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Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron
energy-loss spectroscopy by modal decomposition
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In previous publications, qualitative agreement between studies of surface plasmon excitations in nanoparticles
by near-field light scattering and electron energy-loss spectroscopy (EELS) has been found for experiments and
simulations. Here, we present a quantitative method for the comparison of light scattering and EELS for surface
plasmons in metal spheres. Defining the Fourier transform of the modal component of the scattered electric field
along the equivalent electron trajectory enables a direct evaluation of the relative weighting factor for light- and
electron-excited surface plasmon modes. This common quantity for light scattering and EELS is examined for
size, composition, and trajectory dependencies, facilitating the analysis of key differences between light and
electron excitation. A single functional dependence on Drude model plasmon energies is identified to explain the
relative modal weighting factors for light scattering and EELS. This method represents an important step toward
the complete spectral and spatial reconstruction of EELS maps from near-field light scattering calculations.
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I. INTRODUCTION

Investigations of the optical modes of plasmonic nanos-
tructures by electron energy-loss spectroscopy (EELS) in the
transmission electron microscope (TEM) have been realized
recently following instrumental developments in electron
beam monochromation1–3 and a growing interest in developing
plasmonic nanostructures for such applications as sensing
and spectroscopy,4,5 solar energy conversion and storage,6,7

lighting,8,9 catalysis,10,11 and nanophotonic devices.12,13 EELS
in the TEM allows for the examination of plasmonic modes
at nanometer resolution, well below the diffraction limit of
visible light. As such, the information content of EELS signals
recorded in the TEM corresponds to a near-field response
of plasmonic nanostructures. Since it is likewise a near-field
response that enables the unique light scattering (LS) behavior
of plasmonic technologies, EELS is seemingly well suited to
the study of plasmonic nanostructures.

However, EELS spectra and maps do not capture the
same information as does LS, due to differences in plasmon
excitations by the evanescent field of a swift electron and
the time-varying dipolar field of light. Several types of dark
modes excited by electron beams have been reported that
are not generally accessible with light excitation.14–16 For
those modes that are excited by both electrons and light, a
number of approaches for the qualitative comparison of LS
simulations and experimental and simulated EELS signals
have been reported. Commonly, the modulus squared of
the electric field, |E|2, or its component along the electron
trajectory, |Ez|2, is plotted at a plane some distance above the
particle.17,18 Alternatively, far-field LS spectra and |E| have
been compared to EELS19,20 although far-field spectra are
known to exhibit energy offsets in peak maxima in comparison
with the near-field response.21 Several strategies have been
applied including multiple light polarizations in the calculation
of |Ez|2 in order to reproduce EELS signals.17,22,23 Many of
these approaches yield satisfactory qualitative comparisons
between plasmon modes observed in EELS and LS near
fields. Correspondence between EELS and potential at a plane
above the particle has also been reported.24 For translationally

symmetric or thin particles, the electromagnetic local density
of states (EMLDOS) at a plane some distance above the
particle has in fact been demonstrated to correspond well
to the EELS signal.25 The comparison with the EMLDOS
is not universal, though, and several distinctions between the
EMLDOS and EELS signals have been reported.24

Moreover, comparisons with |Ez|2 and the EMLDOS do not
convey the interaction of the electron beam and the particle.
These comparisons are plotted typically at a plane some
distance from the particle, and do not directly represent the
trajectory of the electron. Recent advances in the simulation of
plasmon EELS have elaborated the electron-excited near-field
response26–28 and identified similarities in light- and electron-
induced fields.29 Here we report on a quantitative tool for
directly relating EELS and LS of plasmonic nanoparticles.

As a means for understanding EELS and scanning near-
field optical microscopy (SNOM) signals, Boudarham and
Kociak recently reported on modal decompositions of the
induced charge density, potential, and electric field in the
nonretarded limit.30 The modal decomposition approach offers
general expressions for distinguishing the interaction recorded
in these two different microscopies and has been applied
to simulating the EELS and SNOM signals for plasmonic
nanorods.30 The EMLDOS has also been compared at a
plane above the particle,30 consistent with previous work.25

The correspondence of EELS probabilities to decomposed
modal field or potential contributions30 further underscores
challenges in comparing total fields or total potentials for
EELS and LS.

Here, we demonstrate the tenability of extending the
modal decomposition approach to comparing LS to EELS
for isolated spheres. Boudarham and Kociak define the EELS
signal for nonpenetrating electron trajectories in terms of
the Fourier transform of the modal electric field along the
trajectory.30 Using fully relativistic and retarded expressions
for the EELS probability and LS near a sphere, we now
present a comparison of EELS and LS within this suggested
formalism of a Fourier transform of the modal scattered field
along the direction of propagation. Following comparison
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of the analytical solutions for EELS and LS, the systematic
dependencies on composition, size, and impact parameter are
examined. The success of this approach represents an initial
step in relating LS and EELS signals in a quantitative manner.

II. SURFACE PLASMON MODES OF A SPHERE

The energy loss of a swift electron �E due to surface
plasmon excitation may be described as the work done on the
electron by the induced or scattered electric field acting back
on the electron.31,32 This relationship establishes a connection
to the loss probability �EELS:

�E =
∫ ∞

−∞
dtqe{v · Esca [r(t),t]}

=
∫ ∞

0
dωh̄ω�EELS(ω), (1)

where the electron has charge qe, traveling with constant
velocity v along a straight line trajectory r = (R0,z), and Esca

is the scattered field. Given that Esca [r,ω] = Esca [r,ω]∗ this
expression can be further simplified by Fourier transformation
of Esca [r,t] to yield

�EELS(ω) = qe

πh̄ω

∫ ∞

−∞
dtRe{e−iωt (v · Esca [r(t),ω])}. (2)

Following Zabala and Rivacoba,33 in the frequency domain
the surface plasmon energy loss probability �surf in the
nonretarded case can in turn be written as

�surf(R0,ω) = − 1

π

∫ ∞

−∞
dz

∫ ∞

−∞
dz′Im{ρ(R0,z,ω)∗

×Gsurf(R0,z,R0,z
′,ω)ρ(R0,z

′,ω)}, (3)

where ρ is the charge distribution of the electron beam,
Gsurf is the scalar Green’s function, and R0 = (x,y). The
charge distribution of the electron beam is commonly given as
ρ(R0,z,t) = −qeδ(R − R0)δ(z − vt) and its Fourier transform
is24,30

ρ(R0,z,ω) = −qeδ(R − R0)
eizω/v

v
. (4)

By using a modal decomposition of the induced potential,
Boudarham and Kociak have demonstrated that for nonpen-
etrating electron trajectories, the energy-loss probability in
terms of the potential φ becomes30

�surf

(
R0,

ω

v

)
= − 1

πv2

∑
l

Im

{
gl(ω) − 1

ε2(ω)

}

×
∣∣∣∣φsurf, l

(
R0,

ω

v

)∣∣∣∣
2

, (5)

where gl(ω) are modal weighting factors and ε2(ω) is the
dielectric function of the medium surrounding the particle.
The corresponding electric field and its Fourier transform are

Esurf, l
z (R0,z) = − ∂

∂z
φsurf, l(R0,z), (6)

Esurf, l
z

(
R0,

ω

v

)
= −i

ω

v
φsurf, l

(
R0,

ω

v

)
. (7)

a

b

a
b

FIG. 1. (Color online) Illustration of the definition of the radius
a and impact parameter b for electron (left) and plane wave (right)
excitation of a plasmonic metal nanosphere.

Consequently, the total EELS probability due to surface
plasmon excitation is

�EELS (R0,ω) = 1

πω2

∑
l

Im {−gl(ω)}

×
∣∣∣∣Esurf, l

z

(
R0,

ω

v

)∣∣∣∣
2

. (8)

For simple geometries including spheres and infinite cylinders,
analytical solutions to the Poisson equation have been reported
previously and likewise consist of a sum over modes. In
the case of a sphere, the electron energy-loss probability for
nonpenetrating trajectories is given by34,35

�EELS(b,ω) = 4a

πv2

∞∑
l=1

l∑
m=0

2 − δm0

(l + m)!(l − m)!

× Im {αl(ω)}
[
ωa

v

]2l

K2
m

(
ωb

v

)
, (9)

where Km is a modified Bessel function of the second kind,
δm0 is the Kronecker delta function, a is the sphere radius,
b is the impact parameter as illustrated in Fig. 1, and αl(ω)
are sphere response functions defined in terms of the complex
dielectric function of the particle, ε, by

αl(ω) = l(1 − ε)

lε + l + 1
. (10)

A similar modal sum describes the fully relativistic and
retarded solution to Maxwell’s equations for external electron
excitation.32,36 Following the notation in Ref. 36, we define
the EELS probability as

�EELS(b,ω) = 1

ω

∞∑
l=1

l∑
m=−l

[
C

EELS, a
lm Im{ial}

+ C
EELS, b
lm Im{ibl}

]
, (11)

where al and bl are the electric and magnetic Mie expansion
coefficients, respectively, given as

al = εjl(x2)[x1jl(x1)]′ − jl(x1)[x2jl(x2)]′

ε
[
x1h

(1)
l (x1)

]′
jl(x2) − h

(1)
l (x1)[x2jl(x2)]′

, (12)

bl = jl(x2)[x1jl(x1)]′ − jl(x1)[x2jl(x2)]′[
x1h

(1)
l (x1)

]′
jl(x2) − h

(1)
l (x1)[x2jl(x2)]′

. (13)

Here x1 = ka, x2 = ka
√

ε, k = 2π/λ is the wave number, and
jl and h

(1)
l are spherical Bessel functions and spherical Hankel
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functions, respectively. Primes denote derivatives with respect
to the argument x1 or x2. The EELS excitation introduces
coefficients CEELS, a and CEELS, b given as

C
EELS, a
lm = K2

m

(
ωb

vγ

)
1

l(l + 1)
|2mNlm|2 , (14)

C
EELS, b
lm = K2

m

(
ωb

vγ

)
1

l(l + 1)

∣∣∣∣ c

vγ
Mlm

∣∣∣∣
2

, (15)

where γ is the Lorentz contraction factor, γ = 1/
√

1 − v2/c2,
and Nlm and Mlm are given in terms of Gegenbauer polynomi-
als Gu

n:

Nlm =
√

(2l + 1)

π

(l − |m|)!
(l + |m|)!

(2|m| − 1)!!

(vγ /c)|m| G
|m|+1/2
l−|m|

(
c

v

)
, (16)

Mlm = Nlm+1

√
(l + m + 1)(l − m)

+Nlm−1

√
(l − m + 1)(l + m) . (17)

The retarded expression for the EELS probability is given in
terms of the same Mie expansion coefficients as the scattered
field resulting from a plane wave incident on a sphere. The
decomposition in both EELS and LS analytical expressions
is therefore defined over the same modes. Specifically, the z

component of the electric field induced by a plane wave of
light can be written in spherical coordinates (r,θ,φ) as37

Ez(r,θ,φ,ω) =
∞∑
l=1

[
C

LS, a
l ial + C

LS, b
l bl

]
, (18)

where al and bl are again the Mie expansion coefficients given
in Eqs. (12) and (13) and the corresponding light scattering
coefficients CLS, a and CLS, b are given by

C
LS, a
l = El

sin θ cos φ

kr

× [
l(l + 1)h(1)

l (kr)πl cos θ − ξ ′
l τl

]
, (19)

C
LS, b
l = El

sin θ cos φ

kr
ξlπl, (20)

where the modal field coefficient derived from the expansion of
a plane wave in spherical harmonics, El , and the Ricatti-Bessel
function ξl are given by

El = ilE0(2l + 1)

l(l + 1)
, (21)

ξl = krh
(1)
l (kr). (22)

Here E0 is the amplitude of the incident plane wave. The
angular functions πl and τl are given by the initial values and
recurrence relations:

π0 = 0, (23)

π1 = 1, (24)

πl = 2l − 1

l − 1
(cos θ )πl−1 − l

l − 1
πl−2, (25)

τl = l(cos θ )πl − (l + 1)πl−1. (26)

In order to directly compare LS and EELS, the LS near
field can be brought into a form compatible with the EELS

probability. Because the electron probes along its trajectory
and, more precisely, loses energy with a probability propor-
tional to the Fourier transform of the electric field [Eq. (8)],
a distinct quantity can be defined to translate the LS near
field into a form analogous to the EELS probability. This
quantity will be referred to here likewise as a probability for
the purpose of comparison with the EELS probability. It does
not itself represent a physical probability in LS but provides
a convenient means for quantitatively comparing the distinct
excitation signals. The transformed LS probability is defined
by inserting the LS electric field for a particular mode l into
the equation for the EELS probability given in terms of the
electric field [Eq. (8)]:

�LS
l = 1

πω2

∣∣∣∣
∫ ∞

−∞
dze−iωz/vELS, l

z (R0,z,ω)

∣∣∣∣
2

. (27)

Here, Eq. (8) has been rewritten in the form

�EELS
l = 1

πω2
Im{−gl(ω)}

∣∣∣∣
∫ ∞

−∞
dze−iωz/vEEELS, l

z (R0,z)

∣∣∣∣
2

(28a)

= 1

πω2

∣∣∣∣
∫ ∞

−∞
dze−iωz/v[Im{−gl(ω)}]1/2EEELS, l

z (R0,z)

∣∣∣∣
2

(28b)

= 1

πω2

∣∣∣∣
∫ ∞

−∞
dze−iωz/vEEELS, l

z (R0,z,ω)

∣∣∣∣
2

, (28c)

where

EEELS, l
z (R0,z,ω) = [Im{−gl(ω)}]1/2EEELS, l

z (R0,z). (29)

The definition of the transformed LS probability in Eq. (27)
is directly comparable with Eq. (28c), distinguished by the
respective LS or EELS field E l

z (R0,z,ω). Insertion of the
analytical solution to Maxwell’s equations for the LS field
of a sphere for a particular mode l [Eq. (18)] gives

�LS
l = 1

ω2

∣∣∣∣
∫ ∞

−∞
dze−iωz/v

[
C

LS, a
l ial + C

LS, b
l bl

]∣∣∣∣
2

. (30)

A change from the spherical coordinates (r,θ,φ,ω) of Eq. (18)
to Cartesian coordinates (R0,z,ω) is implicit in the symbolic
notation in Eq. (30).

Further, the analytical EELS probability given by Eq. (11) is
substituted for the expression for the EELS probability in terms
of electric field given in Eq. (8) or the equivalent Eq. (28c). For
a particular mode l, the transformed LS and EELS probabilities
are then given as

�LS
l (b,ω) = ω−2

∣∣Fω/v

{
C

LS, a
l

}
ial + Fω/v

{
C

LS, b
l

}
bl

∣∣2
, (31)

�EELS
l (b,ω) = ω−1

l∑
m=−l

[
C

EELS, a
lm Im{ial} + C

EELS, b
lm Im{ibl}

]
.

(32)

Here Fω/v denotes the Fourier transform with respect to
z as given in Eqs. (27)–(30). In the approximation that
electric modes dominate, which is true for plasmonic metals
commonly investigated by EELS and LS, the magnetic terms
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may be eliminated resulting in the comparison

�LS
l (b,ω) = χLS

l |ial|2 , (33)

�EELS
l (b,ω) = χEELS

l Im{ial}, (34)

where now the coefficients are rewritten in the forms

χLS
l = 1

ω2

∣∣Fω/v

{
C

LS, a
l

}∣∣2
, (35)

χEELS
l = 1

ω

l∑
m=−l

C
EELS, a
lm . (36)

For both EELS and transformed LS probabilities the modal
maxima are given by the zeros of the denominator of the
Mie expansion coefficient.38 For the case of surface plasmons
in metals, where the dielectric function is dominated by a
negative real part, Im{ial} ≈ |ial| and consequently the same
modes appear in transformed LS and EELS probabilities. The
Mie expansion coefficients in fact give modes defined only by
the particle geometry, as dictated by the sphere radius, and
composition, given by the dielectric function. The remaining
terms determine the relative weight of each mode but depend
only on the physical parameters of the excitation, the impact
parameter and velocity.

The modes given by the Mie expansion coefficients are
not identical to the eigenmodes proposed by Boudarham
and Kociak as the geometric eigenmodes proposed in the
nonretarded case are independent of composition and size.30

However, the fundamental modes of a sphere determined
by solutions to Maxwell’s equations are required in order
to account for sizable retardation effects,36 and these modes
provide the best analogy to the nonretarded modes determined
from solutions to the Poisson equation.30

III. COMPUTATIONAL METHODS

In order to evaluate the outlined comparison of EELS and
LS and to examine the roles of composition, size, and impact
parameter, Eqs. (31) and (32) were computed numerically.
Equation (32) was calculated using a MATLAB function
implementation following Refs. 32 and 36. Difficulties in
evaluating the Fourier transform of the spherical terms in
Eq. (31) were readily avoided as the transformation was
approximated by numerical evaluation of discretized Mie light
scattering near-field calculations. Such LS calculations were
performed using near-field Mie scattering codes adapted from
MATSCAT,39 a publicly available MATLAB project based on
programs by Bohren and Huffman.37 For comparison to EELS,
the near field was transformed according to Eqs. (30) and (31).
Convergence of the definite integrals used to approximate
the Fourier transform in Eq. (30) was confirmed for all
presented calculations. Integration limits of ±8a and a step size
dz ≈ �z = 0.04a were typically sufficient. The decay of the
scattered electric field [Eq. (27)] away from the sphere surface
predominantly determined the convergence requirements. For
example, for a 100 nm Al sphere and l = 1, Re{Ez} and Im{Ez}
at the limits of integration were each <2% of the maximal
values. Consequently, the integrand contributed minimally
beyond these limits. Evaluation of extended integration limits

and finer step sizes yielded peaks with energy positions
consistent within the energy step size of 0.01 eV and absolute
intensities within 6% at b = 1.1a. For both LS and EELS,
modes l � 15 were calculated to adequately represent the total
EELS probability.36

For LS calculations, the polarization of the plane wave
was selected to coincide with the predominant electric field
direction toward the electron in a corresponding EELS
configuration. Comparisons of LS and EELS induced fields
have previously demonstrated the validity of such selection
of the light polarization.29 In both LS and EELS calculations,
Drude model dielectric functions of the form

ε(ω) = 1 − ω2
P

ω(ω + i�)
(37)

were used to model the response of plasmonic metal spheres.
Here ωP is the plasmon frequency and � is an internal damping
parameter.

IV. RESULTS

Figure 2 presents a demonstration of the precise match
between individual modes in EELS and transformed LS for
the case of an Al sphere (10 nm diameter, b = 1.1a). In each
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FIG. 2. (Color online) Normalized modes for l = 1–4 calculated
by the transformed LS probability �LS

l [solid black, Eq. (30)] and
the analytical EELS probability �EELS

l [solid red, Eq. (11)] for a
10-nm-diameter Al sphere modeled with a Drude dielectric function
parametrized according to h̄ωP = 15 eV, h̄� = 0.5 eV (following
Ref. 32). The total EELS probability �EELS (dashed blue) is also
shown for reference. Impact parameter b = 1.1a.
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case, LS modes have been scaled to the maximum in the
corresponding EELS mode and normalized to the peak in the
EELS probability �max. The total EELS probability is shown
for reference. Individual transformed LS and EELS modes are
closely matched in position, linewidth, and line shape.

The well-matched modal characters recovered from trans-
formed LS are not represented in the more common com-
parison of EELS with |E|2 or |Ez|2 at a plane above the
particle. Figures 3(a)–3(c) illustrate the key difficulty in
comparing EELS signals to |Ez|2 at a plane above a sphere
for a 100-nm-diameter Al sphere (b = 1.1a), a case where
differences are pronounced. The line shape is distorted as a
function of energy, and moreover the peak position is not a
constant function of distance above the particle. In Fig. 3(c),
the transformed LS recovers the EELS line shape [Fig. 3(b)]
and yields a single peak position. Selection of a plane above a
particle for comparison with point dipole excitation has been
shown to bear qualitative similarity to EELS for potential
and fields because the spatial decays have similar functional
forms to the LDOS.24,30 The selection of a particular plane,
however, cannot be optimized24 and comparisons are therefore
qualitative only. For plane-wave light excitation, qualitative
analogy between the field at a plane near the particle and EELS
may be possible but does not provide a method for consistent
quantitative comparison with EELS.

An alternative simple comparison of LS to EELS is the
projection of a physical property along the trajectory. In
the limit of small ωz/v, the Fourier transform in Eq. (30)
approaches an integral along the trajectory. Figure 4 presents
an evaluation of this approximation for (a) the electric field and
(b) the electric potential. Possible approximations are given
explicitly as

�l ≈
∣∣∣∣
∫ ∞

−∞
dzEl

z(R0,z)

∣∣∣∣
2

, (38)

�l ≈ 1

ω2

∣∣∣∣
∫ ∞

−∞
dzEl

z(R0,z)

∣∣∣∣
2

, (39)

and

�l ≈
∣∣∣∣
∫ ∞

−∞
dzφl(R0,z)

∣∣∣∣
2

, (40)

where Eq. (38) gives a simple projection of the electric field,
Eq. (39) is a modified projection of the electric field following
Eq. (8), and Eq. (40) is a projection of the electric potential.
The Fourier transforms in terms of electric field and potential
are given in Eqs. (5)–(7). Figure 4(a) presents the projected
electric field along the trajectory for modes l = 1–3. The
projection of Ez is catastrophic particularly for odd modes
(l = 2n + 1, n = 0,1,2, . . .). These odd modes consist of an
odd number of nodes in the electric field and consequently
have nearly equal contributions of opposite signs above and
below the plane of the sphere. Even modes are not as affected
because the associated fields are dominated by the field at the
plane containing the center of the sphere. The modal Fourier
transformation avoids these artifacts.

Figure 4(b) highlights the superior approximation of pro-
jecting the electric potential along the trajectory. For both
even and odd modes, the integrated potential along the
trajectory yields signals very similar to EELS or the Fourier
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FIG. 3. (Color online) (a) The electric field intensity |Ez|2 for
mode l = 1 plotted for planes 0 to 150 nm above a 100-nm-diameter
Al sphere (increments of 10 nm shown). The heights are given
from the plane containing the uppermost point of the particle. The
(b) corresponding EELS and (c) transformed LS probabilities for the
dipolar mode (l = 1) are presented for comparison. Impact parameter
b = 1.1a.

transform of the potential. Nevertheless, the Fourier transform
of the potential along the trajectory yields greater accuracy in
comparing LS and EELS.

By transforming LS for comparison with EELS, not only do
individual modes correspond to those observed in EELS, but
the relative weight of transformed LS modes varies smoothly
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FIG. 4. (Color online) Comparison of EELS and transformed LS to alternative integrals of (a) field Ez and (b) potential φ for modes
l = 1–3 for a 10 nm Al sphere. Comparisons are plotted as �l normalized to the peak value �max

l . (a) (1) projection of Ez given by Eq. (38);
(2) projection adjusted by ω−2 given by Eq. (39). The transformed LS and EELS modes follow Eqs. (30) and (11), respectively. (b) Projection
of φ given by Eq. (40), transformed LS calculated from the Fourier transform of the electric potential, and the analytical EELS probability.
Impact parameter b = 1.1a.

and systematically for variation in composition, sphere size,
and impact parameter. Figure 5(a) presents composition-
dependent variation in the relative weighting of transformed
LS modes and EELS modes. The relative weights of modes
as a function of the mode number l decay approximately
exponentially. Fitting of the mode number dependence for
several metals modeled by Drude dielectric functions revealed
a consistent correlation between the rate of decay and the
plasmon energy ωP . Functions of the form const × e−αl were
used for fitting as consistent estimators of the rate of decay.
The exact underlying functional form of the relative weighting
factors may differ but the decay rates are captured well using
exponential functions. Drude model parameters for Al, Ag,
Na, and Cu followed Refs. 32 and 40. Additional hypothetical
dielectric functions were examined to evaluate trends in ωP .

For both 5-nm- and 50-nm-diameter spheres, the rate of
decay varies monotonically and as a single, consistent function
of ωP b/c [see Fig. 5(b)]. As ωP b/c tends toward zero, the rate
of decay increases. At higher ωP b/c, the rate of decay falls off
gradually. The functional form matches the anticipated ratio of
coefficients χl given by Eqs. (35) and (36), which determine

the energy (h̄ω) and impact parameter (b) dependencies for
each mode (see also Fig. 8 and Sec. V).

The size dependence of EELS and transformed LS is
examined separately in Fig. 6 for Al spheres 10–300 nm in
diameter (b = a following Ref. 35). Figure 6(a) depicts the
size-dependent redshifting of modes due to retardation. The
redshifting of modes follows the same functional form for
EELS and transformed LS. The slight redshifting apparent in
EELS at the high energy accumulation point for large spheres
[(Fig. 6(a), left)] is due to incomplete modeling of the total
EELS probability by the cutoff established at l = 15. For
transformed LS (Fig. 6, center and right), the signal is plotted as
�LS/a3 to adjust for the increasing excited volume for LS as a
function of sphere size. Whereas the excited volume for EELS
is a function of the electron velocity,32 the excited volume in
LS increases with sphere size because the plane wave is of
constant magnitude throughout the sphere.

Figures 6(b)–6(d) detail the contribution of each mode
as a function of reduced radius aωl/v. The fully retarded
EELS probability closely follows the trends reported for the
nonretarded case.35 Here ωl = ωP

√
l/(2l + 1) as for the
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FIG. 5. (Color online) (a) Ratios of transformed LS and EELS
peak values �max for modes l = 1–15 for 5-nm-diameter spheres of
Al, Ag, Na, and Cu and additional hypothetical metals modeled by
Drude dielectric functions. Metals were parametrized according to
Refs. 32 and 40. M3 and M1 refer to metals modeled with h̄ωP =
3 eV and h̄ωP = 1 eV, respectively, and h̄� = 0.1 eV. (b) The exponent
α for the rate of decay in terms of the plasmon energy ωP for 5-nm-
and 50-nm-diameter spheres (b = 1.1a). Modes l = 1–6 were used
for fitting to avoid numerical imprecision in higher order modes due
to their low excitation probability.

nonretarded expression given in Eq. (9).35 The EELS modes
are maximally excited at values of aωl/v ≈ l. Due to the

noted increase in excited volume for LS, the transformed
LS modes all increase monotonically as a function of aωl/v.
As a simple, qualitative correction, adjustment by the sphere
volume yields the size dependence for transformed LS in
Fig. 6(d). Once corrected for the excited volume, the size
dependence resembles the functional form of the EELS
probability in Fig. 6(b). The correspondence is not exact
because the correction for the excited volume is a coarse
approximation but does, however, point to the key difference
in excited volume when comparing transformed LS and EELS.

This distinction in the nature of surface plasmon mode
excitation in transformed LS and EELS is borne out further
by trends in impact parameter dependence (see Fig. 7). For
10-nm-diameter Al spheres, the normalized l = 1 mode
follows the identical impact parameter dependence for trans-
formed LS and EELS [see Fig. 7(a)]. The l = 2 mode is only
weakly excited in LS and is near zero for a 10-nm-diameter
sphere. For 100-nm-diameter Al spheres [see Fig. 7(b)], the
impact parameter dependence of the l = 1 mode differs in
transformed LS and EELS. The transformed LS signal falls
off more gradually than the EELS signal. The l = 2 mode is
again relatively weakly excited.

The difference in impact parameter dependence for
100-nm-diameter spheres can be understood by examining the
variation of the relative impact parameter (b/a) dependence
on size, presented in Fig. 7(c). In transformed LS, the relative
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FIG. 6. (Color online) (a) Size dependence of (left) EELS and (center) volume-adjusted transformed LS for 10–300 nm diameter Al spheres.
The size dependence of volume-adjusted transformed LS modes l > 1 (right) is replotted separately. Probabilities are plotted on a logarithmic
color scale. (b) EELS probability, (c) transformed LS, and (d) volume-adjusted transformed LS for modes l = 1–6 as a function of reduced
radius aωl/v. In (c) the transformed LS modal �l is replotted on a logarithmic scale to visualize the low-intensity modes (inset). The impact
parameter is set to grazing incidence such that b = a, following Ref. 35.
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for the l = 1 mode (�dip). (c) Relative impact parameter dependence
of l = 1 probability for 10 nm (green) and 100 nm (black) Al spheres
for transformed LS and EELS.

impact parameter dependence is identical regardless of size.
In EELS, the rate of decay with increasing relative impact
parameter is greater for 100 nm spheres than for 10 nm spheres.
This trend can be explained by the difference in the excited
volume for LS and EELS. For LS, the excitation is identical
for relative impact parameters for any size. For EELS, the
excited volume in larger spheres is smaller for the same relative
impact parameters because the absolute impact parameter

places the electron trajectory further from the sphere. This
analysis suggests comparisons of LS and EELS are more
straightforward for small spheres. The comparison is also
viable for larger spheres, but the adjustment for the systematic
variation in impact parameter must be taken into account.

The dependencies on sphere size and impact parameter for
electron excitation have been noted in analyses of EELS of
surface plasmons for many years,34,41 and the corresponding
variations in the comparison with LS are therefore unsurpris-
ing. However, previous methods for comparing LS have not
provided a single metric �LS for quantitative comparison. The
presented method allows for scaling each mode in LS to the
corresponding EELS signal for a particular set of physical
parameters. Cumulatively, the trends in composition, size,
and impact parameter establish the parameter space for the
quantitative comparison of LS and EELS.

V. DISCUSSION: LIMITATIONS AND APPLICATIONS

Several characteristics of EELS and transformed LS of
surface plasmons require careful consideration for broader
application of the comparison, including the functional forms
of the energy-, space-, and velocity-dependent coefficients χLS

l

and χEELS
l in Eqs. (35) and (36) and the role of the direction

of light polarization relative to the excited particle.
For large spheres, the large redshifts due to retardation place

the modes given by the Mie expansion coefficients in spectral
regions that also exhibit large gradients in the coefficients
χLS

l and χEELS
l . Figure 8 plots the energy dependence of the

l = 1 coefficients for an impact parameter b = 30 nm and an
electron velocity corresponding to 300 kV. Only the Bessel
function corresponding to m = l is included in χEELS

l for
simplicity as it is the main contribution to the coefficient.42

Both EELS and transformed LS coefficients tend toward large
values at low energies and approach zero at high energies.

4 6 8 10 12
0.1

1

10

100

lo
g 10

(χ
)

Energy (eV)

 trans. LS
 EELS

FIG. 8. (Color online) Coefficients χl following Eqs. (35) and
(36) for dipolar (l = 1) surface plasmon mode excitation by (black)
a plane wave of light and (red) a 300 kV electron. Coefficients were
normalized at the energy corresponding to the maximum in the l = 1
mode for the 10-nm-diameter Al spheres in Fig. 1. Impact parameter
b = 30 nm.
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For broadened and redshifted plasmon modes, the product of
the coefficient χl and the Mie coefficient results in a shift
of the modal maximum. This shift is readily understood by
considering the effect of the coefficient χl on the modal peak
given by the Mie coefficients: a maximum will occur for a
particular mode where the derivative of the modal probability is
zero. Without considering the coefficient χl , these maxima are
given by the zeros of the denominator of the Mie coefficients38

(see also Sec. II). For simplicity of notation these peaks in the
Mie coefficients will be labeled here as μl . Given the positive
values of χl and μl , the product of the coefficient χl and a
peak μl requires the respective derivatives to be of opposite
sign: 0 = [χlμl]′ = χlμ

′
l + χ ′

l μl . The negative slope of the
coefficient χl (Fig. 8) results in a shift of the modal peak
maximum to lower energies where the slope of μl is positive.

This shift is problematic in the case of comparing plasmon
EELS and transformed LS probabilities in that the magnitude
of the shift is not consistent between EELS and LS. Moreover,
this shift is not consistent for EELS signals recorded at
different electron velocities. For slower electrons, the lowest
energy modes are redshifted further compared to high velocity
electrons. In the limit as the electron velocity approaches the
speed of light, however, the transformed LS modal peak occurs
at lower energy than the peak in EELS. The coefficients χLS

l

and χEELS
l also depend on the impact parameter, contributing

to the differences noted in Fig. 7. The energy offset induced
by the EELS and transformed LS coefficients remains a
predictable and systematic modification of the underlying
modes defined by the Mie coefficients and determined only
by composition and geometry. In the possible application of
this method to comparing EELS and LS in other geometries,
the velocity, spatial, and energy dependence of modes will
necessarily have to be assessed separately. The singular trend
in relative probabilties in Fig. 5(b) demonstrates the plausible
comparison of LS and EELS even for sphere sizes (ca. 50 nm)
with nonzero energy offsets.

The polarization of the incident light wave also plays
an important role in comparing LS and EELS. In the case
of the sphere, the symmetry of the particle allows for a
simple approximation that the predominant contribution to
the electron excitation is due to electric field components
parallel to the shortest distance from the center of the sphere
to the electron trajectory. This approximation adequately
resembles the electric field of a polarized plane wave for
impact parameters coincident with the axis of polarization.
Figure 9(a) illustrates these geometries. The expression for
the z component of the electric field outlined in Eqs. (18)–
(26) does not specify a particular subset of trajectories. The
selection of trajectories coincident with the polarization of the
field matches the most physically appropriate configuration
and yields consistent comparisons for sphere composition,
size, and impact parameter.

The critical distinction between the fields near an electron
and those of a polarized plane wave is the spatial variance
or invariance of the polarization. Near an electron, the field
polarizations vary significantly in (x,y,z) (see Fig. 9). In
the case of a plane wave, the polarization is invariant with
respect to coordinates. Notably, the spatial variance of the
field near an electron is not identical to a superposition of
multiple polarizations. The superposition of two antiparallel

(b) (c)

(a)

EELS trans. LS

FIG. 9. (Color online) (a) Diagrams illustrating the electric field
directions for (left) EELS and (center) LS. The direction of the
electron and corresponding light propagation is into the page. To
account for the position dependence of EELS excitation, the field
polarization is rotated for calculating transformed LS probabilities
(right). Maps of the dipolar (l = 1) surface plasmon excitation for
external trajectories in (b) EELS and (c) transformed LS for a
10-nm-diameter Al sphere. Scale bars are 5 nm.

polarizations of light, for example, would in fact cancel,
whereas the antiparallel field polarizations near an electron
do not coincide in space. Such spatial separation of field
polarization can be used to model nondipole modes in LS,43

but is an artificial computational construct and does not
model LS excitations. Consequently, a single polarization or
set of polarizations must be selected in LS for comparison
with EELS. The presented method enables various choices in
principle, possibly selections corresponding to polarizations in
experimental or application configurations. Transformed LS
then gives �LS for optically accessible modes. Here, we note
that for external electron trajectories, there exists a single spa-
tially invariant component of the electric field interacting with
the metal sphere. The corresponding plane wave polarization
parallel to this field component is depicted in Fig. 9(a).

For comparing the entire signal recorded in an EELS map,
the polarization of the LS electric field must be rotated to
match the radial excitation condition. Figures 9(b) and 9(c)
present a calculated EELS map for a 10 nm Al sphere and the
corresponding matching transformed LS map accounting for
360◦ polarization rotation, each at the energy of the peak in
the l = 1 mode. For the case of a sphere, such a polarization
correction is computationally trivial as all radial lines are
equivalent by symmetry but serves to demonstrate an approach
to the issue of light polarization. Given the description of the
relative weighting factors outlined in Sec. IV, each point in the
entire data cube �LS(R0,ω) can be scaled quantitatively to the
EELS signal.

The consideration of polarization in relating EELS and
LS plasmon responses is critical for connecting observations
in EELS to plasmonic devices and technologies driven by
light excitation. EELS fails to reproduce the polarization
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dependent excitation of plasmonic particles and prospective
device components in a straightforward manner,23 and so
including fair polarization comparisons with LS will prove
important in extending transformed LS comparisons to more
complex geometries. Even in the case of a sphere, where
polarization dependencies in LS are minimal, EELS mapping
does not reveal the dipolar quality of the l = 1 mode (see
Fig. 9). Accounting for the opposing fields near an electron
may be necessary for appropriate transformation of LS
for comparison with EELS in geometries that give rise to
plasmonic hot spots in LS but are not directly detected by EELS
(e.g., particle dimers).17,24,44 Several approaches to symmetry
breaking to make such modes accessible to light have been
reported.14,43 For many geometries and electron trajectories,
the scattered electric fields for LS and EELS will be similar,29

encouraging the comparison of transformed LS and EELS in
other nanoparticle shapes.

Moreover, the direct comparison of LS and EELS will
allow for clear distinction between bright and dark modes.
Nondipole modes, while generally considered dark, are excited
by light when retardation effects are accounted for, as in
the case of the sphere, or by substrate-induced symmetry
breaking.43 Other dark modes such as disk breathing modes15

and toroidal modes16 depend uniquely on the spatially varying
field polarization of an electron beam and cannot be excited
readily by a plane wave. The presented method, by providing
a direct comparison of LS and EELS, enables the separation
of the origins of such dark and bright modes.

Geometries of reduced symmetry present challenges not
only due to the additional LS polarization considerations, but
also due to the absence of analytical modal decompositions
of the electric field. Semianalytical approaches such as T-
matrix methods27,45 may present an alternative for spheroidal
geometries. Small particles exhibiting predominantly dipolar
excitations may be adequately compared without explicit
modal decomposition of the field given sufficient resolution
of the electric field contributions in the energy dimension. The
successful application of nonretarded expressions [Eq. (8)]
for the analysis of LS and EELS by modal decomposition
may invite similar approaches to the comparison of LS
and EELS using total field methods where analytical modal
decompositions are not possible. An analogous method of
comparison might insert an LS field into the general expression
for EELS probability [Eq. (2)]. Such a comparison has not
been explored here in favor of LS and EELS comparisons for
each mode. The modal decomposition approach is not limited
to particular geometries and suggests that geometric modes
underpin surface plasmon excitation probabilities generally for
various excitations.30 A total field approach would allow for
comparison of LS and EELS using discrete dipole approxima-
tion methods.28,29,46 Quasistatic eigenmode decompositions
outlined in work by Boudarham and Kociak30 and imple-

mented using the boundary element method26,32,47 may also
hold promise for modal decomposition comparisons in other
geometries. The success of numerical evaluation of the Fourier
transform of the electric field along a trajectory for spheres
supports the extension of the approach to other discretized
methods. Work on developing transformed LS comparisons
for less symmetric geometries is underway in our group.

VI. CONCLUSIONS

Surface plasmon resonances probed by EELS have been
compared directly to excitations by light by performing
a modal decomposition and Fourier transformation of the
component of the electric field or potential along the trajectory.
This method offers quantitative relationships between surface
plasmon modes excited by electrons and light. Across a wide
range of plasmon energies ωP , the relative weighting of modes
in EELS and transformed LS is described by a single function.
For small spheres, the approximation of the Fourier transform
as a projection of potential may also serve to compare LS and
EELS.

In comparing EELS and transformed LS, the excited
volume for an electron or a plane wave gave rise to key
distinctions in the relative weighting of surface plasmon
modes. The comparison of transformed LS and EELS is simple
in the case of small spheres where the excited volume is similar.
For large spheres, the excited volume increases for LS but
proportionally decreases for EELS. The variation in excited
volume for electron excitation is further manifest in variation
in the impact parameter dependence of EELS with size.

As a demonstration of the comparison of polarized plane
wave illumination and EELS, transformed LS mapping of a
sphere outlined requirements for evaluating polarization and
selecting trajectories particular to the particle geometry. Ten-
able methods for the comparison of LS and EELS simulations
and experimental data will allow for enhanced validation and
assessment of the technologically relevant LS behavior of
plasmonic nanoparticles by EELS. Further application of this
direct link between LS and EELS may enable the estimation
of such properties as the near-field enhancement directly from
EELS data.
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