shift identities,
as shown in (I). The u0 term has a role similar to that of the
Hubbard U in the effective Hamiltonian in (I). It controls the
broadening of the spectral function through the magnitude of
� and �. Neither of these Lagrange multipliers is the physical
thermodynamic chemical potential of the grand canonical
ensemble. The physical chemical potential μphys, denoted by
μ, can be obtained as a function of μ′ and u0, as shown in
Eq. (179) of (I):

μ = μ′ + u0
λn

2

(
1 − λn

4

)

−
[
J0

λn

4

(
1 − λn

2

)
+ 2λ

(
1 − λn

8

) ∑
q

εqg(q)

]

+O(λ3). (9)

We now discuss the criterion for validity of equations
to a second order in λ. As stated above, dropping terms of
O(λ3) in Eqs. (2)–(6) limits the regime of validity of these
calculation to densities not too close to unity. To see this, note
from Eq. (2) that this theory would give a high-frequency

behavior of G ∼ c0
iω

with c0 = 1 − n
2 + n2

4 , rather than the
exact value c0 = 1 − n

2 , thus introducing an error. This slight
error in the high-frequency physics is a result of keeping
a few terms in the expansion in λ. Note, however, that the
low-frequency physics encoded by the Luttinger-Ward sum
rule is untouched by this and is exactly obeyed to each order
in λ. Thus at n ∼ 0.78 we have an error of n2

4−2n
∼ 25% in

the high-frequency spectral weight in this theory, a value
somewhat beyond where we can push this approximation.
The O(λ3) terms are expected to extend the range of this
approximation to higher particle densities.

III. COMPUTATION OF SPECTRAL FUNCTIONS

A. Definitions

Computationally, it is expedient to employ a spectral
function notation as described for example in Ref. 9. The
Matsubara frequency object G(k,iωn) is analytically continued
to the real axis and we define as follows:

ρG(k,ω) = − 1

π
Im [G(k,iωn → ω + i0+)]. (10)

This object is the spectral function, denoted in most experi-
mental literature by A(k,ω). The real part of the analytically
continued function can be obtained by a Hilbert transform

Re G(k,ω) = P.V.
∫ ∞

−∞

ρG(k,ν)

ω − ν
dν. (11)

An analogous definition is given for spectral representation
ρg(k,ν), ρ�(k,ν), ρ� (k,ν) used for g, �, �, etc., and hence,
the full set of equations above can be rewritten in terms of
these spectral functions. Since G is a product as in Eq. (1), we
note that within the O(λ2) theory

ρG(k,ω) = ρg(k,ω)

(
1 − n

2
+ n2

4
+ Re �(k,ω)

)

+ ρ� (k,ω) Re g(k,ω), (12)

so the two sum rules Eq. (7) and Eq. (8) can be written as

n

2
=

∑
k

∫
dωρg(k,ω)f (ω),

n2

4

(
1 − n

2

)
= −

∑
k

∫
dωf (ω)(ρg(k,ω) Re �(k,ω)

+ Re g(k,ω) ρ�(k,ω)), (13)

where f (ω) = [1 + exp(βω)]−1 and f (ω) = 1 − f (ω). The
auxiliary spectral function is in the usual Dysonian form,

ρg(k,ω) = ρ�(k,ω)

{ω + μ′ − εk − Re �(k,ω)}2 + (πρ�)2
. (14)

Using Eqs. (1)–(6), we express the spectral functions for �

and � as

ρ�(k,ω) = 1

N2
s

∑
pq

∫
dν1dν2 ρg(p,ν1)ρg(q,ν2)ρg(p + q − k,ν1 + ν2 − ω)

×{f (ν1)f (ν2)f̄ (ν1 + ν2 − ω) + f̄ (ν1)f̄ (ν2)f (ν1 + ν2 − ω)}
× (εp + εk+q−p + εk + εq + Jk−p − u0

) {
εk + εp + εq + εk+q−p + 1

2 (Jk−p + Jk−q) − u0
}
, (15)
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ρ�(k,ω) = 1

N2
s

∑
pq

∫
dν1dν2 ρg(p,ν1)ρg(q,ν2)ρg(p + q − k,ν1 + ν2 − ω)

×{f (ν1)f (ν2)f̄ (ν1 + ν2 − ω) + f̄ (ν1)f̄ (ν2)f (ν1 + ν2 − ω)}
×(εp + εk+q−p + εk + εq + Jk−p − u0). (16)

These frequency integrals are solved by discretizing frequency
over a finite window that is wide enough to capture the finite
support of the spectral functions. In Ref. 27 we outline how
this is accomplished efficiently with FFTs and implemented in
an iterative process.

IV. RESULTS

A. Physical variables

The computational program has several parameters that
can be varied. These include the tight-binding band structure
(through hopping parameters t , t ′ etc.), the spin coupling J ,
density, and temperature. For the parameters of the model, we
focus on a minimal model with the nearest-neighbor hopping
t ∼ 3000 K and J ∼ 900 K, and all longer-range hopping
parameters are zero. These values are chosen to match the
bandwidth of the cuprates. However, at the bare level, this pro-
duces an electronlike Fermi surface near half filling, remaining
closed around the � = (0,0) point in the Brillouin zone (BZ).
This is in contrast to the ARPES reconstructed FS of, say,
BISSCO displaying a holelike surface. Nonetheless, this
minimal parameter set exhibits a variety of features in common
with the cuprates, most notably, a broad incoherent spectrum at
high negative frequency. Interestingly, we find that the distribu-
tion of incoherent weight at high frequencies is very sensitive
to the bare hopping parameters. For this reason, when we look
the high-energy features, we will explore their dependence in
the second neighbor hopping parameter t ′, also including a
fine-tuned tight-binding fit of BISSCO from Ref. 28.

B. Other parameters in the programs

The program can be implemented on lattices of various size
and spatial dimension. For a given choice of these parameters
an appropriate choice must be made for computational grid.
This includes the lattice size as well as the discretized
frequency grid. We look at converged spectral functions for
a wide variety of these parameters.

The majority of the following results were performed on
a square lattice with dimension L × L with L = 36, and
periodic boundary conditions are imposed. We therefore work
in a momentum representation with an L × L–sized k grid
of points ki,j = π

aL
(i,j ), where 1 � i,j � L and the lattice

parameter is a = 3.82 Å. The spectral functions have compact
support, extending to |ω| � 8 × t . We choose a frequency
range − 1

2ωc � ω � 1
2ωc, with ωc = 30 × t , a range that is

sufficient to capture the full range of the spectral functions.
We discretize this frequency range in Nω = 3000 bins each of
width �ω = ωc

Nω
= 0.01t = 30 K. �ω is the lowest resolvable

frequency scale in the calculation, so it is prudent to disallow

any spectral features from becoming any sharper than this
scale. Therefore we introduce the convergence factor ηmin =
�ω. It serves as a lower limit on the width of spectral
features. Thus in the Dysonian form of ρg [Eq. (14)] we set
ρ� → ρ� + η

π
.

C. Frequency independent variables

We now proceed to study the FS in this theory, starting
with the momentum occupation function mk of the Gutzwiller
projected fermions:

mk ≡ 〈Ĉ†
kσ Ĉkσ 〉 =

∫ ∞

−∞
ρG(�k,ω)f (ω)dω. (17)

A sharp drop in this function helps to locate the FS at low
T . This can be compared with the Luttinger-Ward surface,
defined by a sign change in Re G(k,0), also given in terms of
the spectral function by

Re G(�k,0) = P.V .

∫ ∞

−∞

ρG(�k,ω)dω

ω
. (18)

At T = 0 the FS in �k space is traced out by Re G−1(�k,0) = 0,
as dictated by the Luttinger-Ward sum rule. The momentum
distribution mk is plotted in Fig. 1 at T = 130 K and T =
605 K for various densities along three principle directions of
the BZ. The Luttinger-Ward zero crossings Re G−1(�k,0) = 0
are depicted by dashed vertical lines. There is a close corre-
spondence between these crossings and the point where mk =
0.5, similar to that noted previously by Stephan and Horsch13

in an exact diagonalization study. Since this correspondence
is not on any rigorously firm basis, it is difficult to do more
than to list the conditions for its approximate validity. Using
high-temperature expansions for the t-J model, Singh and
Glenister14 found the FS to be that of the Fermi gas by
various criteria, and noted that the condition mkF

∼ 0.5 is only
satisfied approximately at high T . At higher temperature where
the quasi-particle (QP) near the FS have been significantly
broadened, we find that the condition mkF

∼ 0.5 is still
reliable, in agreement with Ref. 13.

In Fig. 1, a point of considerable interest is the spillover of
the occupation to the regions in k space that are unoccupied in
the Fermi gas, as noted in various variational wave-function
studies of the t-J model already.15–17 From Eq. (17) we note
that the magnitude of mk for momenta k > kF provides an
estimate of the spectral weight ρG(k,ω) at occupied energies
at low T . In early analyses of ARPES data, the significance of
this piece of information was not always realized, and often
substantial spectral weight was discarded as belonging to some
unspecified background. Only recent studies such as Ref. 3
have taken note of the significance of the background.
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FIG. 1. (Color online) The momentum distribution function mk

is plotted along three principle lines of the BZ. The left and right
figures are at 130 and 605 K, respectively. In each case the FS is the
same as in the noninteracting problem. The Luttinger-Ward crossing
Re G−1(�k,0) = 0 is indicated for each density by the vertical dashed
lines. For each density and each temperature the Luttinger-Ward
crossings correspond well with the condition mk = 1

2 .

D. Various excitation energies

The spectra obtained here contain sharp peaks as well as
substantial incoherent background due to extreme correlations.
The QP weight Zk is discussed in the Supplemental Material.27

To understand the effect of the many-body renormalizations, it
is fruitful to study three dispersion relations defined in Ref. 4:

εk =
(

1 − n + 3n2

8

)
εk + 1

2

∑
q

Jk−q mq,

Ek = εk − μ′ + Re �(k,Ek), (19)

E∗
k = max[ρG(k,ω) : ω].

Here εk defines the bare energy times its static renormalization,
while Ek locates the vanishing point for the real part of the
auxiliary Green’s function g, thereby defining the Luttinger-
Ward surface through a change of sign. E∗

k locates the highest
peak of the physical Green’s function G, and hence defines
QP excitations, provided they are sufficiently sharp. ARPES
experiments performed with constant k, termed the energy
distribution curves (EDCs), locate E∗

k as the peak locations;
thus EEDC(k) ↔ E∗

k . On the other hand, the momentum
distribution curves (MDCs) are obtained by fixing ω and by
scanning k. The so-obtained peak locations yield the fourth
dispersion spectrum EMDC . To obtain EMDC in practice, one

X

0.4

0

0.4

0.8
X

M
n .6, .7, .75

Increasing Density

T 130 K
0.6 0.65 0.7 0.75
0.5

0.8

1.1

n

W
eV

k

Ek
Ek

0.6 0.4 0.2 0
0.2
0
0.2
0.4

ω

k Re k,ω

Increasing kx

FIG. 2. (Color online) T = 130 K. The three dispersions defined
in Eq. (19) are plotted along principle directions for three different
densities. The upper insets show the bandwidth of the dispersions
as a function of the density. The bare bandwidth is 2 eV, but each
of these dispersions shrinks compared to that scale. The bandwidth
renormalization due to Re � in Eq. (19) is k dependent, and so Ek has
a different shape than εk . Note that Ek ∼ E∗

k near the FS. However,
E∗

k differs from Ek near the � point for each of the densities. The
lower inset shows the evolution of the real part of the denominator
of g(k,ω) with ω to illustrate the origin of the difference between Ek

and E∗
k . In the inset Ek is determined by the zero crossings of the

curves. At low k notice that a relatively flat feature develops with a
shallow minimum near ω = −0.3 eV. The minimum corresponds to
the peak E∗

k . For increasing k, the flat feature quickly disappears and
the zero crossing moves quickly upward in frequency, producing the
observed kink in Ek .

may invert the MDC peak locations through

k∗(ω) = max[ρG(k,ω) : k], EMDC(k) = Inverse of k∗(E).

(20)

It is worth mentioning that the high-energy kink (or the
waterfall) is experimentally defined as the the peeling off of
the EMDC(k) from the EEDC(k) = E∗

k spectra.29

In Fig. 2 we illustrate the density dependence of the three
dispersions in Eq. (19). The inset shows the bandwidths, W (n),
of the three dispersions as a function of the density. Note that
the bare bandwidth of εk is 2 eV for both cases. Near the FS
we see that Ek ≈ E∗

k , but they differ near the � point where
E∗

k and EMDC are also split off from each other, satisfying the
above operational definition of the high-energy kink. We now
discuss the origin of these splittings.

Although Ek is not directly experimentally relevant, it
plays a significant role in the theory, so we first comment
on the splitting between Ek and E∗

k near the � point. Since
Ek is defined as the root of Re g−1(k,Ek) = 0, we plot
ω + μ′ − εk − Re �(k,ω) at various k as a function of ω

in the inset of Fig. 2. A strong ω dependence of Re �(k,ω)
causes a flattening of the curves near the zero crossing between
−0.6 and −0.3 eV, and this causes the Ek to fall rapidly with
k in the main figure, Fig. 2. Just as Ek breaks away from
E∗

k , so also does EMDC , resulting in the kink. This is shown
most clearly in the left panel of Fig. 3, where the spectral
function is depicted as a color density plot with the dispersions
(Ek,E

∗
k ,EMDC) overlaid. Near the � point where k = (0,0) the

QP becomes incoherent and the bulk of its spectral weight is
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FIG. 3. (Color online) L = 60, (n,T ) = (0.75,300) K. Density
plot of A(k,ω) of the minimal model (top) and the refined model
Ref. 28 (bottom). (Here and below, red denotes high intensity and
blue denotes low intensity). Ek , E∗

k , and EMDC(k) spectra are white,
green, and black, respectively. Near kF we see that the three spectra
coincide. In the region near k = (0,0), EMDC(k) is at a significantly
higher energy scale than Ek or E∗

k , signifying the high-energy kink
(waterfall) effect. Also, the EDC peak loses weight in this regime. A
new feature arises at near k = (π,π ) resembling an inverted waterfall.

spread out to high negative frequencies. In this region EMDC

differs considerably from E∗
k and recovers the scale of the

bare dispersion εk . The right panel of Fig. 3 shows the spectral
function as calculated using the tight binding parameters of
BISSCO given in Ref. 28. These parameters result in a
holelike FS around the � point, unlike the minimal model
with an electronlike FS. However, we observe in Fig. 3 that
the high-energy kink occurs for both sets of parameters.

The occurrence of the high-energy kink is understandable as
a straightforward consequence of additional broad peaks in the

FIG. 4. (Color online) L = 60, (n,T ) = (0.75,300) K. (Top)
t ′/t = 0.4 is used to model electron-doped high-Tc superconductors.
The kink feature is prominent here. (Bottom) Uses t ′/t = −0.4 to
crudely model a holelike FS. In this case the kink near (0,0) is lost,
unlike in Fig. 3, correlating with a flat (bare) band dispersion.

spectral function, separated from the quasiparticle-type peaks.
In an energy range where they exist, these are particularly
effective in dominating EMDC and less prominent in EEDC ,
therefore resulting in the separation between these dispersions.

While the qualitative picture of the kinks is reasonably
clear, it is not immediately clear what accounts for the slightly
different magnitude of the scale of the high-energy kink
in Fig. 3. In Fig. 4 we show density plots of the spectral
function with t ′/t = ±0.4. The case t ′ = 0.4 × t on the left has
greater curvature at the band bottom and is identified with the
phenomenology of the electron-doped cuprates (Refs. 22,30).
The QP peaks lose most of their weight, unlike in the minimal
case. The resulting scale of the drop in the waterfall is bigger
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than in the minimal case, and correlates well with experimental
observations in Ref. 31.

We note in Fig. 4 (right) that the case t ′/t = −0.4 has
no measurable waterfall near the � point. The background
at negative frequency is essentially featureless, and the QP
peaks maintain their spectral weight. However, at positive
frequencies, an inverted waterfall-like feature develops near
k = (π,π ). This particular parametrization is often invoked
to rectify the electronlike curvature of the minimal model
(t ′ = 0), but ends up giving a very flat band bottom at �. This
is unlike the more sophisticated band parameters in Ref. 28,
where the curvature is also holelike, and now the band regains
significant curvature at its bottom, resulting in the observed
kink.

E. Detailed spectral line shapes (EDCs)

In this section, we present detailed line shapes for the
spectral function. In an earlier work,3 we have compared the
results of the simplified ECFL formalism. These included
some phenomenological inputs, with the experimental data
at somewhat higher particle densities n ∼ 0.85, and found
remarkably good agreement with the line shapes. We are
content in this work to present the results at lower particle
densities, but from a microscopic calculation of ECFL. This
is made possible by solving the O(λ2) equations in Eq. (6)
numerically. The line shapes obtained here have a similar
general nature as the ones in Ref. 3, giving support to that work.
However, as one expects from a lower-density situation, we
find somewhat less dynamical asymmetry about zero energy.
More detailed comparison with data near optimal doping with
the microscopic ECFL theory must await the solution of the
third- or higher-order equations, where the criterion for validity
discussed above [see paragraph following Eq. (8)] is satisfied
more closely than here.

Let us first examine the local density of states (LDOS)
at n = 0.75 for both cases at low T in Fig. 5. A prominent
feature is that the main peak is much narrower than in the bare
LDOS. Furthermore, there is a long tail extending to (negative)

1. 0 0. 5 0. 0 0. 5 1. 0
0.0

0.5

1.0

1.5

2.0

ω eV

FIG. 5. (Color online) n = 0.75. The LDOS of the physical G
(auxiliary g) is in black (dotted blue), and the bare DOS is the dashed
red curve. The renormalized band displays narrowing, and a long tail
at ω < 0. The LDOS develops a second spectral peak for ω > 0 from
a strongly k-dependent feature in the self-energy.
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FIG. 6. (Color online) n = 0.75. The spectral function
ρG [= A(k,ω)] at several k points along the 〈11〉 direction and T . We
used Lx = 36; the insets show all positive kx’s and the main figures
display a third of the allowed kx’s. The inset in each case zooms out to
reveal the heights. The linewidth near kF is seen to be strongly effected
by rising T ; the incoherent parts have very little T dependence. The
tails exhibit a secondary broad peak near ω = −0.4 eV, giving rise
to the high-energy kink (waterfall).

frequencies, much greater than those seen in the bare LDOS.
Finally, we note that the LDOS acquires a second peak at
positive frequency. This peak arises due to some k-dependent
features in the self-energy (discussed below), resulting in
sharper QP at positive frequency.

We next discuss Fig. 6, displaying the nodal spectral
function at three different temperatures. The lines are quite
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sharp near kF but broaden out rapidly away from kF . The insets
give an idea of the change of spectral density with temperature.
Notably, there is a secondary local maximum for k near the
� point near ω = −0.4 eV. This second peak is responsible
for the waterfall discussed above and is also contained in the
models used in Refs. 3,5. As discussed above in connection
with kinks, its microscopic origin is sensitive to tight binding
parameters. It is also noteworthy that lines with k > kF , though
broader than at kF , are sharper than those with k < kF .

Finally, we note that while the self-energy is strongly k

dependent it is not anisotropic. Consequently, the EDC line
shapes look similar at different parts of the FS, at least to
O(λ2). In the regime of validity of this theory, namely, the
(hole) overdoped region, the cuprates do not display a strong
anisotropy either.

F. Optical conductivity

The optical conductivity σ (�) is computed within the
lowest approximation of (I) here by discarding the vertex
corrections and working with the auxiliary g:

Reσ (�) = 1

�

∑
k

v2
k

∫
ρg(k,ω)ρg(k,� + ω) dω

× [f (ω) − f (� + ω)]. (21)

The imaginary part of the conductivity can be obtained by a
Hilbert transform of the real part. In this purely t-J calculation
we must be careful how we interpret the imaginary part of σ .
A more realistic calculation should include contributions from
the upper Hubbard band and from charge-transfer processes
that are significant at high frequencies; these are discarded
in the t-J model. For our current purposes we will discuss
two kinds of relaxation rates. First we compute a momentum-
averaged rate 1/τσ extracted from the low-frequency behavior
σ (ω) using

1

τσ

= 4

π

∫ 1/τσ

0
Re σ (ω)/σ (0)dω, (22)

where the prefactor is chosen to yield the usual rate for
a Lorentzian shape. This convenient definition is designed
to be insensitive to the shape of σ (ω). Secondly, we look
at the momentum-resolved scattering lifetimes, defined as
the inverse width of the ARPES line shape at the Fermi
momentum. These scattering rates are displayed in Fig. 7. We
find that the 1/τ curves from ARPES and the conductivity have
essentially the same temperature dependence, apart from a
factor of O(1). The 1/τ rises quadratically at low temperature,
in accordance with the standard Fermi liquid (FL) picture,
crossing over to a linear dependence at a fairly low-temperature
scale.

In Fig. 8, we display the computed optical conductivity
Re σ (ω) at various T for n = 0.75, and also the phase angle
θ = tan−1( σ ′′(ω)

σ ′(ω) ) on an absolute scale. The rapid fall of the
optical conductivity at low T is rapidly filled in at low ω,
and the phase angle falls off with ω at about 4000 cm−1. At
optimum doping, the phase angle is known experimentally to
be flat in ω over a much larger range,32 and differs from the
present calculation, whose validity is confined to overdoping.
Experimental measurements in the overdoped case of the phase
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FIG. 7. (Color online) n = 0.75. The QP relaxation rate at the
FS along 〈11〉 obtained from ρ�(k,E∗

k ), and the rate obtained from
the optical conductivity as in Eq. (22). The T 2 behavior of an FL
is visible at low temperature, crossing over at a modest temperature
(∼150) K, partly due to the shrinking bandwidth, as seen directly in
Fig. 2. The inset shows the dc resistivity obtained from the inverse of
Eq. (21). It similarly displays a T 2 behavior crossing over to a linear
behavior, as well as a lack of saturation that persists to higher T than
shown.

angle would be useful in benchmarking theories in regimes
such as the present one. For the real part, such a comparison
is possible. In Fig. 9 we display the Re σ (ω) curves along
with optical conductivity measurements published by Puchkov
et al.12 for an overdoped thallium compound. We note that
in the overdoped regime, the computed conductivity matches
quite well with experiments (to within a factor 2 on the vertical
scale).

A further interesting aspect of the resistivity obtained from
this ECFL formalism lies in the high-temperature limit. A
lack of resistivity saturation has been observed in numerical
treatments of strongly coupled models, as in a recent DMFT
work.25 These results are in qualitative agreement with
resistivity measurements in the cuprates and other strongly
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FIG. 8. (Color online) n = 0.75, T = 60,90,130,190,280,410,

605 K. The optical conductivity is calculated on an absolute scale and
illustrates how increasing T rapidly fills up the regime 200 � ω �
1000 cm−1. The rise of conductivity at very low ω is also inferred
from the dc resistivity displayed in Fig. 7. The phase of the complex
σ falls off rapidly beyond 4000 cm−1.
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FIG. 9. (Color online) An explicit comparison of optical con-
ductivity with measurements of Puchkov et al. from Ref. 12 with
the author’s kind permission. The data pertains to an overdoped
thallium-based cuprate with Tc = 23 K, with a density n ≈ 0.75.
We note the similarity of magnitude and variation with ω and T . It is
worth noting (to be reported elsewhere) that the vertical scale can be
brought into better agreement with an adjusted hopping, as with the
Fermi velocity.

correlated compounds. The ECFL theory leads to a similar
result and provides a simple picture for its origin in terms
of the second Lagrange multiplier u0. As discussed in the
Supplemental Material,27 both μ′ and u0 rise linearly with
T at high temperature. Due to the explicit appearance of
u0 in the expressions for � and �, the magnitude of the
self-energies also grows continuously with temperature via u0,
resulting in a monotonic broadening of the spectral function.
This broadening is insensitive to the Mott-Ioffe-Regel (MIR)
saturation expected in weakly correlated metals, and leads to
a nonsaturating resistivity at high T , as we observe in the inset
of Fig. 7.

G. Self-energies

We now display the self-energies that are involved in
calculating the spectral functions. In Fig. 10 we display ρ�

and ρ� . Both functions exhibit the ω2 behavior close to zero,
as one finds for a weakly interacting FL self-energy. Unlike
conventional FLs, the magnitude of the quadratic term is
strongly k dependent. From these functions and the associated
real parts we can construct a Dyson-Mori (D-M) self-energy,
defined through the equation

G = aG
x − �

, (23)

where aG is the total spectral weight of the physical G and
x = ω + μ′ − εk such that

� = x + aG
aG + �

(� − x). (24)

In Fig. 11 we plot the computed imaginary part of the D-M self-
energy, ρ� . It exhibits a similar magnitude and k dependence at
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FIG. 10. (Color online) (n,T ) = (0.75,130) K. The spectral
functions for the two self-energies � and �, i.e., ρ� (top) and
ρ� (bottom), at several k points along the 〈11〉 direction. Both are
roughly quadratic and symmetric at low frequency but have a strongly
k-dependent curvature. In the plot of ρ�, the minimum width η chops
off the bottom of the low-frequency minimum.

low frequency to that in ρ�. However, large asymmetries begin
to appear at intermediate frequencies. It is interesting that at
positive frequency the function is considerably smaller than
at negative frequencies, a feature that has already been noted
for simplified versions of the ECFL4,5 and also in a recent
DMFT study of the Hubbard model.25 In this calculation,
however, we see an interplay between the momentum and
frequency dependencies. In particular, we see that at positive
frequency 0 < ω � 200 meV, ρ� is strongly k dependent,
so that particlelike excitations near k = (π,π ) are long-lived
while those inside the FS suffer a large damping. This is very
different from weakly coupled or local theories such as DMFT,
where the scattering rate is determined by frequency alone. We
note that this self-energy does not differentiate between nodal
and antinodal directions, but rather, the k dependence arises
only through ε�k , so that the scattering rate is constant along
the FS.

The low-frequency asymmetry is usefully described as an
FL-like quadratic dependence modified by a cubic term. The
right panel of Fig. 11 shows low-frequency (|ω| � 75 meV)
fit parameters of ρ� as a function of k, exhibiting a marked
softening of the quadratic coefficient b. The final effect on
the relaxation rate �(k) = ρ�(k,E∗

k ), displayed in Fig. 12, is
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FIG. 11. (Color online) (n,T ) = (0.75,130) K. (Top) The spectral
function ρ� of the Dyson-Mori self-energy � from Eq. (24), at several
k points along the 〈11〉 direction. As with ρ�, ρ� has inherited a strong
k dependence. (Bottom) k dependence of the fit parameters from
ρ� = a + b ω2(1 + c ω) at low frequencies |ω| � 75meV. Observe
the softening of the quadratic coefficient with increased k. The cubic
term ρ� ∝ ω3 produces particle-hole asymmetry, as argued in Ref. 6,
and grows in magnitude with increasing k beyond kF .
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FIG. 12. (Color online) n = 0.75. The decay rate of QP near
kF along the nodal line from �k = ρ�(k,E∗

k ). The strong and
T -dependent asymmetry makes quasiparticles longer lived at k > kF .
With increased T the minimum of � moves to k > kF .

summarized by the expression

�(k) ∼ bf

(
1 −

∣∣∣∣b
′
f

bf

∣∣∣∣ (k − kF )

)
V 2

F (k − kF )2, (25)

where bf (b′
f ) is the coefficient (derivative of the coefficient)

at the Fermi momentum, and VF is the Fermi velocity. The
cubic term in k − kF is a significant correction to the leading
term from Fermi liquid theory, resulting in longer-lived quasi-
particles outside the Fermi surface, as compared to quasiholes
inside the Fermi surface. Furthermore, the T dependence of �

is stronger at k < kF . At the highest temperature shown, the
longest lived quasiparticles drift somewhat away from kF . In
Fig. 7, we also display the T dependence of the single-particle
relaxation rate �(k). This rate shows a crossover at a reduced
scale to linear in T behavior, about ∼150 K, as compared to
Tμ′ ∼ 400 K, detailed in the Supplemental Material.27

V. CONCLUDING REMARKS

In summary, we have presented the results of a systematic
low-density expansion for the t-J model using the recently
developed formalism of extremely correlated Fermi liquids,
discussed in Refs. 1 and 2. This calculation complements the
phenomenological theory in Ref. 3, where the line shapes
at optimal doping are successfully modeled, using a very
small number of parameters. Here we calculate from first
principles, assuming only the value of J and the hopping
t , and where possible, quote results on an absolute scale.
The second order in λ equations studied here, valid for
n � 0.75, are somewhat removed from the most interesting
regime of optimal doping. Nevertheless, the computed forms
of the twin self-energies found here indeed have the character
assumed in the phenomenological ECFL studies; also, the
resulting spectral functions have line shapes that are skewed
towards negative ω. This feature is ultimately a consequence
of Gutzwiller projection, as argued in Ref. 1, and captures a
striking characteristic of the experimental data.

The salient points from our study may be summarized as
follows:

(i) The momentum occupation function mk = 〈Ĉ†
kĈk〉 is

calculated along the nodal direction at various T and densities,
where it indicates a large spillover for k > kF . This spillover
quantifies the smooth part of spectral weight at ω < 0 for wave
vectors k > kF and is of potential use in calibrating ARPES
studies.

(ii) The spectral functions A(k,ω) at various k values and
different temperatures displays a non-Lorentzian form, with
a pronounced skew towards occupied energies ω < 0. This
results in spectra resembling those seen in most experiments
in cuprates and emerges as a natural consequence of the
Gutzwiller projection, i.e., very strong correlations.

(iii) The dispersion relations EMDC(k) and EEDC(k) are
deduced from the peaks of A(k,ω) and display considerable
band narrowing due to correlations. They further split apart
near �k ∼ (0,0), i.e., the � point, resulting in a high-energy
kink, quite similar to that seen in experiments. The splitting
between these peaks is due to a prominent broad second
maximum in the spectral function, away from the quasiparticle
peak. A high sensitivity of the high-energy kink to the
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bare band parameters is found, with flatband dispersions
eliminating the kinks.

(iv) The ECFL results for the optical conductivity and
the phase angle are reported on an absolute scale, and the
real part is in quite reasonable proximity of experimental
data. Better agreement should be possible with tuning the
available band parameters, although we have not explored this
here.

(v) The resistivity is calculated as a function of T at various
densities and found to be nonsaturating in its T dependence,
analogous to the resistivity seen in experiments. The absence
of saturation is easy to understand within the ECFL formalism.
The magnitude of the self-energy grows indefinitely due to its

dependence on the second chemical potential u0 and leads to
a growing resistivity from the Kubo formula.

(vi) The single-particle decay rate �(k,T ) is reported at
various k and T . It is smaller for k > kF than for k < kF

due to a strong correction to Fermi liquid behavior, leading to
spectral lines that are narrower than for k < kF .
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