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Confined plasmons in graphene microstructures: Experiments and theory
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Graphene, a two-dimensional material with a high mobility and a tunable conductivity, is uniquely suited
for plasmonics. The frequency dispersion of plasmons in bulk graphene has been studied both theoretically
and experimentally, but no theoretical models have been reported and tested against experiments for confined
plasmon modes in graphene microstructures. In this Rapid Communication, we present measurements as well as
analytical and computational models for such confined modes. We show that plasmon modes can be described by
an eigenvalue equation. We compare the experiments with the theory for plasmon modes in arrays of graphene
strips and demonstrate a good agreement. This comparison also reveals the important role played by interaction
among the plasmon modes of neighboring graphene structures.
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Graphene electronics and optoelectronics have emerged
as fields of tremendous interest not only as improvements
to existing technology, but also as platforms for com-
pletely novel devices. A particularly interesting application
of graphene is for plasmonic devices,1–3 which manipulate
charge density waves in the two-dimensional atomic sheet.
Graphene plasmons can have frequencies in the 1–100 ter-
ahertz range but wavelengths in the micron and submicron
range,3–5 enabling extreme confinement of electromagnetic
energy. In addition, plasmon frequencies in graphene can
be tuned through electrostatic1 or chemical2 doping, making
graphene plasmonics a unique platform for tunable tera-
hertz sources, detectors, switches, filters, interconnects, and
sensors.

The dispersion of plasmons in bulk graphene has been
obtained analytically,4 and the experimental results have
been shown to agree well with the theoretical predictions.5

Plasmons can be confined in patterned graphene micro- and
nanostructures such that only a discrete set of modes can
oscillate.1,2 Such confined plasmon modes are of interest
for device applications since, unlike bulk plasmons, they
can couple directly to normally incident electromagnetic
radiation. Confined plasmon modes have been observed and
analyzed in two-dimensional electron gases in parabolic-
band semiconductors.6–8 Several numerical and analytical
models have also been reported for describing the plasmons
in graphene microstructures.9–14 Yet, models for confined
plasmons in graphene have not been compared quantitatively
against experiments, and the accuracy of models based on
classical electrodynamics remains unclear. For example, al-
though experiments have shown that the scaling of the confined
plasmon frequency with conductivity and size is in agreement
with the long-wavelength bulk plasmon dispersion,1,2 there
have been no direct comparisons of the predicted plasmon
frequencies with the measured values.

In this Rapid Communication, we present and quantitatively
compare experimental and theoretical results for confined plas-

mon modes in graphene. We show that the long-wavelength
plasmon modes in graphene microstructures can be described
by an eigenvalue equation. Using perturbation theory, we
extend the eigenvalue equation to plasmon supermodes of
arrays of interacting graphene microstructures. The results
obtained from this method match well the results obtained
using a numerical finite-difference time-domain (FDTD)
technique. By comparing the measured transmission spectra
of interacting plasmon modes in arrays of graphene strips
with the theoretical results, we show that the theoretical
models quantitatively match the experimental data very
well.

A cross section of the structures considered in this work
is shown in Fig. 1(a), which shows an array of patterned
graphene strips. The graphene used in our experiments was
grown by chemical vapor deposition (Kevek Innovations 1”
System) on copper foils and transferred, as described by
Li et al.,15 to high-resistivity silicon wafers (>10 k� cm)
with ∼300 nm of thermally grown SiO2. Arrays of graphene
strips of widths W = 0.75, 1, 2, and 3 μm were patterned
using standard photolithography followed by etching in an
oxygen plasma [see Fig. 1(b)]. For all devices, the strip
width W and the spacing S between the strips were chosen
to be equal. Graphene strips were doped using HNO3.16

The doping density was estimated to be in the 4.5–5.0 ×
1012 cm−2 range using the Raman technique described by
Das et al.17

Plasmon resonances of arrays of graphene strips were mea-
sured at room temperature using Fourier-transform infrared
spectroscopy (FTIR). Figure 2 shows the transmission spectra,
of all four strip sizes, for polarizations perpendicular (a) and
parallel (b) to the strips. The transmission of incident radiation
polarized parallel to the strips decreases monotonically at
long wavelengths, showing the expected Drude-like frequency
dependence. There is no dependence on the strip width. Trans-
mission spectra of incident radiation polarized perpendicular
to the strips show plasmon resonances.1,2
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FIG. 1. (Color online) (a) A cross section (not to scale) of an array
of graphene strips with the electric field lines for the lowest plasmon
supermode. (b) Optical micrograph of the sample with four regions
of etched graphene strips (square regions in the center) and two
reference regions. (c), (d) Bright-field optical micrographs (100×)
detailing etched graphene strip arrays after the resist was removed.

The measured transmission spectra can be described qual-
itatively using a damped harmonic oscillator model,1,2,13,18,19

Tξ (ω)

Tref(ω)
=

∣∣∣∣∣1 + ηof σ (ω = 0)

1 + nsub

iω/τ

ω2 − ξω2
p + iω/τ

∣∣∣∣∣
−2

. (1)

Here, ηo is the free-space impedance, σ (ω = 0) is the dc
conductivity of bulk graphene, f is the fill factor of the strips,
nsub is the refractive index of the substrate, τ is the Drude
scattering time, ωp is the plasmon frequency, and ξ = 0 (or 1)
for incident radiation polarized parallel (or perpendicular) to
the strips. The bulk plasmon frequency for small wave vectors
is given by the expression4

ωp(q) =
√

σ (ω = 0)q

2εavgτ
, (2)

where q is the magnitude of the plasmon wave vector
and εavg is the average dielectric constant surrounding the
graphene sheet. Using q = π/W ,20 we find that Eq. (2)
significantly overestimates the plasmon frequencies compared
to the experimental values. For example, using Eq. (1) to

FIG. 2. (Color online) Solid curves: Measured transmission of
radiation polarized (a) perpendicular and (b) parallel to graphene
strips is plotted for four different strip widths W = 0.75, 1, 2, and
3 μm. For all devices, the spacing S between strips is equal to the
width. A bare SiO2/Si substrate is used as reference. Dotted curves:
FDTD simulation fits to the measured results. Extracted resonance
frequencies are 226, 197, 135, and 112 cm−1.

fit the transmission spectra of W = 1 μm arrays for parallel
polarizations (ξ = 0), we find the average value of σ (ω = 0)
and τ to be 0.95 mS and 31.5 fs, respectively. Equation (2)
then gives a plasmon frequency of ∼245 cm−1, which is
significantly higher than the measured plasmon frequency of
∼197 cm−1. Such a large error suggests that better models are
needed to understand confined plasmon modes in patterned
graphene structures.

We first present an analytic technique that captures the
essential physics of the problem and results in an eigenvalue
equation for the plasmon modes. Assuming a Drude-like
frequency dependence of the graphene conductivity,21 we
start with the time derivative of the equation for the current
density �K ,

∂2 �K
∂t2

+ 1

τ

∂ �K
∂t

= σ (ω = 0)

τ

∂

∂t
( �Einc + �Ed ). (3)

Here, �Einc is the incident field and �Ed is the depolarization
field that results from the plasmon charge density. Only field
components in the plane of the graphene sheet are included in
Eq. (3). Using the charge continuity equation and the Poisson
equation, and ignoring retardation effects, the depolarization
field can be related to the current density by

∂ �Ed (�r,t)
∂t

= −1

4πεavg

∫
d2�r ′ ¯̄f (�r − �r ′) · �K(�r ′,t). (4)

The tensor ¯̄f (�r − �r ′) equals [1 − 3�s ⊗ �s/|�s|2]/|�s|3, where �s =
�r − �r ′. ¯̄f (�r − �r ′) is related to the Green’s function that relates
the field to the polarization density and can be computed for
more complicated geometries than considered in this work. We
see from Eq. (3) that if [σ (ω = 0)/τ ]∂ �Ed/∂t equals −ω2

p
�K ,

then in the absence of Einc and dissipation the current density
will oscillate at the frequency ωp. Comparing with Eq. (4), it
follows that the current density associated with the plasmon
mode satisfies the following eigenvalue equation,

σ (�r,ω = 0)

4πεavgτ

∫
d2�r ′ ¯̄f (�r − �r ′) · �K(�r ′) = ω2

p
�K(�r). (5)

The above equation can be solved for the current densities
�Km and frequencies ωpm associated with the plasmon modes

in any graphene structure. The modes satisfy the orthogonal-
ity condition,

∫
d2�r �Km(�r) · �Kp(�r)/σ (�r,ω = 0) ∝ δmp. For the

case of bulk plasmons, Eq. (5) reproduces the result in Eq. (2).
Solving the eigenvalue equation numerically for the case of a
single infinitely long graphene strip, we obtain the following
result for the frequency of the lowest two plasmon modes,

ωp0 ≈
√

σ (ω = 0)1.156

εavgτW
, ωp1 ≈

√
σ (ω = 0)2.751

εavgτW
. (6)

The computed current and charge densities for the lowest
two plasmon modes are shown in Fig. 3(a). Although all
even plasmon modes (0,2,4, . . .) will couple with normally
incident radiation, only the lowest plasmon mode will couple
appreciably. The scaling of the plasmon frequency with 1/

√
W

is in perfect agreement with our data. For the case W = 1 μm,
using Eq. (6) and the extracted values of σ (ω = 0) and τ ,
ωp0 is ∼211 cm−1. The eigenvalue equation more accurately
models the plasma resonance than Eq. (2) (with q = π/W ),
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FIG. 3. (Color online) (a) The computed current densities K(x)
(top) and charge densities ρ(x) (bottom) for the lowest two plasmon
modes of a graphene strip are plotted. (b) The computed current
densities are plotted for the first 5 supermodes of an array consisting
of 9 graphene strips (W = S). Locations of the strips are indicated
by the red horizontal lines.

but it still overestimates the measured resonance frequency by
∼6.5%. We next address possible origins of this discrepancy.

Interactions among plasmon modes in neighboring strips
can be included by solving Eq. (5) using σ (�r,ω = 0) appro-
priate for an array of graphene strips. Interactions lift the
degeneracy among strips and result in a band of plasmon
modes that are the supermodes of the array. The computed
current density for the lowest five supermodes of an array
containing nine strips is shown in Fig. 3(b). Only the lowest
supermode couples appreciably to the normally incident
radiation, and it is the frequency of this supermode that is
measured in our transmission experiments. Unfortunately, the
matrix eigenvalue equation obtained from Eq. (5) is not sparse,
so obtaining solutions for large arrays is computationally
prohibitive. Starting from the lowest plasmon mode of a single
strip, the perturbation technique can be used to obtain an
expression for the frequency ωp(n,N ) and the current density
�K(n,N )(�r) of the nth supermode (n = 0 . . . N − 1) of an
N -strip array,

ω2
p(n,N ) ≈ ω2

p0

(
1 − 2
1 cos

(
π

n + 1

N + 1

))
, (7)

�K(n,N )(�r) ≈
N∑

j=1

�K0(�r − j (S + W )x̂) sin

(
πj

n + 1

N + 1

)
,

(8)

where 
1 is the first-nearest-neighbor interaction parameter.
Including second-nearest-neighbor interactions, ω2

p(0,∞) =
ω2

p0 (1 − 2
1 − 2
2). 
1 and 
2 are given by the expression


θ = −
∫

d2�r ∫
d2�r ′ �K0(�r) · ¯̄f (�r − �r ′) · �K0(�r ′ − θ (S + W )x̂)∫
d2�r ∫

d2�r ′ �K0(�r) · ¯̄f (�r − �r ′) · �K0(�r ′)
.

(9)

Figure 4(a) shows the the calculated values of ω2
p(0,∞)

as a function of the strip spacing S assuming first- and
second-nearest-neighbor interactions. The plasmon frequency
is reduced as a result of the interactions among neighboring
strips. For S = W = 1 μm, the values of 
1 and 
2 are 0.035
and 0.009, respectively, resulting in a ∼4.5% decrease in the
value of ωp(0,∞) compared to ωp0. In this case, ωp(0,∞) ∼
202 cm−1, which is closer to the measured ∼197 cm−1 than
ωp0 alone. These results suggest that interactions cannot be
ignored between nearby graphene plasmonic structures.

FIG. 4. (Color online) (a) The frequencies of the lowest plasmon
supermode ωp(0,∞) of an infinite graphene strip array calculated
using perturbation theory and FDTD are plotted as a function of
the ratio S/W . (b) The computed charge densities for the lowest
plasmon mode in an isolated graphene strip (S/W 
 1) and in an
array of strips with S/W = 0.25 are plotted. The charge densities
were computed using FDTD (S/W 
 1 and S/W = 0.25) and the
eigenvalue equation [Eq. (5)] (S/W 
 1).

The eigenvalue equation does not include retardation ef-
fects, which could be important in the case of large arrays, and
it also does not account for the discontinuity in the field at the
oxide/silicon interface (screening by the silicon substrate). A
technique is needed that incorporates these effects, can be used
to determine the accuracy of Eq. (5), and can also compute the
measured transmission spectra more accurately than Eq. (1).
For example, Eq. (1) predicts Tξ=0(ω = 0) = Tξ=1(ω = ωp),
but the measured values in Fig. 2 differ by ∼1.5%. The
discrepancy arises because the transmission through the gaps
in the strip array cannot be modeled simply with a fill
factor f , especially when the incident radiation is polarized
perpendicular to the strips and S � W .

In the FDTD method, Maxwell’s equations are stepped in
time. In order to model plasmons, we include an auxiliary
equation for the graphene current density [Eq. (3) without
the extra time derivative] and step the equations using Yee’s
leap-frogging algorithm.22 This approach naturally handles
interactions and electromagnetic retardation. A challenge in
the FDTD technique is the range of length scales important
to the problem. The radiation frequencies of interest have
free-space wavelengths extending up to 300 μm, but the
corresponding plasmon wavelengths are on the order of
1 μm. Furthermore, it is important for the modeled graphene
thickness to be much less than the plasmon wavelength.
Therefore, the length scales of importance span three orders
of magnitude, necessitating a highly nonuniform mesh, with
grid steps varying from 0.01–0.5 μm. The computational
domain spans more than 200 × 200 μm2, and is surrounded
by perfectly matched layer boundaries.22 We use the values
4ε0 and 12ε0 for the THz dielectric constants of SiO2 and
Si, respectively. Plasmonic structures are excited at zero
angle of incidence with a broadband (0.5–15 THz) pulse
of electromagnetic radiation. The transmission spectra for
fields polarized parallel and perpendicular to the strips are
obtained by Fourier-transforming the time-domain transmitted
pulse. Values of σ (ω = 0) and τ used in the simulations were
iteratively improved until the simulated transmission spectra
for both polarizations optimally fit the measured spectra.

The FDTD simulation results, shown in Fig. 2, accurately
fit the measurements. Extracted values of σ (ω = 0) and τ lie in
the range 0.91–0.95 mS and 29.5–31.5 fs, respectively. Using
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FIG. 5. (Color online) FDTD simulation results are shown for
the x [(a), (b)] and y [(c), (d)] components of the electric fields for
the lowest order plasmon supermode in two W = 2 μm arrays of
graphene strips (S = 2 μm [(a), (c)], S = 0.25 μm [(b), (d)]. The
dashed lines indicate the locations of the silicon/oxide and oxide/air
interfaces.

the expression for the graphene conductivity in Ref. 21, these
values correspond to doping densities of 5.0–5.2 × 1012 cm−2,
consistent with the densities determined using the Raman
technique. Small variations in the parameters across the
CVD graphene sample are consistent with those measured
by terahertz spectroscopy in similar samples.23 The ability of
the FDTD technique to quantitatively fit the depth and width
of the plasmon resonances, while also predicting their center
frequencies to an accuracy within one percent, underscores
its usefulness as a tool for modeling graphene plasmonic
structures.

The computed x and y components of the electric field
for the lowest plasmon supermode are shown in Fig. 5 for
arrays of graphene strips with two different spacings (S = 2,
0.25 μm and W = 2 μm). The locations of the graphene strips
are indicated by the thin black lines at y = 50 μm. The dashed
lines indicate the locations of the silicon/oxide and oxide/air
interfaces. The field is highly localized near the graphene sheet,
extending a distance on the order of the plasmon wavelength.
The discontinuity in the normal (y) component of the field
at the silicon/oxide interface is also visible. In contrast with
the S = 2.0 μm case, when S = 0.25 μm, the field in the
gaps between strips is stronger than the field in the center
of the strips. This effect helps to reveal the physical origins
of the interaction between neighboring strips. The plasmon
charge density that accumulates at the edges of an isolated
strip generates a depolarization field �Ed with ω2

p0 ∝ | �Ed |. In
a strip array, this edge charge density is partially imaged on
the neighboring strips, as depicted in Fig. 1(a). This effect
increases the depolarization field in the gaps between strips
but reduces the field within each strip. Equivalently, the

depolarization fields from neighboring strips are in phase in the
gaps between strips but out of phase in their centers. Therefore,
ωp(0,∞) < ωp0. In contrast, in the highest supermode of the
array, the current density oscillations in neighboring strips are
out of phase, so ωp(N,∞) > ωp0.

FDTD simulation can serve to evaluate the perturbation
theory, as shown in Fig. 4. The two methods are found to agree
when S/W > 1, but not when S/W �1. For example, when
S = W in Fig. 4(a), the FDTD-calculated ωp(0,∞) is lower
than ωp0 by ∼6.5%, in contrast with the ∼4.5% reduction
predicted by the perturbation technique. This behavior can
be understood by examining the plasmon charge density.
Figure 4(b) shows the FDTD-computed charge density in
a strip for the lowest-order supermode with S/W 
 1 and
S/W = 0.25. Also shown is the charge density obtained by
solving Eq. (5) for S/W 
 1, which is nearly identical to
the FDTD result. But when S/W � 1, the FDTD calculation
reveals that the charge density is significantly modified as a
result of interactions; the charge density increases near the
strip edges to screen the fields of the neighboring strips. Since
the perturbation theory assumed that the charge and current
densities are unmodified from the lowest plamon mode of an
isolated strip, the results became inaccurate when S/W � 1.
The good agreement obtained between the FDTD method
and the analytic model for S/W > 1 suggests that retardation
effects do not play a significant role in the structures considered
in this work.

To conclude, we presented experimental and theoretical
results for the confined plasmon modes in graphene mi-
crostructures. We presented an analytic model which captures
the essential physics and gives an eigenvalue equation for
computing plasmon modes. We also presented a universally
applicable FDTD technique. The theoretical models presented
show good agreement with the measurements, and demon-
strate the importance of interactions in plasmonic structures.
The present work, to the best of our knowledge, is the first time
that theoretical and numerical models have been presented
and tested against experiments for confined plasmon modes
in graphene microstructures. This quantitative agreement sug-
gests that models based on classical electrodynamics theory
are accurate for practical simulations of these devices. The
techniques presented in this Rapid Communication can be used
to understand, model, and design complex graphene plasmonic
structures for applications ranging from IR detectors and
chemical sensors to plasmonic radiation sources, oscillators,
modulators, and metamaterials.

The authors would like to acknowledge helpful discussions
with Michael G. Spencer and support from CCMR under
NSF Grant No. DMR-1120296, AFOSR-MURI under Grant
No. FA9550-09-1-0705, ONR under Grant No. N00014-12-1-
0072, and the Cornell Center for Nanoscale Systems funded
by NSF.

*jhs295@cornell.edu
1L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel,
A. Zettl, Y. R. Shen, and F. Wang, Nat. Nanotechnol. 6, 630 (2011).

2H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu,
P. Avouris, and F. Xia, Nat. Nanotechnol. 7, 330 (2012).

3F. Rana, IEEE Trans. Nano. 7, 91 (2008).
4E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).
5Y. Liu, R. F. Willis, K. V. Emtsev, and T. Seyller, Phys. Rev. B 78,
201403(R) (2008).

6T. N. Theis, Surf. Sci. 98, 515 (1980).

241410-4

http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1038/nnano.2012.59
http://dx.doi.org/10.1109/TNANO.2007.910334
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1016/0039-6028(80)90533-6


RAPID COMMUNICATIONS

CONFINED PLASMONS IN GRAPHENE . . . PHYSICAL REVIEW B 87, 241410(R) (2013)

7T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. B
38, 12732 (1988).

8S. A. Mikhailov and N. A. Savostianova, Phys. Rev. B 71, 035320
(2005).

9N. M. R. Peres, A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy,
J. Phys.: Condens. Matter 24, 245303 (2012).

10N. M. R. Peres, Y. V. Bludov, A. Ferreira, and M. I. Vasilevskiy, J.
Phys.: Condens. Matter 25, 125303 (2013).

11A. Ferreira and N. M. R. Peres, Phys. Rev. B 86, 205401 (2012).
12A. Fallahi and J. Perruisseau-Carrier, Phys. Rev. B 86, 195408

(2012).
13S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcı́a de Abajo,

Phys. Rev. Lett. 108, 047401 (2012).
14G. H. Hanson, J. App. Phys. 103, 064302 (2008).
15X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner,

A. Velamakanni, I. Jung, E. Tutuc et al., Science 324, 1312 (2009).
16A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski, and A. A.

Bol, ACS Nano 4, 3839 (2010).

17A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V.
Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim,
A. C. Ferrrari, et al., Nat. Nanotechnol. 3, 210 (2008).

18H.-K. Nienhuys and V. Sundström, Appl. Phys. Lett. 87, 012101
(2005).

19J. H. Strait, P. A. George, M. Levendorf, M. Blood-Forsythe,
F. Rana, and J. Park, Nano Lett. 9, 2967 (2009).

20H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea,
P. Avouris, and F. Xia, Nat. Photonics 7, 394 (2013).

21J. M. Dawlaty, S. Shivaraman, J. Strait, P. George,
M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and
Y. Chen, Appl. Phys. Lett. 93, 131905 (2008).

22A. Taflove and S. C. Hagness, Computational Electrodynamics: The
Finite-Difference Time-Domain Method, 3rd ed. (Artech House,
Norwood, MA, 2005).

23J. L. Tomaino, A. D. Jameson, J. W. Kevek, M. J. Paul, A. M. van
der Zande, R. A. Barton, P. L. McEuen, E. D. Minot, and Y.-S. Lee,
Opt. Express 19, 141 (2011).

241410-5

http://dx.doi.org/10.1103/PhysRevB.38.12732
http://dx.doi.org/10.1103/PhysRevB.38.12732
http://dx.doi.org/10.1103/PhysRevB.71.035320
http://dx.doi.org/10.1103/PhysRevB.71.035320
http://dx.doi.org/10.1088/0953-8984/24/24/245303
http://dx.doi.org/10.1088/0953-8984/25/12/125303
http://dx.doi.org/10.1088/0953-8984/25/12/125303
http://dx.doi.org/10.1103/PhysRevB.86.205401
http://dx.doi.org/10.1103/PhysRevB.86.195408
http://dx.doi.org/10.1103/PhysRevB.86.195408
http://dx.doi.org/10.1103/PhysRevLett.108.047401
http://dx.doi.org/10.1063/1.2891452
http://dx.doi.org/10.1126/science.1171245
http://dx.doi.org/10.1021/nn100508g
http://dx.doi.org/10.1038/nnano.2008.67
http://dx.doi.org/10.1063/1.1977213
http://dx.doi.org/10.1063/1.1977213
http://dx.doi.org/10.1021/nl901373j
http://dx.doi.org/10.1038/nphoton.2013.57
http://dx.doi.org/10.1063/1.2990753
http://dx.doi.org/10.1364/OE.19.000141



