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Giant photocurrents in a Dirac fermion system at cyclotron resonance
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We report on the observation of the giant photocurrents in HgTe/HgCdTe quantum well (QW) of critical
thickness at which a Dirac spectrum emerges. At an exciting QW of 6.6 nm width by terahertz (THz) radiation
and sweeping magnetic field we detected a resonant photocurrent. Remarkably, the position of the resonance
can be tuned from negative (—0.4 T) to positive (up to 1.2 T) magnetic fields by means of optical doping. The
photocurrent data, accompanied by measurements of radiation transmission as well as Shubnikov—de Haas and
quantum Hall effects, prove that the photocurrent is caused by cyclotron resonance in a Dirac fermion system,
which allows us to obtain the effective electron velocity v &~ 7.2 x 10° m/s. We develop a microscopic theory of
the effect and show that the inherent spin-dependent asymmetry of light-matter coupling in the system of Dirac

fermions causes the electric current to flow.
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I. INTRODUCTION

The electron dc transport in semiconductor systems with
massless Dirac fermions has recently moved into the focus of
modern research yielding challenging fundamental concepts as
well as holding a great potential for applications.'™ The linear
energy spectrum allows the observation of quantum kinetic
effects and, on the other hand, gives rise to a new class of
phenomena absent in materials with parabolic dispersion. The
massless Dirac fermions are realized in graphene,* at surface
states of bulk topological insulators (TIs),'~>* in edge channels
of two-dimensional TIs,® as well as in HgTe/HgCdTe QWs of
critical thickness.”™ In the latter case and TIs, the linear energy
spectrum is formed by strong spin-orbit interaction which
locks the orbital motion of carriers with their spins. The interest
in Dirac fermions in such materials resulted in theoretical
consideration and observation of such fundamental physical
phenomena as the quantum spin Hall effect,”!%-12 quantum
Hall effect (QHE) on topological surface states,'> magne-
toelectric effect,'*!> and quantum interference effects.!®>!
Considerable attention has also been given to the nonlinear
high frequency (HF) transport phenomena. A plethora of such
effects has been treated theoretically, including photogalvanics
in TI systems,?>> second harmonic generation (SHG),?® as
well as radiation-induced QHE?’ and topological states.”®
While a great number of proposals have been published in
the last two years, the number of experiments on the topic is
limited so far by a few publications reporting the observation
of SHG and photogalvanic effects in three-dimensional (3D)
TIs induced by near infrared radiation.’®>%-3!

Here we report on the observation of a dc current excited
by THz radiation in HgTe/HgCdTe QWs of critical thickness.
We show that the current at cyclotron resonance (CR) is a
few orders of magnitude higher than THz radiation excited
photocurrents detected in other nonmagnetic QW structures.
Due to the linear dispersion of massless Dirac fermions,
the CR position is tuned by the variation of carrier density
applying optical doping. The microscopic origin of the current
is discussed in terms of the cyclotron motion, spin-dependent
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scattering, and Zeeman splitting. We show that the current is
spin polarized, its large magnitude comes from constructively
contributing three factors: strong spin-orbit coupling, large
g factor in HgTe/HgCdTe QWSs, and efficient radiation
absorption at CR.

II. EXPERIMENT

The experiments are carried out on (013)-oriented
HgTe/Hg3Cdy7Te QWs.?? Single QW samples with widths
L, of 6.6 and 21 nm and mobilities about 103 cm?/(V s)
at T = 4.2 K are investigated. The structures cross section
is shown in Fig. 1(a). Eight ohmic contacts have been
prepared at the corners and in the middle of the edges of
5 x 5 mm? samples. Magnetotransport measurements show
well pronounced Shubnikov—de Haas oscillations and QHE
plateaus, see Fig. 1(c). To achieve a controllable variation of
the carrier density we applied optical doping using the persis-
tent photoconductivity effect well known for HgTe/HgCdTe
QWs.>33% We illuminate the sample by red light emitting
diode operating at a wavelength of 630 nm for a time ¢
resulting in a change of the carrier density (type) which
could be restored by heating the sample above T &~ 150 K.
The carrier densities measured for different #; used in the
experiments are given in Table 1.

For photocurrent excitation we apply a cw CH3OH laser
emitting a radiation with frequency f = 2.54 THz (wave-
length A = 118 um).*> The incident power P ~ 10 mW is
modulated at 800 Hz by an optical chopper. The radiation
at normal incidence is focused in a spot of about 1.5 mm
diameter at the center of the sample. The spatial beam
distribution has an almost Gaussian profile which is measured
by a pyroelectric camera.*® Right (¢*) and left (¢ ~) handed
circularly polarized light is obtained by a A/4 plate. The
experimental geometry is sketched in Fig. 1(b). In (013)-
oriented QWs, excitation by normally incident THz radiation
results in a photogalvanic current even at B, = 0,>’ for
details see the Appendix. Owing to low symmetry of QW (C,
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FIG. 1. (Color online) (a) Cross section of the investigated
structures. (b) Experimental setup used for the photocurrent and
transmission measurements. (¢) Magnetotransport data obtained in
the van der Pauw geometry for 6.6 nm HgTe/HgCdTe QW sample
without (top) and with (bottom) optical doping. The change of slope
in the Hall signal indicates that initially the p-type sample becomes
n-type due to optical doping.

point group), the photocurrent has no predefined direction and
its magnitude j = /jZ + j7 can be deduced by measuring the

signals along two orthogonal directions.*’ The current-induced
photovoltages U, , are picked up across a 1 M2 load resistor
applying lock-in technique. The magnetic field B, upto 4 T
is applied normal to the QW plane. The photocurrent studies
are accompanied by optical transmission, see Fig. 1(b), and
magnetotransport experiments.

We start with the data obtained on the 6.6 nm QW, which
should have a close to linear dispersion.”?! Exciting the sample
with right-handed circularly polarized radiation and sweeping
magnetic field we observed a strong resonant photosignal
at B, = —0.42 T, see Fig. 2. The signal at the resonance is
more than two orders of magnitude higher than that detected
at B, = 0. By changing the carrier type from a hole to an
electron the resonance jumps from negative to positive B, and
moves towards higher field, now being for the electron density
ny &~ 2 x pyat B, = +0.69 T. Remarkably, at further increase
in the electron density, the resonance position drifts to even
higher B,, being 1.2 T for n, ~ 3 x ny, see Fig. 2. For a fixed
helicity of circularly polarized radiation, the photosignal has
a resonance for one magnetic field polarity only. Switching

TABLEI Sample parameters measured at T = 4.2 K. The values
of 7, are obtained from the CR width, see Fig. 3.

L, (mm) 7;(s) Density (cm™210') Er(meV) 1, (ps)
1 6.6 - 1.5 15 0.19
n 6.6 15 34 21 0.19
ny 6.6 80 11.0 39 0.32
ns 21.0 - 18.0 15 1.6
ng 21.0 80 24.0 21 2.35
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FIG. 2. (Color online) Signal normalized by the radiation power
U/ P excited by o * radiation vs B,. The data are shown for magnetic
fields lower than the full quantization limit.*' The inset shows the
photovoltage measured along the y-direction U, for linearly polarized
light.

the radiation helicity from ot to o~ changes the current
sign and mirrors the results with respect to the magnetic
field polarity (not shown). For linearly polarized radiation
being the superposition of o™ and o~ photons, the resonant
photovoltage is observed for both magnetic field polarities,
as shown for p-type conductivity in the inset in Fig. 2. We
stress that the resonant photosignal changes the sign upon
reversing the magnetic field direction. The above behavior is
observed for the temperature range from 4.2 up to 150 K. The
resonances are detected in the transmission measurements as
well. The data for different carrier densities (type) are shown in
Fig. 3 demonstrating a good correlation between the positions
of the dip in the transmissivity and the resonant photosignal.
The values of the momentum relaxation time 7, obtained from
the width of CR are given in Table 1.

Resonant photosignals are also detected for the 21 nm QWs,
a structure characterized by a nearly parabolic dispersion.
Photosignals (see Fig. 4, left panel) and transmission measure-
ments (see Fig. 3) clearly show that the resonance position in
these QWs is shifted to much higher magnetic fields B, ~ 3 T.
Furthermore, the resonance field now only slightly depends on
the carrier density.

The observed coincidence of peak positions in the pho-
tosignal and transmissivity unambiguously proves that the
resonant current is caused by CR.*? This is also supported by
the fact that for a fixed radiation helicity the resonances in the
photocurrent and transmissivity are detected for one polarity
of magnetic field only. The striking fact is that, depending on
optical doping, the resonance for QWs with L,, = 6.6 nm is
detected for negative as well as for positive magnetic field and
its peak position drastically depends on the Fermi level. These
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FIG. 3. (Color online) Transmissivity of circularly polarized light
measured as a function of the magnetic field modulus |B,| and
normalized by the zero-field transmissivity. Full lines are fits by a
superposition of Lorentz functions. The inset shows the data obtained
for o and o~ light for the L,, = 6.6 nm samples.

results are in agreement with Ref. 9 which concludes that
the energy dispersion in similar structures is close to linear.
Such an electron spectrum lacks the band gap and, therefore,
allows an easy transition from n- to p-type conductivity,
as proved in transport and CR experiments, see Figs. 1-3.
Furthermore, recent study of gated Hall bar 6.6 nm QWs
samples prepared from the same batch, as samples studied
here, manifests weak localization effects even in the vicinity
of a Dirac point giving additional proof for existence of gapless
dispersion in these QWs.?! As a matter of fact, the cyclotron
frequency in a system with linear dispersion depends strongly
on the Fermi energy—a characteristic behavior observed in our
6.6 nm sample. Indeed, the cyclotron frequency is described
by the well known expression |w.| = |eB;|/m.c, where e is
the carrier charge, c is the speed of light, and m.. is the effective
cyclotron mass at the Fermi energy. The latter, given by m, =
pr/(dEg/dpr), with pg being the Fermi momentum, yields
m. = Eg/v” for a system with linear dispersion characterized
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FIG. 4. (Color online) Left panel: Magnetic field dependence of
the signal U/ P excited by o light in the 21 nm sample. Right panel
shows the magnetotransport data.
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by a constant velocity v. Taking Er = +/27n(hv) into account,
we obtain for the CR position |B.| = v/ 2w n(chw)/|ev|. From
the resonance positions measured for electron densities 7| and
ny (Fig. 2) we find that the electron Fermi velocity is almost
constant, being equal to 7.2 x 10° m/s. The value is in a good
agreement with the electron velocity for 2D Dirac fermions in
HgTe/HgCdTe QWs of critical thickness v = 6.3 x 10° m/s,
obtained from the energy spectrum calculated in Ref. 8. The
hole velocity, deduced from our data for the density p, is also
close to this value (7.5 x 10° m/s). Note that the obtained
values are close to the carrier velocity in graphene* (10° m/s).
The substantially higher resonance field in 21 nm QWs as well
as the observed weak dependence of its position on the electron
density correspond to the CR behavior in HgTe/HgCdTe QWs
characterized by a nearly parabolic dispersion with large
Zeeman splitting, 33344346

III. DISCUSSION AND MICROSCOPIC MODEL

Now we turn to the microscopic origin of the current
generation at cyclotron resonance. For linearly polarized radi-
ation the resonant photosignal changes a sign upon switching
the magnetic field polarity, see the inset in Fig. 2. This is
in contrast to the absorption and photoconductivity’ which
are even in the field. Moreover, the observed photosignal at
cyclotron resonance, e.g., for the density p;, is about two
orders of magnitude larger than that measured at zero magnetic
field, see the inset in Figs. 2 and 6(a). This increase in the
signal magnitude is much higher than the increase of radiation
absorption given by (a)cv:,,)2 being about eight for the same
density. The latter was estimated from the width of CR,
see Fig. 3. Both observations suggest that the photocurrent
detected at the cyclotron resonance is not merely the current
at zero field enhanced by cyclotron resonance but is of another
microscopic root. The fact that the current is excited at
normal incidence of radiation implies that it is inherently
related to asymmetry of carrier relaxation (excitation) in k
space in (013)-oriented QWs of low spatial symmetry.*’ In
HgTe/HgCdTe QWs of critical thickness, where the subband
structure is formed by spin-orbit coupling, the most likely can-
didate responsible for the microscopic origin of the asymmetry
is spin-dependent scattering. The latter is a known fact for other
I11-V and II-VI heterostructures.**=3! We consider the resonant
absorption of THz radiation, which leads to the strong electron
(hole) gas heating. The resulting steady-state nonequilibrium
carrier distribution is formed by the energy gain due to the
radiation absorption, electron-electron collisions thermalizing
the electron gas, and the energy loss due to emission of
phonons. The matrix element of electron scattering by phonon
contains asymmetric spin-dependent terms (odd in the electron
wave vector), which are similar to the Rashba and Dresselhaus
spin-orbit terms in the energy dispersion.’> Below we present
the k- p calculation of the matrix elements of electron-phonon
interaction in HgTe/CdHgTe QWs with linear dispersion and
show that the interaction is substantially spin dependent. Due
to the spin-dependent part of the electron-phonon interaction,
the energy relaxation of carriers in the spin cones is asymmetric
and the relaxation rates for positive and negative wave
vectors, say in the x direction, are different.’® The asymmetry
causes imbalance in the carrier distribution in k space and,
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FIG. 5. (Color) Microscopic model. (a) Energy dispersion with
spin-up (left, blue) and spin-down (right, red) cones shifted due
to Zeeman effect to higher and lower energies, respectively.
(b) Nonequilibrium carrier distribution at Fermi energy caused by the
spin-dependent scattering. Full and open circles sketch the electron
distribution in k space. (c) Energy relaxation of an electron gas heated
as a result of the radiation absorption. Due to the spin-dependent
scattering, the relaxation rates for electrons with positive and negative
k are different. Bent arrows show schematically a predominant energy
relaxation in the spin-up (left) and spin-down (right) cones. The
scattering asymmetry within each cone results in the oppositely
directed fluxes j, and j_ shown by horizontal arrows. As due to
the Zeeman effect the spin-down cone is larger populated, the flux
J - is stronger than j and a dc electric current emerges.

hence, electron fluxes, see Fig. 5(b). The latter have opposite
directions in the spin-up and spin-down cones. As, besides
the cyclotron motion, the magnetic field splits the spin cones
due to the Zeeman effect, one of the cones is preferentially
populated compared to the other. Consequently, the fluxes
in the spin cones are unbalanced, and a net electric current
emerges. This process is sketched in Fig. 5(c) and, besides the
linear dispersion, is alike that known for other nonmagnetic
QW structures.*®* Obviously the current magnitude is pro-
portional to the radiation absorption, the strength of spin-orbit
coupling, and the Zeeman splitting. The absorption is strongly
enhanced in HgTe/HgCdTe QWs at the CR condition, resulting
in the giant photocurrent observed in the experiments. While
the models of the current formation for QWs with linear and
parabolic dispersions are similar, the position of CR and its
behavior upon variation of the Fermi energy are different. In
particular, for a fixed radiation frequency, the magnetic field
corresponding to CR is independent of the carrier density
in QWs with parabolic spectrum. By contrast, for QWs
with linear spectrum, it drastically depends on the carrier
density and, for circularly polarized light, may even change
its polarity in the same structure when the Fermi level crosses
the neutrality point.

IV. MICROSCOPIC THEORY

Following the model above, we now develop the quasi-
classical theory of the effect. We describe the electron states
in HgTe/CdHgTe quantum wells in the isotropic k-p model
following Ref. 7. The Dirac cones in the QW of critical width
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are formed from the four states

|E1, +1/2) = fi(2)IT6, +1/2) + fa(2)|T's, +1/2),
|H1,4+3/2) = f3(2)IT's, +3/2),
|ET, =1/2) = fi(2)Ils, —1/2) + fa(2)IT's, —1/2),
|H1, =3/2) = f3(2)[T's, =3/2),

which are degenerate at k = 0, with k being the in-plane wave
vector. Here f1(z), f3(z), and f1(z) are the envelope functions,
which can be chosen real, z is the growth direction, |I'¢, 1/2),
|I's, £1/2), and |I's, £3/2) are the basis functions of the I'q
and I's bands. At k # 0, the states (1) are coupled that is
described by the effective Hamiltonian

0 Ak, 0 0
—iAk_ 0 0 0
H= ) , )
0 0 0 —iAk_
0 0 Ak, O

where A is the (real) constant describing the in-plane ve-
locity A ~ (P/v/2) [ fi2) fy(2)dz, P = i(h/mo)(S|p.|Z) is
the Kane matrix element, and ki = k, £ ik,. The sign of A
depends on the sign of f3(z), we take A > 0. Solution of the
Schrodinger equation with the Hamiltonian (2) for positive
energy &, = Ak yields two functions:

1
_exp(ik - p) | —iexp(—igp)
W+,k - \/E 0 ’
0 3
0 3
. exp(ik - p) 0
wf,k - ﬁ 1 4
i exp(ig)

where ¢ = arctan(k, / k) is the polar angle of the wave vector.

We consider (013)-grown QWs and chose the coordinate
frame x|[[100], y||[031], and z|[[013]. In such a coordinate
system, the basis functions of the I's and I's bands can be
presented in the form

ITe, +1/2) = S, [T's, —1/2) = S|, 4)
X' +i(Y' cos® — Z'sin0) "
ﬁ )
2 ! s
Ts, +1/2) = §(Z cosf + Y sin6) 1
X +i(Y' cos® — Z'sin0)
NG ,
2 !’ s
I's, —1/2) = §(Z cosf + Y'sinf) |
X' —i(Y'cosO — Z'sin6)

% T ’

X' —i(Y' cosO — Z'sin0)

7 :

IT's, +3/2) = —

&)

IT's, =3/2) =
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where S, X', Y’, and Z’ are the Bloch amplitude of the I'¢ and
I'g bands, respectively, referred to the cubic axes x'||[100],
y'|I[010], and Z'||[001], 6 ~ 18.4° is the angle between the
[001] and [013] axes, and the symbols 1 and | denote the spin
projections +1/2 and —1/2 onto the z axis, respectively.

The deformation interaction of electrons with acoustic
phonons in zinc-blende-type crystals has both intraband and
interband contributions.’*>°% The matrix elements of strain-
induced interband coupling are given by Vs x = Ecyuy .,
Vs,yr = Beollyry, Vs, z2 = Beyltyy, Where B, is the interband
constant of the deformation potential and u.g are the strain-
tensor components used here in the primed coordinate system.
Note that E., # 0 in noncentrosymmetric crystals only. The
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matrix elements of strain-induced intraband interaction are
takeninthe form Vs g = B, Trueg, Vy x = Vyry = Vz 2o =
8y Truqg, where E, and &, are the deformation-potential
constants (8, = a in the Bir-Pikus notation,’’ the constants
b and d are neglected for simplicity). Accordingly, the
Hamiltonian of electron-phonon interaction in the basis of
functions (4) and (5) has the form

Vc ch
V=1, , (6)
Vch Vv

where V., = E.(Trugg)lz, Vy, = Ey(Trugp)ls, and I, and Iy
are the identity matrices 2 x 2 and 4 x 4, respectively,

0y, —iuy;) cos 204-(uz; /2—uyy /2+iu,y) sin 20 0

V2

\/g(uxy €08 20 + u,, sin 26)

VIi==E

v T SO i) €08 204t zo [2— ity /2t y) Sin 20
N3
0

and the strain-tensor components u,g are rewritten in the QW
coordinate frame.

The dominant contribution to electron scattering is given
by the terms proportional to u,, because the out-of-plane
component g, of the wave vector of the phonon involved
is typically much larger than the in-plane component ¢;. In
this approximation, the matrix element of electron scattering
from the state (s,k) to the state (s,k’), described by the wave
functions (3), assisted by emission or absorption of a bulk
acoustic phonon with the wave vector ¢ has the form

() =1/2
-4 N = = is(¢' —
Vs(ki’,)sk = :FZEZ|:210;IZ ] |:CJCZII +Ey(Zast+e (lﬂ (p)Z33)
q
isin20 .o .
- 2\/5 ECU(elsw —¢€ ‘W)Zl:ﬁ}gk/,k:':q’ (7)

where N,;i) =N, +01=x1)/2, N, is the phonon occu-
pation number, p is the crystal density, Q4 =csq is
the phonon frequency, ¢, is the speed of sound, Z;; =
fj;o fi(@) fi(z)exp(ig.z)dz, and s = “L” is the index enu-
merating the Dirac cones. The matrix elements (7) contain
asymmetric terms which are responsible for the emergence of
oppositely directed electron fluxes j, in the cones during the
energy relaxation of heated electron gas.

To calculate the electron fluxes we introduce the elec-
tron distribution function fix = fix + 8fk, where fy is the
quasiequilibrium function of the Fermi-Dirac type and 4 f;j is
the anisotropic part of the distribution function. It is assumed
that the radiation absorption followed by electron-electron
collisions forms the quasiequilibrium electron distribution
with the electron temperature 7, which is slightly higher that
the crystal lattice temperature 7. The electron temperature
can be found from the energy balance equation

> WP (e — ) fu(l = f) = I, ®)

s,k k'

_ (ty;—iuy;) cos 20+(uy; /2—uyy /241U,y ) sin 20
NG
\/g(uxy €08 260 + u,, sin 26)
(ty;+iuy;) cos 204+(u ;. /2—uyy /2—iu,y) sin 20
V2

where WE", = Qr/m) Y, o |V (28w — ek £12,) s
the rate of electron scattering assisted by a phonon emission
and absorption, scattering processes between states in different
cones are neglected, / is the radiation intensity, and 7 is the
free-carrier absorbance. The left-hand side of Eq. (8) describes
the electron energy losses due to cooling by phonons while the
right-hand side stands for the energy gain by the free-carrier
absorption of radiation.

The electron fluxes are determined by the anisotropic part
of the distribution function

Js=eY vifu, ©)
k

where v = Vye/h = vk/k is the electron velocity. We con-
sider that at low temperatures, relevant to the experimental
conditions, the momentum relaxation of carriers is limited
by elastic scattering from static defects while the energy
relaxation is governed by deformation interaction with bulk
acoustic phonons. Accordingly, §fx can be found from the
Boltzmann equation

€ ddfsk eh) 7 =
Sl x Bl — = = kZ (W Fae( = fi)

(Sfrk

p

— W Fall = fun)] =

. (10)

where 7, is the momentum relaxation time. The straightfor-
ward calculation shows that the electron fluxes in the cones
have the form

, evsin20ny [ d = ©T,
Ji’XZZFz—\/E?(ETwJP)Z)EM’ (11
. evsin20 ny [ d T
Ji,yZZFW?(Em)%M, (12)
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where n 4 are the carrier densities in the cones,n = ny +n_is
the total density, w, = eB, v? /(cE¥) is the cyclotron frequency,
and

[T BeZi3(EeZit + By Zss + EvZan)g?dg
[T Zit + By Zas)? + (EoZ33)21q%dg

s:

Equations (11) and (12) are obtained assuming that Ep >
kT > hQg and [ny —n_| K n.

The total electric current j = j + j_ emerges due to an
imbalance of the j | and j_ contributions in the magnetic field.
Assuming that the magnetic field splits the electron states due
to the Zeeman effect but does not affect the scattering and
taking into account that w.7, 3> 1, as in the experiment, we
estimate the current magnitude

_evsin20 guoB;
B ZﬁEFa}C EF

where g is the effective g factor and i is the Bohr magneton.
For the circularly polarized radiation, the absorbance 7 in the
vicinity of CR has the form

il &1, 13)

_ 2€2EF Tp

= ch*ng 1+ (0 — wc)zrg’

(14)

where n,, is the refractive index. The current j follows the
spectral behavior of the absorbance 1 and exhibits a sharp
peak at CR, whose position depends on the Fermi energy since
w. x 1/EF, in accordance with the experiment, see Fig. 2.

In the experimental setup we measure the voltage drop
across a load resistor of 1 MQ which is much higher than
the sample resistance. The photovoltage induced in the open-
circuit configuration at .7, > 1 is given by

. WcTpd
U=|j—=

15)
o
where a is the sample size and o = ezEptp/(2nh2) is the
conductivity at zero field. At a fixed radiation frequency, the
dependence of photovoltage at CR on the carrier parameters
is given by U « g7,,/(/n v?). The weak decrease of the peak
voltage with the increases in the carrier density by an order of
magnitude from p; to n; is observed in the experiment, see
Fig. 2. The photovoltage is caused by the Zeeman splitting of
electron states and, therefore, is an odd function of magnetic
field and increases at CR much higher than does the radiation
absorption. Thus, the above microscopic theory explains all
major experimental observations. The theory suggests that the
excited electric current is spin polarized. In the experiment
we measure the voltage drop across the contacts caused
by charge accumulation while the carrier spin state is not
directly detected. The measurement of spin polarization of
the photocurrent, e.g., by the optical means or ferroelectric
contacts, is a challenging task to future.

V. SUMMARY

To summarize, we demonstrate that CR absorption by Dirac
fermions in HgTe/HgCdTe QWs of critical thickness results
in a resonant spin polarized electric current. The effect is
very general and can be observed in other Dirac fermion
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systems with a strong spin-orbit coupling, e.g., surface states
in 3D topological insulators like BiySes; and Bi,Tes. For the
latter case such a study is of special interest, because these
crystals are centrosymmetric and, due to symmetry reasons,
the photocurrent emerges only at surface layer. Consequently,
it provides a unique selective access to fine details of their
band structure like, e.g., effective mass and group velocity, as
well as to the spin transport and spin-dependent scattering
anisotropy.”®>® Finally, large resonant currents detected at
low magnetic fields, about 0.5 T for 2.5 THz, indicate that
HgTe/HgCdTe QWs of critical thickness are a good candidate
for frequency selective CR-assisted detectors similar to that
based on photoconductivity in bulk InSb,°* but operating at
about 10 times lower magnetic fields.
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FIG. 6. (Color online) Polarization dependence of the photo-
voltage normalized by radiation power U, /P excited with normal
incident radiation in (a) 6.6 nm and (b) 21 nm QWSs at zero
magnetic field. The normalized photosignal is shown for differ-
ent carrier densities and fitted after U,(a)/P = A + B sin(2a) +
C cos(R).
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APPENDIX: PHOTOGALVANIC EFFECTS AT ZERO
MAGNETIC FIELD

[luminating our (013)-oriented QW structures with nor-
mally incident THz radiation we observed a dc electric current
even in the absence of magnetic field. Figures 6(a) and 6(b)
show the dependence of the photosignal U,/P  j,/P on
the azimuth angle o measured for 6.6 and 21 nm QWs,
respectively. Here « is the angle between the light polarization
plane and the x direction. In both cases the data are well fitted
by Uy(a)/P = A + Bsin(2a) + C cos(2ct). While in 6.6 nm
QWs such a current has not been detected so far, in 21 nm
QWs it was observed early in Ref. 40 and is demonstrated
to be due to the photogalvanic effect.’! Linear and circular
photogalvanic effects for various spectral ranges have been
studied in different III-V, II-VI, and SiGe quantum wells.
Microscopic mechanisms of the photocurrent formation were
widely discussed in the past, see, e.g., Refs. 37, 39, 47, and 62.
We expect that similar mechanisms are also responsible for the
zero-field current formation in HgTe/CdHgTe QWs. However,
these mechanisms, in particular in QWs with the linear energy
spectrum, require further analysis, which is out of the scope
of the current paper. As it is shown in Ref. 40, a particular
feature of the photogalvanic effect in QWs of (013)-orientation
orientation is that, in contrast to (001)-grown QWs, it can
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be excited at normal incidence of radiation. Quantum wells
grown on the (013)-oriented substrate belong to the trivial
point group C,; lacking any symmetry operation except the
identity. Hence, symmetry does not impose any restriction on
the relation between radiation electric field and photocurrent
components. The polarization dependence of the photocurrent
in structures of the C; point-group symmetry for the excitation
along the QW normal with linearly polarized light is given by*

. + -
jx — Xxxy sin 2a _ XXXX 2 Xny XXXX 2 Xny cos 2a 1’7,
(A1)

; [ : Xyxx + Xyyy | Xyxx = Xyyy 1
Jy = | Xyxy sin2a — > 7 cos2a [In,
(A2)

where yx is the third rank photogalvanic tensor. Exactly this
polarization dependence is observed in experiment, see Fig. 6.
For C;-symmetry group all components of the tensor x
are linearly independent and may be nonzero. Consequently,
even for a fixed light polarization, the CPGE photocurrent
direction is not forced to a certain crystallographic axis.
Moggover, it varies with temperature, radiation wavelength,
etc.
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