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The scaling of island and monomer density, capture zone distributions (CZDs), and island size distributions
(ISDs) in reversible submonolayer growth was studied using the Clarke-Vvedensky model. An approach based
on rate-equation results for irreversible aggregation (IA) models is extended to predict several scaling regimes in
square and triangular lattices, in agreement with simulation results. Consistently with previous works, a regime
I with fractal islands is observed at low temperatures, corresponding to IA with critical island size i = 1, and a
crossover to a second regime appears as the temperature is increased to εR2/3 ∼ 1, where ε is the single bond
detachment probability and R is the diffusion-to-deposition ratio. In the square (triangular) lattice, a regime with
scaling similar to IA with i = 3 (i = 2) is observed after that crossover. In the triangular lattice, a subsequent
crossover to an IA regime with i = 3 is observed, which is explained by the recurrence properties of random
walks in two-dimensional lattices, which is beyond the mean-field approaches. At high temperatures, a crossover
to a fully reversible regime is observed, characterized by a large density of small islands, a small density of very
large islands, and total island and monomer densities increasing with temperature, in contrast to IA models. CZDs
and ISDs with Gaussian right tails appear in all regimes for R ∼ 107 or larger, including the fully reversible
regime, where the CZDs are bimodal. This shows that the Pimpinelli-Einstein approach for IA explains the main
mechanisms for the large islands to compete for free adatom aggregation in the reversible model, and may be the
reason for its successful application to a variety of materials and growth conditions.
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I. INTRODUCTION

The morphology and physical properties of thin films
and multilayers are strongly related to the initial stages of
their formation.1–3 It motivated a large number of works on
modeling the submonolayer growth regime,4–6 in which a
single incomplete layer of adatoms is being formed. These
models usually consider a set of fundamental processes
(diffusion, aggregation, etc.) in order to find activation energies
and related quantities for a particular deposition process or
with the aim of investigating universal features valid for several
materials and techniques.

The simplest models consider irreversible aggregation (IA)
of atoms to islands of size larger than a critical value i.
Rate-equation (RE) approaches predict the scaling of island
and monomer densities (Nisl, N1)4,5 for any i and show
good agreement with simulation data, usually performed for
i ranging between 1 and 3.4 The shapes of the island size
distributions (ISDs) were proposed by different approximation
schemes4–9 and are still the subject of debate. A recent advance
by Pimpinelli and Einstein (PE)10 proposed that the capture
zone distributions (CZDs) are described by the Wigner surmise
(WS) from random matrix theory11 [the capture zone (CZ) of
an island is defined as the area in which a diffusing adatom
is more likely to attach to that island than to any other one].
After an initial controversy,12–14 that proposal was supported
by simulation results for various island shapes after suitable
rescaling,15 under conditions of high temperatures and low
coverages. IA models are expected to model real systems
in temperatures sufficiently low to neglect atom detachment
from islands, but this condition is not obeyed in many real
systems, even at room temperature. For this reason, suitable
choices of the size i are frequently combined with internal

restructuring mechanisms to reconcile experimental data and
IA predictions.7,16–19

On the other hand, a smaller number of works have
addressed scaling properties of models with reversible ag-
gregation (RA).20–26 Works on square lattices, which simulate
metal (100) homoepitaxy, have shown a crossover between IA
scaling regimes with i = 1 and i = 3.21,23 Partially reversible
models allowing only single-bond detachment were studied
using simulations and improved RE approaches and confirmed
the crossover scaling between those regimes.27,28 The work on
triangular lattices, which is related to (111) epitaxy, shows a
crossover between regimes with i = 1 and i = 2.27,28

In this paper, we study the scaling properties of island
density, CZDs, and ISDs in a model of fully reversible island
growth, using numerical simulations in square and triangular
lattices and a scaling approach based on RE results for IA
models. We consider a canonical bond-counting model of
the Clarke-Vvedensky29 type, in which the activation energy
for an adatom hop to a neighboring site depends only on
the number of nearest neighbors at its initial position, with
the temperature T kept fixed during the growth. It respects
detailed balance conditions, in contrast to IA. For a fixed
coverage θ and increasing deposition temperature, the islands
evolve from a fractal shape (typical of IA with no island
restructuring) to a compact shape dominated by processes of
adatom detachment and reattachment, and the island density
continuously decreases. The previously studied crossovers
of IA regimes are reproduced, but an additional crossover
from i = 2 to i = 3 in triangular lattices is found. At high
temperatures, a nontrivial regime where the island density
increases with temperature is observed, with a large density
of small clusters coexisting with large compact islands. The
Gaussian right tail of CZDs predicted by the PE approach is
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observed in all regimes for small coverages and sufficiently
high temperatures, even when the CZDs are bimodal.

The rest of this work is organized as follows. In Sec. II,
we present the RA model and summarize previous theoretical
results for IA and RA. In Sec. III, we present the simulation
results and a scaling approach in square lattices. In Sec. IV,
that discussion is extended to triangular lattices. Section V
summarizes our results and presents our conclusions.

II. BASIC DEFINITIONS AND THEORETICAL
APPROACHES

In the RA model, the adsorbed atoms can occupy sites
of a square or triangular lattice, with the maximum of one
adatom per site. There is a random flux of F atoms per
site per unit time. Adsorption is allowed only if the site
of incidence is empty, so that a single layer is formed on
the substrate lattice. This condition is reasonable for small
coverages. The hopping rate of an adatom at a given site
�r is given by D = D0 exp (−Eact/kBT ) (proportional to its
surface diffusion coefficient), with the activation energy Eact =
Es + nEN , where n is the number of adatoms in nearest
neighbor (NN) sites of �r , Es is an energy barrier for surface
diffusion of free adatoms, and EN is the bond energy for
each NN.

The parameters F = 0.1 s−1, D0 = 1013 s−1, and Es =
1.3 eV were kept fixed in most simulations. The last value
is characteristic of Fe/Fe(100) epitaxy.20 Some data were
obtained with F = 1 s−1 and 10 s−1 in order to confirm
general scaling predictions. Broad ranges of temperature
were studied, thus the conclusions can be extended to other
systems by considering the diffusion-to-deposition ratio of
free adatoms R ≡ D/F as the main model parameter. Due to
the large frequency D0, one typically has R � 1, even at low
temperatures.

Several values of the bond energy EN are analyzed,
and scaling approaches are facilitated by using the detach-
ment probability (binding factor) ε ≡ exp (−EN/kBT ). Since
EN � 0.3 eV is considered throughout this work and the
largest experimentally relevant temperatures do not exceed
kBT ∼ 0.1 eV, the condition ε � 1 always applies. It is
also important to observe that both R and ε increase with
temperature.

Simulations were performed in very large lattices, typically
of lateral size L = 1024, with at least 100 realizations up to
coverage θ = 0.4 for each parameter set. Comparison with
results in L = 512 for the largest coverages and temperatures
shows no significant finite-size effect. Standard algorithms
were able to provide accurate estimates of densities and
distributions up to large values of R (however, extensions
to the multilayer regime or to models with a larger number
of atomistic processes would benefit from special algorithms
developed for this class of model30).

In the IA models, islands with a number of atoms larger
than the critical size i are stable. Moreover, islands of size
i are assumed to have a binding energy Ei < 0. During the
deposition process, after a transient regime, islands grow by
capture of diffusing adatoms, with negligible formation of new
islands. In this steady state, rate-equation theory4,5 predicts that

the stable island density scales as

Nisl ∼ θ1/(i+2) exp [−βEi/ (i + 2)]R−χ , (1)

and the monomer (free adatom) density scales as

N1 ∼ θ−1/(i+2) exp [βEi/ (i + 2)]Rχ−1, (2)

where

χ = i/ (i + 2) . (3)

These results assume that the mean capture number of stable
islands is independent of the coverage.

Information on the growth dynamics can also be extracted
from the probability densities of island size s, Q(s), and of CZ
area x, P (x) (ISD and CZD, respectively). The ISD follows
the scaling form,

Q(s) = 1

〈s〉f
(

s

〈s〉
)

, (4)

where f is a scaling function, and an equivalent scaling form
applies to P (x). Alternatively, scaling with the variance σx ≡
(x − 〈x〉)2

1/2
may be used as

P (x) = 1

σx

g

(
x − 〈x〉

σx

)
. (5)

This procedure was previously used with IA models15 and
is helpful in other problems, such as scaling of roughness
distributions of thin film growth models.31

The best known approach to predict the shape of CZD in
IA is that of PE, which proposes the CZD to be described by
the WS,

Pβ(z) = aβzβ exp (−bβz2), (6)

where z ≡ x/ 〈x〉, β = 2
d

(i + 1), d is the substrate dimension
(d = 2 in the present work), and the parameters aβ and bβ

are determined by normalization conditions. This proposal
follows from the phenomenological argument that the CZD
can be extracted from a Langevin equation representing the
competition of neighboring islands for adatom aggregation.
Several experimental works have already shown agreement
of CZDs with the WS, such as growth of para-sexiphenyl
islands,32,33 Cu deposition with impurities,34 pentacene island
growth with impurities,35 InAs quantum dot growth on
GaAs,36 and C60 deposition on SiO2 films.37

In Ref. 15, a scaling approach was used to predict the decay
of the right tail of the ISD from the Gaussian tail of the CZD
[Eq. (6)] and the island shape (point, fractal or square).

III. SQUARE LATTICE

A. Scaling of island and monomer density

Figures 1(a)–1(c) illustrate the island evolution for EN =
0.4 eV and temperatures representative of different scal-
ing regimes. Figure 2(a) shows the temperature evolution
(parametrized by R) of the island density and monomer density
for coverage θ = 0.1 and several values of EN .

For very low temperatures (R � 103), both densities are
nearly temperature-independent, and the system behaves as in
random sequential adsorption (RSA) without diffusion,38 as
discussed in Ref. 39.

235430-2



SCALING IN REVERSIBLE SUBMONOLAYER DEPOSITION PHYSICAL REVIEW B 87, 235430 (2013)

FIG. 1. Square lattice islands for (a) T = 650K , (b) T = 900K , and (c) T = 1200K . The panels are 100 × 100, 200 × 200, and 300 × 300
cuts of systems of size L = 1024, respectively. The coverages are θ = 0.05, 0.10, 0.20, and 0.30 from left to right.

The subsequent low temperature regime, hereafter called
regime I, is characterized by the decrease of Nisl and N1 with
R, as shown in Fig. 2(a). In this regime, the probability of de-
tachment of an aggregated adatom from an island is negligible
during the time interval necessary for the aggregation of a new
adatom to its neighborhood. This regime is equivalent to IA
with i = 1. Using Eq. (1) for fixed coverage, one has

Nisl ∼ R−1/3, N1 ∼ R−2/3. (I) (7)

This scaling is highlighted in Fig. 2(a). The longer regimes
with i = 1 scaling are observed for EN = 1.00 eV; for 5 ×
104 � R � 107 (nearly three decades), fits of the data give
Nisl ∼ R−0.33(1) and N1 ∼ R−0.67(3), which are consistent with
Eq. (7).

The average detachment time of a singly bonded atom is

τ1 ∼ 1/(Dε). (8)

In a mean-field approach (RE), the time for a free adatom to
encounter that aggregated atom is

τag ∼ 1/ (DN1) . (9)

Regime I is characterized by τag � τ1, so that adatom bonds
are effectively stable.

A crossover to a second regime is observed when τ1 matches
τag [Eqs. (8) and (9)], as explained in Refs. 21,23,27 (see also
Sec. 8.5 of Ref. 4). A crossover variable is defined as

Y1 ≡ εR2/3, (10)

with Y1 � 1 in regime I. Regime II begins with Y1 ∼ 10. From
Eqs. (7) and (10), the crossover scaling for island density and
monomer density is

Nisl ∼ ε1/2F1 (Y1) , N1 ∼ εG1 (Y1) , (11)

where F1 and G1 are scaling functions. Regime II is effectively
characterized by i = 3, since detachment of doubly bonded
atoms of square islands (size s = 4) occurs in much longer
time scales. Thus, for Y1 > 10 but not very large, Eqs. (1), (2),
and (11) give

Nisl ∼ ε−2/5R−3/5, N1 ∼ ε2/5R−2/5 (IIinitial). (12)

This result is consistent with a binding energy Ei = 2EN for
the critical island with i = 3 adatoms.

Figure 2(b) illustrates the crossover scaling with the
collapse of data in regimes I and II for various EN . Again,
the longest regime with i = 3 scaling is observed for EN =
1.00 eV; fits of the data for 102 � εR2/3 � 104 (nearly two
decades in R) give Nisl ∼ R−0.92(4) and N1 ∼ R−0.56(5), which
are consistent with Eqs. (7) and (12) [see the predicted slopes
in Fig. 2(b)].

For EN = 1.0, Fig. 2(a) shows that the slope of the Nisl × R

plot slowly increases in regime II. This occurs because the
binding energy Ei becomes negligible at the end of this regime,
so that Nisl and N1 scale tend to scale only with R, as

Nisl ∼ R−3/5, N1 ∼ R−2/5 (IIfinal), (13)
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FIG. 2. (Color online) Scaled island densities for θ = 0.10 and
several binding energies in the square lattice. Dashed lines indicate
local slopes. The insets show scaled monomer densities.

[the same power laws of Eq. (12) excluding the ε dependence].
The same evolution of slopes is observed in all effective IA
regimes observed in the RA model (see Sec. IV).

As the temperature increases, a crossover to a new scaling
regime is expected by two reasons: rapid detachment of doubly
bonded atoms from islands with s � 4, which occurs in a
characteristic time,

τ2 ∼ 1/(Dε2), (14)

or slow atom deposition in the CZ, which occurs in a
characteristic time,

τdep ∼ Nisl/F. (15)

In the steady state of IA, τdep [Eq. (15)] is of the same order
of τag [Eq. (9)]. Thus, regime II is expected to end as τ2

[Eq. (14)] matches τag, i.e., when εR1/5 ∼ 1. This defines a
second crossover variable as

Y2 ≡ εR1/5. (16)

Crossover scaling follows from Eq. (13) as

Nisl ∼ ε3F2 (Y2) , N1 ∼ ε2G2 (Y2) . (17)

Figure 2(c) illustrates the crossover scaling for various EN ,
with an excellent collapse of Nisl data. Some deviations appear
for N1, probably due to scaling corrections. The expected slope
−3 before the crossover, predicted by Eq. (13), is also shown
in Fig. 2(c). The fits of the data for EN = 1.0 eV and EN =
0.65 eV, in the range 10−2 � εR1/5 � 10−1 (nearly one decade
in R), give slopes −3.3(2) and −3.2(1), respectively, both
close to the theoretical value. This gives additional support to
the proposed evolution in regime II, to an ε-dependent to an
ε-independent scaling.

After the crossover, a fully reversible regime III is attained,
completely different from IA. Figure 2(a) shows that the island
density and the monomer density increase with temperature in
this regime, in striking contrast with regimes I and II and all
IA models. Figure 1(c) shows that it is characterized by a very
large density of small islands, mainly isolated adatoms, and
a small density of very large islands. As time evolves, these
large islands grow at the expense of the small ones, i.e., there
is island ripening.43,44

In regime III, the density of small islands is much larger
than the density of large islands. This is an expected evolution
from regime II because N1 decreases with temperature slower
than Nisl [Eq. (12)]. This trend is expected for any regime with
i > 2, which gives χ > 1/2, and will also be shown in the
triangular lattice.

The high-temperature scaling in regime III is only
ε dependent, with

Nisl ∼ ε3, N1 ∼ ε2 (III). (18)

Indeed, since movement of free adatoms is very fast, only the
attachment-detachment dynamics is important to determine
the densities.

This steady-state regime can be predicted by noting that
double bonding is the minimal possible bonding for an island
in the square lattice, i.e., at least four atoms of a large island
have two bonds. Equating aggregation and detachment rates
obtained from Eqs. (9) and (14), we get the above relation
for N1. Since regime III takes place as the evolution of an
effective i = 3 IA regime (also related to lattice structure),
where Nisl ∼ N

3/2
1 , we obtain the above relation for Nisl.

In order to search for possible effects of deposition rate
(F ) or amplitude of hopping rates (D0), Fig. 3 compares the
crossover scaling (a) from regimes I to II and (b) from II
to III, obtained for 0.1 s−1 � F � 10 s−1 and different binding
energies EN . The good data collapses in Fig. 3 show the general
validity of the above scaling relations.
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FIG. 3. (Color online) Scaled island densities for θ = 0.10 and
different deposition rates and binding energies in the square lattice.
The insets show scaled monomer densities.

B. Capture-zone and island size distributions

Despite the effective IA scaling of regime I, the CZDs
usually do not match the WS with i = 1 (P2) for the
values of EN and temperatures considered here. Figure 2(a)
shows that regime I typically occurs with R � 107. This range
is intermediate between low adatom mobility (RSA behavior)
and high adatom mobility (PE behavior), thus CZDs show a
crossover scaling, as shown in Ref. 39. Similar crossover is
observed in the ISDs. For instance, considering EN = 1.0, for
R � 105 we observe simple exponential tails of CZDs (RSA)
and for R ∼ 107 they become Gaussian (PE), but still not
collapsing with the WS.

The CZDs in regime II are not well fitted by the WS
with i = 3 [P4 in Eq. (6)], probably because this is not
a true IA process, as shown in Fig. 4(a). However, as the
temperature increases, the CZD gets closer to that WS. This
occurs considering scaling with the average [Eq. (4)] or with
the variance [Eq. (5)]. On the other hand, Fig. 4(a) shows that
the tails of the CZDs are Gaussian, similarly to IA models.15

This trend fails only for very small EN because regime II is
attained with small R and crossover from RSA is present.

The ISD has features similar to those of IA models of
compact islands (e.g., square islands), as shown in Fig. 4(b):
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FIG. 4. (Color online) Scaled (a) CZDs and (b) ISDs for the
energy EN = 0.65 and temperatures T = 950K (R ∼ 107) and T =
1150K (R ∼ 2 × 108). The insets show the same scaled distributions
with squared abscissas. The dashed lines highlight the Gaussian decay
of the right tails.

The left tail is high, indicating the presence of a large number
of small islands, and the right tail shows a Gaussian decay.
As the coverage increases, a crossover to simple exponential
decay is observed in the CZDs and ISDs, similarly to the IA
models.39

Figure 5(a) shows ISDs in regime III, with left tails much
higher than the peaks, confirming the presence of a large
density of free adatoms and small islands. The left tail shows
even-odd oscillations characteristic of loose-packed lattices
[inset of Fig. 5(a)]. If the small islands were in near-equilibrium
conditions, the Walton relation5,40 Q(s) ≈ N1

s would apply
and an exponential decay of the left tail would be observed.
However, this is not the case: The inset of Fig. 5(a) shows
an approximately power-law decay, with large exponents that
depend on the coverage, which suggests that more complex
mechanisms govern the small island dynamics.

In regime III, τdep � τ2, thus a small island will probably
disappear before a new atom is deposited in its CZ. The concept
of CZ as the probable region for deposition of a new atom to
be captured by that island becomes irrelevant. Anyway, we
also measured the CZDs in that regime and observed that they
are bimodal, as shown in Fig. 5(b). The first peak corresponds
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FIG. 5. (Color online) (a) Scaled ISDs for EN = 0.30, T = 950K

(R ≈ 107) and several coverages. The inset shows the same data in
a log-log scale and the line has slope −4. (b) Scaled CZDs for the
same parameters of (a). The inset shows the same distributions with
squared abscissas. The dashed lines highlight the Gaussian decays of
the right tails.

to small islands and the second peak corresponds to the large
islands. The bimodal CZDs are completely different from those
of IA models, where distortions of the monomodal shapes
of ISDs and CZDs appear only for large coverages.39 As θ

increases, the first peak of the CZD moves to the left (smaller
CZs for small islands) and the second one moves to the right
(larger CZs for large islands).

A surprising result in the inset of Fig. 5(b) is that the
Gaussian right tail of the CZDs is preserved for low coverages
in regime III. Thus, the competition of large islands for the
capture of diffusing adatoms is still that predicted by the PE
approach in the fully reversible regime. The small islands,
which rapidly dissociate into isolated monomers, contribute to
maintain the competitive dynamics of the neighboring large
islands. The right tails of the corresponding ISDs are also
Gaussian, following the trend of compact islands already
explained in Ref. 15.

In experiments, very small islands (s = 2,3, . . .) may not
be detected in microscopy images, except if high resolution
techniques are used. If that is the case, the first peak of the
bimodal CZDs may be lost, but the Gaussian right tail will

be preserved. This may suggest IA behavior in a system with
fully reversible dynamics.

IV. TRIANGULAR LATTICE

Figure 6(a) shows the R dependence of the island density
for various values of EN . It has the main features of the RA
model in the square lattice, including the high temperature
crossover to the fully reversible regime, where Nisl and N1

increase with R. However, some important features of RA are
particular to the triangular lattice, as discussed below.

The crossover from a fractal island regime I (i = 1) to
the first regime of compact islands is equivalent to that in the
square lattice, occurring when τ1 matches τag and leading to the
crossover relations in Eq. (11). This is illustrated in Fig. 6(b).
The subsequent regime is hereafter called IIa and corresponds
to IA with i = 2, i.e., with the smaller stable island being a
triangle with s = 3 adatoms, shown in Fig. 7(a). From Eq. (11)
and the RE Eqs. (1) and (2) for i = 2, regime IIa has initial
scaling as

Nisl ∼ ε−1/4R−1/2, N1 ∼ ε1/4R−1/2 (IIainitial). (19)

This trend is confirmed by the slope of the curves in Fig. 6(b)
after the crossover. Equation (19) is consistent with a binding
energy of the critical island Ei = EN , which is reasonable for
a two-adatom island.

As the temperature increases, regime IIa evolves so that the
critical island binding energy becomes negligible and island
and monomer densities scale as

Nisl ∼ R−1/2, N1 ∼ R−1/2 (IIafinal). (20)

This evolution parallels that observed in the square lattice.
A crossover to another regime also occurs when the typical

aggregation time to an island is of the order of the detachment
time τ2 of doubly bonded atoms [Fig. 7(a)]. Matching Eqs. (9)
and (14) using (20), we obtain a crossover variable,

Y3 ≡ εR1/4, (21)

and crossover scaling as

Nisl ∼ ε2F3 (Y3) , N1 ∼ ε2G3 (Y3) . (22)

In the square lattice, a similar crossover leads to regime
III. However, here it leads to another regime with IA scaling
due to the triangular lattice geometry. The reason is that an
island with s = 4 atoms [Fig. 7(b)], is stable for a time much
longer than the island with s = 3 atoms [Fig. 7(a)], as will be
explained below. Thus a regime with i = 3 appears when R (or
T ) increases, which is hereafter called regime IIb. Its scaling
properties follow by matching the R dependence of Eqs. (1)
and (2) for i = 3 and that in Eq. (22):

Nisl ∼ ε−2/5R−3/5, N1 ∼ ε2/5R−3/5 (IIbinitial). (23)

Figure 6(c) illustrates this crossover scaling. For EN =
1.00 eV and EN = 0.65 eV, regime IIa (final) is represented
approximately by 5 × 10−2 � εR1/4 � 5 × 10−1 and regime
IIb (initial) is represented approximately by 2 � εR1/4 � 10,
both corresponding to nearly one order of magnitude in R.
Linear fits of those data provide slopes −2.2(1) and −2.4(1),
respectively. Both estimates are in good agreement with the
predicted slopes shown in Fig. 5(c) [from Eqs. (20) and (23)].
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FIG. 6. (Color online) Scaled island densities for θ = 0.10 and
several binding energies in the triangular lattice. Dashed lines indicate
local slopes. The insets show scaled monomer densities.

FIG. 7. (Color online) Illustration of stable islands of size
(a) s = 3 (i = 2) and (b) s = 4 (i = 3) on a triangular lattice before
(left) and after (right) loosing a particle.

Figures 7(a) and 7(b) show the islands with s = 3 and
s = 4 atoms loosing one adatom, which provide the (critical)
islands with i = 2 and i = 3, respectively. Both processes of
loosing one adatom occur in a characteristic time τ2 [Eq. (14)].
The island with i = 2 needs a time τ1 to break into two
monomers, while the island with i = 3 needs a time τ2 to
break into isolated monomers. The addition of these times
does not change the order of magnitude of the mean-field rate
1/τ2. However, the stability time of the remaining islands in
Figs. 7(a) and 7(b) is affected if the recurrence property of
two-dimensional random walks is considered.

The probability that a random walker returns to the origin
after n steps is of order 1/n2.41 Thus, the probability that
the island with i = 2 breaks before the return of the detached
atom [Fig. 7(a)] is of order

∫ ∞
Dτ1

1/n2dn ∼ ε. Analogously, the
probability that the island with i = 3 breaks before the return
of the detached atom [Fig. 7(b)] is of order

∫ ∞
Dτ2

1/n2dn ∼ ε2.
Thus, the lifetime of the island with i = 3 is ε−1 times larger
than the lifetime of the island with i = 2. For ε � 1, a factor
ε−1 has to be introduced in the characteristic time for an island
with s = 4 adatoms to break.

Following these ideas, we incorporate that factor in the
mean-field approach by stating that the effective lifetime for
the critical island with i = 3 is

τ3 ∼ ε−1τ2 ∼ 1/(Dε3). (24)

This does not represent a failure of the RE theory, but a
suitable form to extend its application. We recall that the RE
approach overestimates rates of several processes, as shown in
simulation of IA models,4,28,42 but they are overestimated (and
characteristic times underestimated) by similar factors, so that
the final scaling on R, θ , and Ei is correct.

The scaling of Nisl and N1 also evolve to ε-independent
forms in regime IIb as the temperature increases:

Nisl ∼ R−3/5, N1 ∼ R−3/5 (IIbfinal). (25)

In regime IIb, the monomer density decreases with tem-
perature slower than island density. Thus, it is expected to be
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followed by the fully reversible regime III, similarly to the
square lattice. Matching τ3 with the aggregation time [Eq. (9)]
for the i = 3 regime, the crossover scaling variable is defined
as

Y4 ≡ εR2/15. (26)

The crossover scaling is obtained considering Eq. (25):

Nisl ∼ ε9/2F4 (Y4) , N1 ∼ ε3G4 (Y4) . (27)

Figure 6(d) illustrates this crossover scaling (again with some
deviations in the collapse of N1 due to corrections to scaling).

After this crossover, the high-temperature, fully reversible
regime III is observed, with the same basic features of the
square lattice. The island and monomer densities scale only
with ε as

Nisl ∼ ε9/2, N1 ∼ ε3 (III), (28)

thus increasing with temperature. This is also a steady
state, nearly deposition independent, where N1 follows from
matching of aggregation and detachment times [Eqs. (9)
and (24)] and Nisl ∼ N

3/2
1 , a relation characteristic of the

largest available critical island.
The features of ISDs and CZDs in the triangular lattice are

similar to those of the square lattices, including the Gaussian
tails observed at high temperatures and extending to the fully
reversible regime.

V. CONCLUSION

We analyzed the scaling of island density, CZDs, and
ISDs in a model of fully reversible island growth where
the activation energy for an adatom hop depends only on
the number of NNs at its initial position (Clarke-Vvedensky
model). A scaling approach based on rate-equation results
for IA models was presented and supported by numerical
simulations in square and triangular lattices.

At low temperatures, a regime I with fractal islands is
observed, corresponding to IA with critical island size i = 1.
CZDs and ISDs are usually intermediate between those of RSA
(negligible diffusion of free adatoms) and those of PE theory
(competition of large islands for rapidly moving adatoms),
except for large values of the binding energy EN , where the
regime is extended up to R ∼ 107 and a nearly Gaussian right
tail of CZDs appears.

A crossover to a second regime is always observed as the
reduced model parameters satisfy εR2/3 ∼ 1, in agreement
with previous works. In the square (triangular) lattice, a regime
with scaling similar to IA with i = 3 (i = 2) is observed
after the crossover. The initial dependence of island density
and monomer density with ε disappears as the temperature
increases, so that those quantities scale only with R close to
the subsequent crossover.

In the triangular lattice, there is a crossover to a third
IA regime, with i = 3. This is explained by the recurrence
properties of random walks in two dimensions, since the
detachment times of doubly bonded atoms in islands with
three and four atoms are the same and that feature could not
be predicted solely with a mean-field approach.

Although the CZDs show some deviations from the WS
in these regimes with i > 1, their right tails are typically
Gaussian, indicating that the PE theory is reasonable to
represent the competition of large islands for free adatom
capture. Exceptions appear for small values of EN , where
those regimes may appear for small R.

A final crossover to a fully reversible regime III is observed
as Y2 ∼ 1 (Y4 ∼ 1) in the square (triangular) lattice. In contrast
to IA scaling, this regime is characterized by an increase of the
island density and of the monomer density with temperature,
for fixed coverage. A large density of small islands coexists
with a small density of very large islands. The corresponding
ISDs show a high left tail and the CZDs are bimodal. The
Gaussian right tails of CZDs and ISDs are also observed, de-
spite the reversible nature of the aggregation, and are explained
because the small islands do not change the main mechanisms
for the large islands to compete for free adatom aggregation.

These results show that the Gaussian right tails of CZDs are
kept in reversible aggregation, as predicted by the PE approach
for IA. The same occurs with ISDs. In experiments where
the resolution of imaging techniques is not high, detection of
small islands may be difficult and even the high temperature
regimes may have ISDs and CZDs similar to those of IA.
This may explain the success of PE predictions to describe
a variety of experimental results, for various materials and
growth conditions.32–37

ACKNOWLEDGMENTS

The authors acknowledge support from CNPq, FAPEMIG,
and FAPERJ (Brazilian agencies).

*tiago@ufv.br
†reis@if.uff.br
1M. Ohring, Materials Science of Thin Films—Deposition and
Structure, 2nd ed. (Academic Press, Waltham, 2001).

2A. Pimpinelli and J. Villain, Physics of Crystal Growth (Cambridge
University Press, Cambridge, 1998).

3J. A. Venables, Introduction to Surface and Thin Film Processes
(Cambridge University Press, Cambridge, 2000).

4J. W. Evans, P. A. Thiel, and M. C. Bartelt, Surf. Sci. Rep. 61, 1
(2006).

5J. A. Venables, Philos. Mag. 27, 697 (1973).
6C. Ratsch and J. A. Venables, J. Vac. Sci. Technol. A 21, S96 (2003).
7J. G. Amar and F. Family, Phys. Rev. Lett. 74, 2066 (1995).
8J. G. Amar, M. N. Popescu, and F. Family, Phys. Rev. Lett. 86, 3092
(2001).

9P. A. Mulheran and J. A. Blackman, Philos. Mag. Lett. 72, 55
(1995); Phys. Rev. B 53, 10261 (1996).

10A. Pimpinelli and T. L. Einstein, Phys. Rev. Lett. 99, 226102 (2007).
11M. L. Mehta, Random Matrices, 3rd ed. (Academic, New York,

2004); T. Guhr et al., Phys. Rep. 299, 189 (1998).

235430-8

http://dx.doi.org/10.1016/j.surfrep.2005.08.004
http://dx.doi.org/10.1016/j.surfrep.2005.08.004
http://dx.doi.org/10.1080/14786437308219242
http://dx.doi.org/10.1116/1.1600454
http://dx.doi.org/10.1103/PhysRevLett.74.2066
http://dx.doi.org/10.1103/PhysRevLett.86.3092
http://dx.doi.org/10.1103/PhysRevLett.86.3092
http://dx.doi.org/10.1080/09500839508241614
http://dx.doi.org/10.1080/09500839508241614
http://dx.doi.org/10.1103/PhysRevB.53.10261
http://dx.doi.org/10.1103/PhysRevLett.99.226102
http://dx.doi.org/10.1016/S0370-1573(97)00088-4


SCALING IN REVERSIBLE SUBMONOLAYER DEPOSITION PHYSICAL REVIEW B 87, 235430 (2013)

12F. Shi, Y. Shim, and J. G. Amar, Phys. Rev. E 79, 011602 (2009).
13M. Li, Y. Han, and J. W. Evans, Phys. Rev. Lett. 104, 149601 (2010).
14A. Pimpinelli and T. L. Einstein, Phys. Rev. Lett. 104, 149602

(2010).
15T. J. Oliveira and F. D. A. Aarão Reis, Phys. Rev. B 83, 201405(R)

(2011).
16R. Ruiz, B. Nickel, N. Koch, L. C. Feldman, R. F. Haglund, Jr.,

A. Kahn, F. Family, and G. Scoles, Phys. Rev. Lett. 91, 136102
(2003).

17Y. Wu, T. Toccoli, N. Koch, E. Iacob, A. Pallaoro, P. Rudolf, and
S. Iannotta, Phys. Rev. Lett. 98, 076601 (2007).

18J. Shi and X. R. Qin, Phys. Rev. B 78, 115412 (2008).
19H. Zheng, M. H. Xie, H. S. Wu, and Q. K. Xue, Phys. Rev. B 77,

045303 (2008).
20C. Ratsch, A. Zangwill, P. Smilauer, and D. D. Vvedensky, Phys.

Rev. Lett. 72, 3194 (1994).
21C. Ratsch, P. Smilauer, A. Zangwill, and D. D. Vvedensky, Surf.

Sci. Lett. 329, L599 (1995).
22G. S. Bales and A. Zangwill, Phys. Rev. B 55, 1973 (1997).
23M. C. Bartelt, L. S. Perkins, and J. W. Evans, Surf. Sci. Lett. 344,

L1193 (1995).
24H. Mehl, O. Biham, I. Furman, and M. Karimi, Phys. Rev. B 60,

2106 (1999).
25I. Furman, O. Biham, J.-K. Zuo, A. K. Swan, and J. F. Wendelken,

Phys. Rev. B 62, R10649 (2000).
26A. Ramadan, F. Picaud, and C. Ramseyer, Surf. Sci. 604, 1576

(2010).
27J. G. Amar and F. Family, Surf. Sci. 382, 170 (1997).
28M. N. Popescu, J. G. Amar, and F. Family, Phys. Rev. B 58, 1613

(1998).
29S. Clarke and D. D. Vvedensky, J. Appl. Phys. 63, 2272 (1988).

30Y. Shim and J. G. Amar, Phys. Rev. B 71, 125432 (2005); J. Chem.
Phys. 134, 054127 (2011).

31T. J. Oliveira and F. D. A. Aarão Reis, Phys. Rev. E 76, 061601
(2007).

32S. Lorbek, G. Hlawacek, and C. Teichert, Eur. Phys. J. Appl. Phys.
55, 23902 (2011).

33T. Potocar, S. Lorbek, D. Nabok, Q. Shen, L. Tumbek, G. Hlawacek,
P. Puschnig, C. Ambrosch-Draxl, C. Teichert, and A. Winkler, Phys.
Rev. B 83, 075423 (2011).

34R. Sathiyanarayanan, A. BH. Hamouda, A. Pimpinelli, and T. L.
Einstein, Phys. Rev. B 83, 035424 (2011).

35B. R. Conrad, E. Gomar-Nadal, W. G. Cullen, A. Pimpinelli,
T. L. Einstein, and E. D. Williams, Phys. Rev. B 77, 205328
(2008).

36F. Arciprete, M. Fanfoni, F. Patella, A. Della Pia, A. Balzarotti, and
E. Placidi, Phys. Rev. B 81, 165306 (2010).

37M. A. Groce, B. R. Conrad, W. G. Cullen, A. Pimpinelli, E. D.
Williams, and T. L. Einstein, Surf. Sci. 606, 53 (2012).

38V. Privman, Colloids Surf. A 165, 231 (2000).
39T. J. Oliveira and F. D. A. Aarão Reis, Phys. Rev. B 86, 115402

(2012).
40D. Walton, J. Chem. Phys. 37, 2182 (1962).
41E. W. Montroll and B. J. West, in Fluctuation Phenomena, edited

by E. W. Montroll and J. L. Lebowitz (North-Holland, Amsterdam,
1979).

42C.-M. Zhang, M. C. Bartelt, J.-M. Wen, C. J. Jenks, J. W. Evans,
and P. A. Thiel, Surf. Sci. 406, 178 (1998).

43K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and
G. Comsa, Phys. Rev. Lett. 80, 556 (1998).

44M. Zinke-Allmang, L. C. Feldman, and M. H. Grabow, Surf. Sci.
Rep. 16, 377 (1992).

235430-9

http://dx.doi.org/10.1103/PhysRevE.79.011602
http://dx.doi.org/10.1103/PhysRevLett.104.149601
http://dx.doi.org/10.1103/PhysRevLett.104.149602
http://dx.doi.org/10.1103/PhysRevLett.104.149602
http://dx.doi.org/10.1103/PhysRevB.83.201405
http://dx.doi.org/10.1103/PhysRevB.83.201405
http://dx.doi.org/10.1103/PhysRevLett.91.136102
http://dx.doi.org/10.1103/PhysRevLett.91.136102
http://dx.doi.org/10.1103/PhysRevLett.98.076601
http://dx.doi.org/10.1103/PhysRevB.78.115412
http://dx.doi.org/10.1103/PhysRevB.77.045303
http://dx.doi.org/10.1103/PhysRevB.77.045303
http://dx.doi.org/10.1103/PhysRevLett.72.3194
http://dx.doi.org/10.1103/PhysRevLett.72.3194
http://dx.doi.org/10.1016/0039-6028(95)00353-3
http://dx.doi.org/10.1016/0039-6028(95)00353-3
http://dx.doi.org/10.1103/PhysRevB.55.R1973
http://dx.doi.org/10.1016/0039-6028(95)00930-2
http://dx.doi.org/10.1016/0039-6028(95)00930-2
http://dx.doi.org/10.1103/PhysRevB.60.2106
http://dx.doi.org/10.1103/PhysRevB.60.2106
http://dx.doi.org/10.1103/PhysRevB.62.R10649
http://dx.doi.org/10.1016/j.susc.2010.05.027
http://dx.doi.org/10.1016/j.susc.2010.05.027
http://dx.doi.org/10.1016/S0039-6028(97)00121-0
http://dx.doi.org/10.1103/PhysRevB.58.1613
http://dx.doi.org/10.1103/PhysRevB.58.1613
http://dx.doi.org/10.1063/1.341041
http://dx.doi.org/10.1103/PhysRevB.71.125432
http://dx.doi.org/10.1063/1.3541823
http://dx.doi.org/10.1063/1.3541823
http://dx.doi.org/10.1103/PhysRevE.76.061601
http://dx.doi.org/10.1103/PhysRevE.76.061601
http://dx.doi.org/10.1051/epjap/2011100428
http://dx.doi.org/10.1051/epjap/2011100428
http://dx.doi.org/10.1103/PhysRevB.83.075423
http://dx.doi.org/10.1103/PhysRevB.83.075423
http://dx.doi.org/10.1103/PhysRevB.83.035424
http://dx.doi.org/10.1103/PhysRevB.77.205328
http://dx.doi.org/10.1103/PhysRevB.77.205328
http://dx.doi.org/10.1103/PhysRevB.81.165306
http://dx.doi.org/10.1016/j.susc.2011.08.020
http://dx.doi.org/10.1016/S0927-7757(99)00412-4
http://dx.doi.org/10.1103/PhysRevB.86.115402
http://dx.doi.org/10.1103/PhysRevB.86.115402
http://dx.doi.org/10.1063/1.1732985
http://dx.doi.org/10.1016/S0039-6028(98)00109-5
http://dx.doi.org/10.1103/PhysRevLett.80.556
http://dx.doi.org/10.1016/0167-5729(92)90006-W
http://dx.doi.org/10.1016/0167-5729(92)90006-W



