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Helical nuclear spin order in two-subband quantum wires
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In quantum wires, the hyperfine coupling between conduction electrons and nuclear spins can lead to a (partial)
ordering of both of them at low temperatures. By an interaction-enhanced mechanism, the nuclear spin order,
caused by Ruderman-Kittel-Kasuya-Yosida exchange, acts back onto the electrons and gaps out part of their
spectrum. In wires with two subbands characterized by distinct Fermi momenta kF1 and kF2, the nuclear spins
form a superposition of two helices with pitches π/kF1 and π/kF2, thus exhibiting a beating pattern. This order
results in a reduction of the electronic conductance in two steps upon lowering the temperature.
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I. INTRODUCTION

Being hallmarks of topological states of matter as well
as versatile platforms for engineering quantum computation
devices, helical and quasihelical electron systems have at-
tracted much interest in recent years. Besides their prominent
formation as edge states in quantum spin Hall samples,1

(quasi-) helical Luttinger liquids can, for instance, also be
generated by applying a magnetic field to a Rashba spin-orbit
coupled quantum wire.2 When brought into contact with an
ordinary superconductor, a helical Luttinger liquid can turn
into a topological superconductor with zero-energy Majorana
bound states at the two ends of the wire.3–5 Helical Luttinger
liquids are, however, also interesting for their own sake and
have, for instance, applications as spin filters.2

In addition to spin-orbit-based proposals, it has been
realized that quasihelical Luttinger liquids may also emerge
due to helical magnetic fields. The helical field is thereby fully
equivalent to the combination of a homogeneous magnetic field
and Rashba spin-orbit interactions.6 The interplay of such he-
lical fields (and more generally oscillating fields, for instance,
generated by nanomagnets) with the usual spin-orbit coupling
furthermore makes it possible to extend the topological phase
diagram of Rashba spin-orbit coupled quantum wires to exotic
phases beyond Majorana bound states.7,8

As an alternative to an applied helical magnetic field, the
intrinsic hyperfine coupling between electrons and nuclear
spins can lead to the spontaneous formation of a quasihelical
Luttinger liquid at low temperatures. As has been argued in
the case of a single-subband quantum wire, the hyperfine cou-
pling results in a Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction that diverges at momentum 2kF due to low-energy
electron backscattering.9,10 This, in turn, induces a helical
order of the nuclear spins, which feeds back to the electrons
as a magnetic Overhauser field. The latter gaps out half of the
electronic degrees of freedom, thereby turning the quantum
wire into a quasihelical one. Importantly, the electronic gap,
strongly enhanced by electron-electron interactions, opens
exactly around the Fermi level without any fine tuning.9,10

The resulting reduction of the conductance10,11 has recently
been observed in cleaved edge overgrowth GaAs quantum
wires.12 We expect the helical (nuclear) spin order to be
observable not only in hyperfine coupled quantum wires,
but more generally in systems that fall into the class of
weakly coupled, electronically one-dimensional Kondo lattice

systems of finite size in the so-called RKKY liquid phase when
both the Kondo energy scale kB TK and the direct exchange
between the Kondo lattice spins are smaller than the RKKY
interaction (the nuclear spins are one possible example of such
a Kondo lattice).13 The helical order of the nuclear spins in
quantum wires is furthermore intimately related to a proposed
ferromagnetic order of the nuclear spins in two-dimensional
electron gases.14

The quasihelical state resulting from gapping out parts of
the electronic spectrum by either a combination of a homo-
geneous magnetic field and spin-orbit interactions, a helical
magnetic field, or a spontaneous ordering of the nuclear spins,
can in some ways be understood as a helical Luttinger liquid
(the spin of the remaining gapless electronic modes is approx-
imately locked to their direction of motion). Their physics is,
however, even richer than the one of an ideal helical liquid. This
has been discussed in terms of the spectral properties and the
optical conductivity of the wire.15,16 For a better distinction
from ideal helical Luttinger liquids, the quasihelical system
resulting from gapping out parts of the electronic spectrum
has been dubbed spiral Luttinger liquid or spiral spin density
wave state. Helical Luttinger liquids can, in fact, be understood
as a special subclass of spiral Luttinger liquids with charge
and spin Luttinger parameters Kc = 1/Ks .15,17 The study of
spiral Luttinger liquids is consequently of specific interest as
new phenomena (beyond helical Luttinger liquid physics) can
arise. Since furthermore a considerable number of experiments
and theoretical proposals are based on spiral Luttinger liquids
mimicking helical Luttinger liquids, the understanding of
spiral Luttinger liquids is also of practical relevance.

In this work, we discuss how stable the spontaneous
formation of helical nuclear spin order in a quantum wire
is to the presence of multiple subbands. Indeed, multisubband
quantum wires are characterized by different Fermi momenta
kFi for the different bands. One may thus expect low-energy
electron backscattering at any combination kFi + kFj , and it is
not obvious how the nuclear spins order in this case. To analyze
their interplay with the electrons, we specifically focus on a
quantum wire with two subbands that may either correspond
to the lowest two bands of a single wire or alternatively emerge
from two sufficiently coupled parallel quantum wires with a
single occupied band each. In the latter case, the two subbands
are the symmetric and antisymmetric orbitals shared between
the two wires. While the experiment reported in Ref. 12
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involves two closely spaced quantum wires, the observed
coupling between the wires is rather small. The experiment
should thus be interpreted in terms of (almost) decoupled,
single subband wires. We are however confident that this first
experimental detection of hyperfine induced nuclear spin order
will pave the way additional experiments also addressing the
multi subband case discussed in the remainder. After deriving
the effective one-dimensional model in Sec. II, we list and
analyze the possible orders of the nuclear spins in Sec. III. We
then discuss that the nuclear spins form two superimposed
helices at momenta 2kF1 and 2kF2, but not at kF1 + kF2,
and analyze the resulting low-energy theory in Sec. IV in a
self-consistent fashion. In Secs. V and VI, we finally turn to
the onset and stability of this order.

II. THE MODEL

For concreteness, we specialize to a model of a single
quantum wire defined in a two-dimensional GaAs electron gas
by virtue of electrostatic gates. The chemical potential, tunable
by an electrostatic gate, is chosen such that only the lowest
two subbands of the wire are (partially) filled. Nevertheless,
our findings remain qualitatively valid for carbon nanotube
samples or the above mentioned parallel wires.

As a central ingredient for our discussion, the electrons
interact via screened Coulomb interaction. The screening
may, for instance, be due to mirror charges in the gate
electrodes of the sample and is characterized by a screening
length larger than the typical length scale associated with
the transversal confinement. We neglect the weak spin-orbit
interaction (note that the spin orbit length is much larger
than typical Fermi wavelengths in GaAs wires and carbon
nanotubes).18,19 Expressing the electron Hamiltonian in terms
of right-moving and left-moving particles in the two subbands,
the Coulomb interaction gives rise to various matrix elements
for electrons close to the four Fermi points. If there were
no nuclear spins, the electrons could be described as two
spinful and gapless Luttinger liquids whose velocities and
Luttinger liquid parameters are renormalized by a number of
density-density type interactions.20,21 For simplicity, we will,
however, only keep track of charge density interactions since
the latter are typically larger than all other electron-electron
couplings, resulting in strongly renormalized charge velocities
and fairly unrenormalized spin velocities.22–26 We come back
to the small effect of spin density interactions on a spin ordered
state in Sec. V.

The nuclear spins in the wire are modeled by a Kondo-
lattice-type Hamiltonian. They interact with each other via
dipolar and quadrupolar interactions. Most importantly, they
are also subject to a hyperfine coupling to the electrons. As
discussed below, the hyperfine coupling gives rise to an RKKY
interaction between the nuclear spins.27 Similar to single-band
wires,10 this RKKY interaction overrules any direct coupling
between the nuclear spins by orders of magnitude, and we thus
neglect the latter in the remainder.

The Hamiltonian is derived by first linearizing the spec-
trum around the Fermi points. Choosing the wire to be
aligned along the z axis, we decompose the annihilation
operator for an electron of spin σ =↑ , ↓ in band j = 1,2
as cjσ (z) = eikFj zRjσ (z) + e−ikFj zLjσ (z), such that eikFj z Rj,σ

(a)

(b)

⇒

FIG. 1. (Color online) Panel (a) depicts a quantum wire with two
subbands defined in a two-dimensional electron gas by a harmonic
confining potential. The subbands have transversal wave functions
�j (x,y) = ψj (x) ⊗ ψ1(y) and therefore exhibit different x-inversion
symmetry with respect to the wire axis. A sketch of the nuclear spin
lattice in the wire is given on the left-hand side of panel (b) (for
visibility reasons, not all spins are shown). Within a given cross
section, the nuclear spins align ferromagnetically, while they form
helical orders along the wire direction (see Sec. IV). The right-hand
side of panel (b) shows the effective description of the nuclear spins
as helical magnetic fields.

(e−ikFj z Lj,σ ) annihilates a right-moving (left-moving) particle
(kFj denotes the Fermi momentum in band j ). This yields

H = He + Hen, (1a)

He =
∑
j,σ

∫
dz vFj [R†

jσ (−i∂z)Rjσ − L
†
jσ (−i∂z)Ljσ ]

+ U

2

∫
dz ρtot ρtot, (1b)

Hen =
∑

i

A0 Si · I i , (1c)

where vFj is the Fermi velocity of band j and U denotes the
local interaction for the charge density ρtot = ∑

j,σ (R†
jσRjσ +

L
†
jσLjσ ). The hyperfine coupling between the electron spin Si

and the nuclear spin I i at site i is A0, where i runs over all sites
of the nuclear spin lattice within the support of the electronic
wave functions. This includes typically N⊥ ∼ 50 × 50 sites in
the transversal directions (the nuclear spin lattice is thus three
dimensional; see Fig. 1).28 We finally assume that the wire has
a finite length L, and that the lattice constant of the nuclear
spins is a.

Since the Fermi energies EFj in the two bands are typically
much larger than the intrinsic energy scales of the nuclear spins
as well as the coupling between nuclear spins and electrons,
EFj � A0,10,29 the dynamics of electrons and nuclear spins
decouple. The former mediate an effectively instantaneous
RKKY interaction for the latter, while the nuclear spins act
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as a static magnetic Overhauser field for the electrons (in
the disordered state, this Overhauser field vanishes). The
separation of scales largely simplifies the following analysis.

A. Effective one-dimensional model

Because the electrons behave quasi-one-dimensionally, the
coupling between nuclear spins and electrons is roughly
the same for all spins within a given transversal section of
the quantum wire. We can thus derive an effective quasi-one-
dimensional hyperfine Hamiltonian following Ref. 10. To this
end, we note that the wave function of an electron can be
written as a product of the longitudinal and the transversal
state. For a particle at site i = (i‖,i⊥), this implies |�i〉 =
|i‖〉 ⊗ |i⊥〉. The more appropriate basis for the electrons,
however, is defined by the two subbands. Denoting the two
transversal wave functions corresponding to the two occupied
subbands j = 1,2 as �j (x,y), we find that the annihilation
operator for an electron of spin σ at site i can be expressed as

ciσ =
∑

j

Cji⊥√
N⊥

cjσ i‖ , (2a)

Cji⊥ =
√

N⊥
∫

dx dy �j (x,y) �∗
i⊥(x,y), (2b)

where �i⊥(x,y) is the Wannier orbital associated with i⊥
(chosen such that Cji⊥ is a real number). Within the support
of the electronic wave functions, Cji⊥ is of order one, while it
vanishes outside the support. We can now express the hyperfine
coupling in the two-subband basis as

Hen = A0

N⊥

∑
i‖,j,j ′

Sjj ′,i‖ · I jj ′,i‖ , (3a)

Sjj ′,i‖ =
∑
αβ

c
†
jαi‖

σ αβ

2
cj ′βi‖ , (3b)

I jj ′,i‖ =
∑
i⊥

Cji⊥Cj ′i⊥ I i‖i⊥ , (3c)

where σ denotes the vector of Pauli matrices.
The terms j = j ′ describe how the spin of electrons in band

j couples to the nuclear spins within a given section i‖ of the
wire. Since (Cji⊥)2 ∼ 1 across the section, the electron spin, in
fact, rather couples to one big nuclear spin,

I s,i‖ =
∑
i⊥

(C1i⊥)2 I i‖i⊥ ≈
∑
i⊥

(C2i⊥)2 I i‖i⊥ , (4)

than to N⊥ individual nuclear spins. The interaction of an
electron with a localized spin also allows for interband
scattering processes. Since the two bands either correspond
to the lowest two subbands of a single quantum wire or the
symmetric and antisymmetric orbitals shared between two
wires, the transversal wave functions �1(x,y) and �2(x,y)
have different inversion symmetry with respect to the wire axis;
see Fig. 1. We choose the first orbital to be the symmetric one,

�1(x,y) = +�1(−x,y),�2(x,y) = −�2(−x,y). (5)

The different inversion symmetry of the initial and final
orbital of an interband spin scattering event implies that these
processes couple to an inversion antisymmetric combination

of the nuclear spins,

I a,i‖ =
∑
i⊥

C1i⊥ C2i⊥ I i‖i⊥ (6a)

=
∑

i⊥x ,i⊥y

| C1i⊥ C2i⊥| sgn(i⊥x) I i‖i⊥x i⊥y
. (6b)

With these definitions, the effective hyperfine Hamiltonian
reads

Hen = A0

N⊥

∑
i‖

(S11,i‖ + S22,i‖ ) · I s,i‖

+ A0

N⊥

∑
i‖

(S12,i‖ + S21,i‖ ) · I a,i‖ . (7)

The electrons thus couple to either a symmetric or
antisymmetric combination of all nuclear spins within a given
section of the wire, depending on whether the spin scattering
event changes the transversal wave function or not. These
effective spins have the size |I s,i‖ |,|I a,i‖ | ∼ IN⊥, where I

is the length of the individual nuclear spins. Because N⊥ is
typically of the order of (a few) thousand, these effective
nuclear spins can be treated semiclassically, such that, for
instance, Kondo correlations can be neglected. The reduced
coupling strength A0/N⊥ finally reflects the spread of the
electronic wave function across the wire section.

III. HELICAL ORDER OF THE NUCLEAR SPINS:
POSSIBLE SCENARIOS

Like for the single subband quantum wire,10 we use
the separation of scales between the nuclear spins and the
electrons to derive step-by-step a self-consistent description
of the coupling between electrons and nuclear spins. We start
from two gapless Luttinger liquids and a disordered bath of
slow nuclear spins. By virtue of the hyperfine coupling, the
electrons mediate an RKKY interaction for both nuclear spin
superpositions I s and I a. As detailed in Appendix A, the
RKKY interaction is described by the Hamiltonian

HRKKY = 1

N

∑
q,α,β

(
Iα

s,−q

J
αβ
s,q

N2
⊥

Iβ
s,q + Iα

a,−q

J
αβ
s,a

N2
⊥

Iβ
a,q

)
, (8)

where the exchange interactions are determined by the
static part of the respective spin susceptibilities, J

αβ

(·),q =
A2

0/(2N ) χ
αβ,ret
(·),q (ω → 0), and where N = L/a is the number

of longitudinal lattice sites [more precisely, χαβ,ret
(·),q is the (α,β)

component of the retarded spin susceptibility tensor in the
(·) = s,a channel, q denotes the one-dimensional momentum
along the wire axis, and ω is the frequency]. Like in two-
dimensional electron gases,14 the susceptibilities correspond
to the interacting versions of the diagrams shown in Fig. 2
(the Luttinger liquid formalism however spares us lengthy
resummation schemes). Similar to the single-subband case,10

and as we detail below, particle-hole bubbles within each
band and between the bands result at zero temperature in
divergences of the RKKY exchange couplings at momenta
2kF1 and 2kF2 in the symmetric channel and at kF1 + kF2 in the
antisymmetric channel [provided that the exponents defined in
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FIG. 2. Fermionic diagrams contributing to the (x and y compo-
nents of the) spin susceptibilities χij . Solid lines denote a particle in
band 1 at, e.g., momentum k + q, frequency ω, and spin up; dashed
lines denote a particle in band 2 (note that the Luttinger liquid
approach yields the density-density interacting versions of these
diagrams). The dotted lines denote the momentum q emitted/absorbed
by the nuclear spins.

the following Eq. (9) fulfill 2gij < 2],

J αβ
s,q

∣∣
q≈±2kF1

∼ δαβ |q ∓ 2kF1|2g11−2 , (9a)

J αβ
s,q

∣∣
q≈±2kF2

∼ δαβ |q ∓ 2kF1|2g22−2 , (9b)

J αβ
a,q

∣∣
q≈±(kF1+kF2) ∼ δαβ |q ∓ (kF1 + kF2)|2g12−2 . (9c)

We note that the exchange couplings are diagonal in spin
space because the Hamiltonian preserves the total spin. At
finite temperatures, the divergences turn into sharp dips, whose
depth is controlled by the temperature T and the exponents gij

and whose width is of the order of the thermal momentum; see
Fig. 3.

In order to gain energy, the slow nuclear spins will now
orient into the minima of the susceptibilities. As discussed in
Refs. 9 and 10, this results in helically ordered states at the
momenta corresponding to the dips of the susceptibilities. In a
two-subband quantum wire, the presence of three different
combinations of Fermi momenta kFi + kFj could a priori
result in a superposition of the three helices,

I s,i‖ = IN⊥

⎡
⎣m2kF1

⎛
⎝ cos(2kF1zi)

± sin(2kF1zi)
0

⎞
⎠ (10a)

+ m2kF2

⎛
⎝ cos(2kF2zi)

± sin(2kF2zi)
0

⎞
⎠
⎤
⎦ ,

I a,i‖ = IN⊥ mkF1+kF2

⎛
⎝ cos[(kF1 + kF2)zi]

± sin[(kF1 + kF2)zi]
0

⎞
⎠, (10b)

where we used zi = a i‖. In the semiclassical approximation
employed here, the three magnetizations correspond to the

FIG. 3. RKKY exchange interactions Js and Ja for g22 < g12 <

g11 and at finite temperature.

fraction of microscopic nuclear spins participating in either
of the three orders. At zero temperature, when thermal
fluctuations do not weaken the order, the magnetizations have
to add up to one, m2kF1 + m2kF2 + mkF1+kF2 = 1. The helicities
and ordering planes are, in principle, spontaneously and inde-
pendently chosen for each of the three helices. This analysis,
however, neglects the feedback between nuclear spins and
electrons and is thus not self-consistent. Any finite nuclear spin
polarization acts back onto the electrons as a static magnetic
Overhauser field. Since these fields form at the momenta
2kF1, 2kF2, or kF1 + kF2, they allow for backscattering within
one band or between the two bands. Due to the different
inversion symmetries of the electronic wave functions in
the two bands, however, intraband (interband) backscattering
is possible only in the symmetric (antisymmetric) channel.
The backscattering, in turn, opens up gaps in the electronic
spectrum (see Sec. IV B). If, however, the electrons are gapped,
they cannot mediate the RKKY interaction needed to establish
the nuclear spin order in the first place.

To find the possible self-consistent orders of nuclear
spins and electrons, it is useful to note that a helix in the
symmetric channel at 2kF1 (2kF2), for concreteness of positive
helicity, allows only for backscattering between right-moving
spin-down and left-moving spin-up particles within the first
(second) band. Such a nuclear spin polarization will thus
gap out the right-moving spin-down and left-moving spin-up
modes in the first (second) band; see Fig. 4(a) and Sec. IV B.
The left-moving spin-down and right-moving spin-up, on the
other hand, remain unaffected. Similarly, we find that an

(a)

⇒

(b)

⇒

FIG. 4. (Color online) Opening of gaps around the chemical
potential μ in the dispersion E(q) due to the magnetic Overhauser
field in a two-subband quantum wire. Panel (a) depicts the effect
of a helical field of positive helicity and momentum 2kF1 in the
symmetric channel, which allows for scattering between right-moving
spin-down particles and left-moving spin-up particles. The scattering
gaps out these two modes. Panel (b) shows how a helical field in the
antisymmetric channel of negative helicity and momentum kF1 + kF2

gaps out right-moving spin-up particles and left-moving spin-down
particles in both bands. As explained in the main text, the intraband
order depicted in panel (a) and the interband order shown in panel (b)
are mutually exclusive because their combination would gap out the
entire lower subband.
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Overhauser field in the antisymmetric channel at kF1 + kF2

(for concreteness of negative helicity) allows for backscatter-
ing of right-moving spin-up in both bands and left-moving
spin-down in both bands. It can therefore open up gaps in the
two bands, as depicted in Fig. 4(b). These gaps correspond
to the formation of an electron spin helix in phase with
the nuclear spin helix (or out of phase for antiferromagnetic
hyperfine coupling). The Overhauser field-induced gaps in the
electronic spectrum are relevant in the renormalization group
(RG) sense, again provided that the associated exponent fulfills
2gij < 2 (see Sec. IV B). Since gij is intimately related to the
Luttinger liquid parameters, interactions are crucial for this
strong renormalization of the Overhauser gaps.

In the case of a single helix (be it at 2kF1, 2kF2, or
kF1 + kF2), the remaining ungapped electronic modes provide
the residual RKKY interaction needed to self-consistently
establish the nuclear spin order. For a superposition of helices,
one finds by counting of the gapless right- and left-moving
modes that a self-consistent helical order can occur only if
either helices at 2kF1 and 2kF2 coexist (or if there is just
one of them) while there is no helix in the antisymmetric
channel, or if there is a helix in this latter channel at momentum
kF1 + kF2 and no helices in the symmetric channel. As an
example, consider the effectively forbidden coexistence of a
helix of positive helicity in the symmetric channel at 2kF1

and a helix of negative helicity in the antisymmetric channel
at kF1 + kF2 (see Fig. 4). This combination of Overhauser
fields would gap out the entire spectrum in the first band,
plus parts of the spectrum in the second band. Since the first
band is fully gapped, scattering events involving this band
are strongly suppressed. This would eliminate the minima at
±2kF1 and at ±(kF1 + kF2) in the RKKY interactions and
thus render the analysis inconsistent. In addition, the nuclear
spins would then reorient into the remaining minima at ±2kF2,
leading to a strong reduction of the magnetic Overhauser fields
at 2kF1 (symmetric channel) and kF1 + kF2 (antisymmetric
channel). This would finally suppress the electronic gaps due
to these fields, which is energetically strongly unfavorable. The
coexistence of a helix of positive helicity in the symmetric
channel at 2kF1 and a helix of negative helicity in the
antisymmetric channel at kF1 + kF2 can therefore be excluded.
Similar reasonings can be made for other combinations of
Overhauser fields. Coexistence of helices of equal helicity
in the symmetric and antisymmetric channel, on the other
hand, would lead to competing ordering mechanism for the
electrons. We thus find that the orders of the nuclear spins
in the symmetric channel 〈I s〉 and the antisymmetric channel
〈I a〉 are mutually exclusive if the feedback between electrons
and nuclear spins is taken into account.

IV. SELF-CONSISTENT SOLUTION WITH
FEEDBACK EFFECTS

The ground state of the quantum wire depends on the
interplay of electrons and nuclear spins, and has to be
determined as the minimum of the total energy. It should thus
take into account the energy gain of the nuclear spins due to
the ordering into the (self-consistently present) minima of the
RKKY interaction, as well as the energy gain of the electrons
due to the opening of gaps.

1.6
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FIG. 5. (Color online) Exponents 2gij of the RKKY exchange
couplings [see Eq. (9)] as a function of vF2/vF1 for fixed vF1

and interaction strength U . These exponents describe the regime
of disordered nuclear spins, e.g., at sufficiently high temperatures.
Consequently, they do not contain any feedback effect between
electrons and nuclear spins; see Sec. IV.

A. Dominant ordering mechanism: High-temperature analysis

To identify the dominant ordering mechanism of the
nuclear spins (symmetric or antisymmetric channel), we first
analyze the onset of nuclear spin order upon lowering the
temperature. At sufficiently high temperatures, the nuclear
spins are certainly disordered. Using |I s,a|/N⊥ ∼ I , we infer
from the RKKY Hamiltonian given in Eq. (8) that the typical
temperature scale for the onset of nuclear spin order in the
(anti-) symmetric channel at momentum q is Js(a),q I 2. The
critical temperature is discussed in more detail in Sec. V. Just
before the onset of the nuclear spin order, when there is no
Overhauser field present yet, the RKKY interaction mediated
by the fully ungapped electron sector can be derived from the
electron Hamiltonian given in Eq. (1b). In order to include the
density-density interactions, we treat this Hamiltonian with
standard bosonization techniques, which allow for its full
diagonalization; see Appendix B. This diagonal form finally
allows the determination of the spin susceptibilities and thus
the RKKY exchange couplings, as detailed in Appendix B.

The resulting exponents 2gij defined in Eq. (9), which
control the strength of the RKKY interaction, are plotted in
Figs. 5 and 6 as a function of vF2/vF1 for fixed vF1 and
fixed interaction strength U (thus following the filling of the
second subband). The interaction strength is chosen such that
the Luttinger liquid parameter in the charge sector of the
first subband is Kc1 = 0.5, while we use Ksi = 1 because
the interactions in the spin sectors are assumed to be much
smaller than the ones in the charge sectors (in agreement with
experiments).23,24 We find that at the special point vF1 = vF2,
all susceptibilities have the same exponent. This has already
been discussed in the context of carbon nanotubes,10 where the
two subbands correspond to the two inequivalent Dirac cones.
Away from this special point, however, the exchange coupling
Js associated with the symmetric superposition of nuclear
spins I s is always more singular than the exchange coupling
Ja associated with I a (we recall that Js ∼ χ11 + χ22 while
Ja ∼ χ12 + χ21). Therefore, the system will initially order in
the symmetric channel.
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FIG. 6. (Color online) Exponents 2gij of the RKKY exchange
couplings [see Eq. (9)] as a function of vF2/vF1 for fixed vF1 and
interaction strength U . On this larger scale logarithmic plot, we also
show the exponents 2gii,0 for decoupled bands; see main text. Like
for the smaller scale plot in Fig. 5, the nuclear spins are assumed to
be disordered.

Since the spin susceptibilities and thus the RKKY exchange
couplings are mediated by particle-hole pairs exchanged
between two nuclear spins (see Fig. 2), it is physically not
surprising that the interband RKKY exchange can be effective
only if the particle and the hole propagate at comparable
velocities. Consequently, the two subbands are essentially
decoupled when vF1 � vF2 or vF1 � vF2. This is shown in the
larger scale plot in Fig. 6, which indicates that the exponents
2gii approach their decoupled values g11,0 and g22,0 (calculated
in the absence of interband density interactions) away from
vF1 ≈ vF2. Only close to vF1 = vF2, the interband channel
participates in the RKKY interaction. At the same time, the
weight of the intraband exchange channels decreases and the
corresponding exponents g11 and g22 are larger than in the
decoupled case. A related situation arises in Coulomb drag
setup, where the drag is most efficient if the Fermi velocities
of the two wires are approximately equal.30

B. Self-consistent low-temperature ground state

Given that the dominant instability at high temperatures oc-
curs in the symmetric sector, we calculate the low-temperature
ground state assuming that the nuclear spins form helices in the
symmetric channel. This assumption is justified a posteriori
in Sec. VI. We start from a general superposition of nuclear
spin helices in the symmetric channel,

〈I s,i‖ 〉 = IN⊥

⎡
⎣m2kF1

⎛
⎝ cos(2kF1zi)

sin(2kF1zi)
0

⎞
⎠ (11)

+ m2kF2

⎛
⎝ cos(2kF2zi)

sin(2kF2zi)
0

⎞
⎠
⎤
⎦ ,

with magnetizations m2kF1 + m2kF2 = 1 at zero temperature,
and subsequently minimize the total energy with respect to the
magnetizations m2kF1 and m2kF2 . The system is analyzed in a
bosonized language, in which the annihilation operator for a

particle of spin σ in band i reads

riσ (z) = Uriσ√
2πα

e−i[rφiσ (z)−θiσ (z)], (12)

where r = R,L ≡ +,−, the corresponding Klein factors are
denoted as Uriσ , and α is a short-distance cutoff (here taken
to be the lattice spacing). The bosonic fields φiσ and θiσ

fulfill the standard commutation relation [φiσ (z),θi ′σ ′(z′)] =
δii ′δσσ ′ (iπ/2) sgn(z′ − z).31 It is furthermore convenient to
introduce spin and charge degrees of freedom via the canonical
transformation φics

(z) = (φi↑ ± φi↓)/
√

2 and θics
(z) = (θi↑ ±

θi↓)/
√

2.
As shown in Appendix D, the hyperfine coupling between

the ordered nuclear spins and the electrons yields various
cosine terms. If the Fermi momenta kF1 and kF2 are non-
commensurate, the only nonoscillating terms read

H non-osc.
en =

∑
i=1,2

Bxy,i

2πα

∫
dz cos[

√
2(φic + θis)], (13)

where Bxy,i = I A0 m2kFi
. These Overhauser fields are RG

relevant and thus lead to an ordering of φic + θis , i.e., half
of the electronic degrees of freedom. This, in turn, feeds back
to the nuclear spins by a modification of the RKKY exchange
interaction, which is now only mediated by the gapless part
of the electronic spectrum. To include this feedback effect
into the theory, we start from the nondiagonal version of the
electron Hamiltonian in the presence of the Overhauser fields
and interband interactions,

He =
∑
i=1,2

∑
j=c,s

∫
dz

2π

[
uij

Kij

(∂zφij )2 + uijKij (∂zθij )2

]

+
∫

dz

2π

4U

π
(∂zφ1c)(∂zφ2c)

+
∑
i=1,2

Bxy,i

2πα

∫
dz cos[

√
2(φic + θis)]. (14)

Here, uij and Kij are the effective velocities and Luttinger
liquid parameters, respectively, in the spin and charge sectors
of the two bands with uij = vFi/Kij . This representation
indicates that the interband Coulomb interaction and the
intraband Overhauser fields have competing effects and should
be treated simultaneously. While the interband interaction is
diagonalized by band-mixed boson fields given in Eq. (B4), the
magnetic Overhauser fields induce an intraband ordering and
gap out parts of the spectrum within each band, which opposes
a complete mixing of the bosonic fields. Figure 7 depicts this in
terms of RG fixed points. The first line of Eq. (14) corresponds
to the fixed point a with two decoupled Luttinger liquids.
Adding an interband interaction U12 = U but no coupling to
the nuclear spins takes the system to a different fixed point b

described by two decoupled Luttinger liquids with modified
Luttinger parameters and velocities whose Hamiltonian is
given in Eq. (B7). This flow is shown in panel (a) of Fig. 7. The
fixed point b has been used to calculate the spin susceptibilities
in Sec. IV A. Panel (b) of Fig. 7, on the other hand, depicts how
the RG flow is changed due to the hyperfine coupling A0 to
the nuclear spins. Through the Overhauser fields, the hyperfine
coupling gaps out half of the electronic degrees of freedom.
As a consequence, the fixed points a and b are not stable at
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(a)

(b)

FIG. 7. RG flow of the two-subband quantum wire system.
Panel (a) shows the flow for density-density coupled subbands in
the absence of hyperfine coupling. For any value of the interband
interaction U12, the system can be described by two decoupled spinful
Luttinger liquids (LLs), characterized, however, by different Luttinger
liquid parameters and velocities. Panel (b) shows how the flow is
modified due to the presence of the hyperfine coupling and a resulting
ordering of the nuclear spins in the symmetric channel. Here, the
interband interaction would correspond to the out-of-plane axis (not
shown), and panel (b) is the projection of the full flow into the given
plane.

low temperatures. If there were no interband interaction, the
system would be described by a fixed point c with two gapless
and two gapped Luttinger liquids. Now adding an interband
coupling finally takes the system to yet another fixed point d,
which is the one we are after.

Given that the intraband Overhauser fields are strongly
RG relevant, they dominate the initial RG flow compared
to the marginal interband density-density interaction. The
latter is in any case only important when vF1 ≈ vF2 and may
then indeed slightly modify the scaling of the Overhauser
gap, but not the presence of an ordered state. We thus first
describe the flow from fixed point a to fixed point c and
subsequently take into account the interband interaction. Close
the to fixed point a, the term cos[

√
2(φic + θis)] has the scaling

dimension gi = (Kic + 1/Kis)/2. Parametrizing the running
short distance cutoff as α(b) = b α, the flow of Bxy,i between
the fixed points a and c reads

∂Bxy,i

∂ ln(b)
= (1 − gi) Bxy,i . (15)

As discussed in Appendix E (and similar to the single-subband
case),10 this leads to gaps �i+ for the bosonic fields φi+ ∼
φic + θis . There are, however, two more bosonic modes φi−
resulting from the canonical transformation φc,θs → φ+,φ−.
These modes do not couple to the Overhauser fields and remain
gapless.

Expanding the cosine terms to second order31 and us-
ing ui+ = (uicKic + uis/Kis)/(Kic + 1/Kis) and Ki = 2gi =
Kic + 1/Kis yields

�i+(b) =
√

Ki ui+ Bxy,i(b)

α(b)
. (16)

The flow in band i stops if either the running gap reaches
the running energy cutoff, �i+(b) = ui+/α(b), if the short-
distance cutoff equals the wire length, α(b) = L, or if
the finite temperature cuts off the divergences at α(b) =
u+i/T . The first criterion defines the RG stage b∗ as 1 =

Ki α(b∗) Bxy,i(b∗)/ui+, and thus

b∗ =
(

ui+
Ki α Bxy,i

)1/(2−gi )

. (17)

The physical gap �∗
i+ = �i+(b∗) in the electronic spectrum,

provided that the RG flow is stopped by this first criterion,
reads

�∗
i+ = Ki Bxy,i

(
ui+

Ki α Bxy,i

)(1−gi )/(2−gi )

. (18)

If, however, the flow stops at b∗
L,T = α∗/α with α(b∗

L,T ) =
α∗ = min{L,ui+/T } due to the finite system size or tem-
perature, the expansion of the cosine to second order yields
a gap smaller than the finite size gap (or the temperature)
ui+/α∗, and fluctuations beyond Gaussian order may be
important for a given physical observable. Nevertheless, using
the Gaussian approximation, the Overhauser field-induced gap
can be expressed as

�∗
i+ = ui+

α∗

√
Ki α(b∗

L,T ) Bxy,i(b∗
L,T )

ui+
. (19)

The renormalized Overhauser fields at the end of the flow,
B∗

xy,i = Bxy,i(min{b∗,b∗
L,T }), can be interpreted as renormal-

ized hyperfine coupling A∗
i = A0 B∗

xy,i/Bxy,i for the φi+
modes (we recall that Bxy,i ∼ A0). This renormalized hy-
perfine coupling expresses how the ordered electronic modes
collectively couple to the the polarized nuclear spins.

C. Residual nuclear spin Hamiltonian

Assuming the presence of two nuclear spin helices of the
form (11) at low temperatures, we found that the fields φ1+ ∼
φ1c + θ1s and φ2+ ∼ φ2c + θ2s are gapped. Rather than through
an exchange interaction mediated by all electronic modes, the
nuclear spins thus feel the electrons mainly through an RKKY
interaction mediated by the remaining gapless φi− modes,
as well as through the finite magnetization of the electron
spins of the φi+ modes, which form helical spin density waves
locked to the nuclear spin helices.10 Only outside the gapped
momentum range, the φi+ modes contribute to the RKKY
exchange, which is then again of the high-temperature form
discussed in Sec. IV A. The dominant RKKY coupling Js

therefore exhibits two additional dips on the shoulders of each
large dip signaling the onset of the exchange mediated by the
φi+ modes (the exchange mediated by the φi+ modes is thus
similar to the polarization function discussed in Ref. 32). The
presence of the large nearby central dip, however, renders these
side dips negligible.

To make our calculation self-consistent, we thus have to
recalculate the RKKY interaction mediated only by the φi−
modes. As detailed in Appendix F, we obtain the residual
exchange couplings in x and y direction as

J xx
s,q

′ = J yy
s,q

′ = J ′
s,q,1 + J ′

s,q,2, (20a)

J xx
a,q

′ = J yy
a,q

′ = J ′
a,q,12 + J ′

a,q,21. (20b)
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FIG. 8. (Color online) Exponents 2g′
ij of the residual RKKY

exchange couplings after the formation of nuclear spin helices at
momenta 2kF1 and 2kF2, as a function of vF2/vF1 for fixed vF1 and
interaction strength U such that K1c = 0.5.

At finite temperatures, the RKKY exchange couplings in the
symmetric sector read

J ′
s,q,i = −A2

0 a sin(πg′
ii)

32π2ui−

(
βui−
2πα

)2−2g′
ii ∑

κ=±
�2(1 − g′

ii)

×
∣∣∣∣∣ �

[ g′
ii

2 − i
βui−
4π

(q + κ2kFi)
]

�
[ 2−g′

ii

2 − i
βu′

i

4π
(q + κ2kFi)

]
∣∣∣∣∣
2

, (21)

where � is the standard � function, ui− = (uic/Kis +
uis Kic)/(Kic + 1/Kis) and where the exponents g′

ii are given
in Fig. 8. The intraband couplings have analogous expressions.
At zero temperature, this translates to the divergent behavior

J xx
s,q

′∣∣
q≈±2kF1

∼ |q ∓ 2kF1|2g′
11−2, (22a)

J xx
s,q

′∣∣
q≈±2kF2

∼ |q ∓ 2kF1|2g′
22−2, (22b)

J xx
a,q

′∣∣
q≈±(kF1+kF2) ∼ |q ∓ (kF1 + kF2)|2g′

12−2. (22c)

Note that for the calculation of the new exponents g′
ij we have

neglected renormalizations of the Luttinger liquid parameters
and velocities within each band due to interband interactions
during the flow between the fixed points a and c in Fig. 7. Since
this flow is rather short (we recall that the Overhauser fields are
strongly RG relevant) and since interband interactions have a
small effect unless vF1 ≈ vF2, we expect this approximation
not to change our results.

Like for the single-band wire, the RKKY interaction is
now anisotropic. Correcting an error in Ref. 10, the RKKY
coupling along z remains nonsingular in the helically ordered
state. This can be understood from Fig. 4. To obtain a divergent
contribution to the z component would require backscattering
from a left mover to a right mover without spin flip. Such a
process is, however, not possible in the helically ordered state
where the right-moving spin-down and the left-moving spin-up
particles are gapped. Technically, the spin susceptibility in the
z direction is regularized by the fact that it involves the field
θ+ canonically conjugate to the ordered field φ+, which cuts
off its divergence.15,33–35

To conclude, we find that the effective Hamiltonian for the
nuclear spins including the feedback between the latter and the

electrons reads

H ′
RKKY = 1

N

∑
q,α

(
Iα

s,−q

J αα
s,q

′

N2
⊥

Iα
s,q + Iα

a,−q

J αα
s,a

′

N2
⊥

Iα
a,q

)

+ 1

N⊥

∑
i‖

(A∗
1 〈S11,i‖ 〉 + A∗

2 〈S22,i‖ 〉) · I s,i‖ . (23)

As has been discussed in the single-subband case, the effective
magnetic fields ∼〈Sjj,i‖ 〉 acting on the nuclear spins due to
the polarization of the (partially) ordered electron system
are, however, negligible compared to the residual RKKY
interaction and are therefore omitted in the following.10

V. COEXISTENCE OF HELICES AT 2KF1 AND 2KF2 AND
ONSET OF NUCLEAR SPIN ORDER AT FINITE

TEMPERATURE

Having established the effective theory in the presence of
both hyperfine coupling and interband interactions, we are
finally in the position to analyze the ground state of the
system at low temperatures, where the nuclear spins order
in a superposition of two helices at momenta 2kF1 and 2kF2

with magnetizations m2kF1 and m2kF2 = 1 − m2kF1 at zero
temperature; see Eq. (11). The coexistence of these two helices
can be inferred from the fact that the energy loss of orienting
parts of the nuclear spins into the shallower minimum of the
RKKY interaction (see Fig. 3) is overcompensated by the
energy gain due to gapping out a second electronic sector.
Considering, for example, kF2 < kF1, the deepest minimum
of the RKKY exchange is at momentum 2kF2. The loss
in both nuclear spin energy and the electronic gap of the
second band while populating the second minimum with a
small magnetization m2kF1 scales linearly in m2kF1 , while the
gain in energy due to the gap in the first subband scales
as m

1/(2−g1)
2kF1

> m2kF1 . A similar argument does not hold for
the helical interband polarization mkF1+kF2 because the latter
would gap out the electronic spectrum and suppress the
RKKY interaction altogether, see Sec. III. The ground-state
magnetizations can then be obtained by minimizing the total
energy with respect to m2kF1 , which depends on the ratio of
vF2 to vF1, as well as the temperature (through the RKKY
interaction). The nuclear spin order is also stable if interband
spin density interactions or current-current density interactions
were non-negligible. Being quadratic in the bosonic fields,
these interactions could be taken into account by a generalized
transformation diagonalizing the interband interaction after the
helix formation in Sec. IV C, and would therefore not modify
the presence or absence of electronic gaps.

At larger temperatures, thermal fluctuations decrease the
nuclear spin polarizations m2kF1 and m2kF2 , which also has
to be fed back into the minimization procedure. When the
temperature is eventually high enough, thermal fluctuations
entirely suppress the nuclear spin order. Very roughly, this is
expected to occur when the thermal energy is larger than the
RKKY exchange at the helix momentum. An upper bound
to the critical temperature is defined by the residual RKKY
interactions that profit from the reduced exponents g′

ij defined
in the ordered phase. This yields the estimate kB Tci ∼ I 2 J xx

s,i
′

for the transition temperature Tci in band i. Since the two
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helices at momenta 2kF1 and 2kF2 are sustained by different
minima of the RKKY exchange coupling with different depths,
two distinct ordering temperatures can be observed. We derive
these ordering temperatures in an approximation known as
the Tyablikov decoupling.36,37 This method allows the self-
consistent determination of the critical temperatures associated
with the two helical nuclear spin orders in a mean-field-type
approach. We find that the helical order in band i sets in for
temperatures below

Tci ≈ 2

3
I 2

(
a

π

∫
dq

α̃i(q)

α̃i(q)2 − β̃i(q)2

)−1

, (24)

with

α̃i(q) = [2Ai(q = 0) − Ai(q) − J z
s,i(q)], (25a)

β̃i(q) = [Ai(q) − J z
s,i(q)], (25b)

with Ai(q) = J xx
s,i

′(q + 2kFi)/2 + J xx
s,i

′(q − 2kFi)/2 and
J z

s,i(q) being the contributions of band i to the total spin
susceptibility [see Eq. (20a)]. Details of the derivation of
the critical temperatures Tci can be found in Appendix G.
The spin susceptibilities are dipped around q = ±2kFi (see
Fig. 3), and we thus have α̃2

i − β̃2
i ∼ q2 close to q = 0. The

integral in Eq. (24) is therefore infrared (IR) divergent. This
divergence is cut off by the finite size of the sample at the
momentum |q| ∼ 2π/L. For not too long quantum wires, the
integral can be approximated by the implicit equation (note
that J xx

s,i
′ has a power law temperature dependence)

Tci ≈ 2
3 I 2 J xx

s,i
′(2kFi), (26)

which confirms our order-of-magnitude guess. These critical
temperatures Tci found with the Tyablikov decoupling are
consistent with the result obtained in a magnon analysis.10,38

For longer wires, however, one needs to compare the critical
temperature given in Eq. (26), resulting from the nonsingular
part of the integral in Eq. (24), to the IR divergent contri-
bution ∼[(∂2α̃/∂q2)dip]−1 La/π2. For L → ∞, the divergent
contribution dominates, and the critical temperature goes to
zero. This limiting behavior is consistent with the general
theorem that there is no order possible in these systems at
finite temperatures in the thermodynamic limit.39

We thus find that the nuclear spins in a finite size quantum
wire with two subbands form two distinct helices of momenta
2kF1 and 2kF2 and that these two orders have different critical
temperatures. The superposition of helices with different pitch
lengths results in a beating pattern for the nuclear spin
polarization. Since each helix order gaps out one electronic
mode, the quantum wire exhibits a two-step reduction of the
conductance from 4e2/h to (approximately) 3e2/h at the first
ordering temperature and to (approximately) 2e2/h at the
second ordering, which provides an experimental signature
of the double-helix order.

VI. INTRABAND VS INTERBAND ORDER

A number of consistency checks of the results obtained
here can be directly translated from the single-band case, and
we refer the reader to Ref. 10 for details. What requires a
little more care is the stability of the order in the symmetric
channel with respect the order in the antisymmetric channel.

The assumption of an ordering in the symmetric channel was
based on the more divergent spin susceptibility of the latter
with respect to the disordered fixed point b in Fig. 7, or
alternatively the higher RG relevance of the Overhauser field
associated with this channel close to this fixed point (note
that close to the fixed point a of Fig. 7, interband scattering
processes are even irrelevant in the RG sense). If the ratio of
Fermi velocities becomes of order one, however, the two orders
have comparable scaling dimensions. One can suspect that in
this regime, also the electronic gaps due to either possible
ordering, as well as the nuclear spin energies (set by the
RKKY interactions and thus also controlled by the exponents
gij that determine the scaling dimensions of the Overhauser
fields), will become of the same order and that the ground
state can only be inferred from a detailed comparison of the
various possible nuclear spin orders and associated electronic
states. Similar considerations apply to the limit of weakly
interacting electrons, where all gij → 1. For smaller vF2/vF1

and experimentally observed strongly interacting Luttinger
liquids, however, a helical order of the nuclear spins in the
antisymmetric channel can be excluded.

For vF2 � 0.5 vF1, specifically, the stronger residual spin
susceptibility in the symmetric channel (see Fig. 8) ensures a
helical ordering at 2kF1 and 2kF2 at low-enough temperatures.
For larger vF2/vF1, our analysis becomes inconsistent for
T → 0 when the divergent spin susceptibilities overrule any
finite gap in the electronic sectors. Given, however, that the
maximal ratio of Fermi velocities before a third band is filled
is vF2/vF1 ∼ 0.7 (for two subbands in a single wire), most
of the two-subband regime will exhibit the formation of two
helices at 2kF1 and 2kF2, while the regime vF2 → vF1 deserves
further analysis elsewhere.

VII. SUMMARY

In this work, we have considered the interplay of electrons
and nuclear spins in a two-subband quantum wire. Similar
to a single-subband wire, the hyperfine coupling between
electrons and nuclear spins leads to an ordering of the nuclear
spins and consequently a gap for half of the electronic
spectrum.9,10 This gap is strongly renormalized by interaction
effects. Different from the single-subband case, the nuclear
spins in a two-subband quantum wire form a superposition
of two helices with distinct pitches λ1 = π/kF1 and λ2 =
π/kF2 [see Fig. 9(a)], which gives rise to a beating pattern
in real space. The two helical orders set in at different
temperatures. As a result, the conductance of the wire exhibits
a stepwise reduction from 4 e2/h at highest temperatures to
(approximately) 3 e2/h after the formation of the first helix,
and finally to (approximately) 2 e2/h at the formation of
the second helix. The behavior of the conductance, which
provides an experimental signature of the double-helical order
in two-subband quantum wires, is depicted in Fig. 9(b).

To establish these results, we have analyzed the quantum
wire in a self-consistent analysis based on the well-separated
dynamics of electrons and nuclear spins. As has been shown
in Sec. II, the hyperfine coupling between electrons and
nuclear spins can be decomposed into a symmetric and an
antisymmetric channel. The electrons thus mediate two kinds
of RKKY interactions between the nuclear spins. As has

235427-9



TOBIAS MENG AND DANIEL LOSS PHYSICAL REVIEW B 87, 235427 (2013)

(a)

+

(b)

FIG. 9. (Color online) Experimental signatures of the nuclear spin
order. Panel (a) shows the two superimposed helices of different
pitch lengths λ1 = π/kF1 and λ2 = π/kF2 formed by the nuclear
spins, leading to a beating pattern of the nuclear magnetization in
real space. Panel (b) depicts the conductance of the two-subband
quantum wire as a function of temperature. At the higher critical
temperature Tci > Tcj , the helix at momentum 2kFi forms, and the
conductance drops from 4 e2/h to (approximately) 3 e2/h. At the
second ordering temperature Tcj , the second helix forms and further
reduces the conductance to (approximately) 2 e2/h.

been discussed in Sec. III, these different interaction channels
compete for the formation of nuclear spin order. The final
ground state has then been derived in a self-consistent approach
that takes into account the interplay of nuclear spins and
electrons by describing the nuclear spins as an effectively static
Overhauser field for the electrons, while the latter mediate an
effectively instantaneous RKKY interaction for the former.
This calculation has been carried out in Sec. IV. We find
that the two-subband quantum wire preferably orders in the
symmetric hyperfine channel, which leads to the formation of
the two superimposed nuclear spin helices of pitches λ1 and
λ2 at lowest temperatures. At higher temperatures, each helix
is associated with its own critical temperature, implying the
above-described reduction of the conductance in two steps as
the temperature is lowered; see Sec. V.
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APPENDIX A: RKKY INTERACTION

In order to derive the RKKY interaction by integrating out
the fermionic degrees of freedom, we first rewrite the hyperfine
coupling in momentum space and imaginary time. Using
Iα

(·)i‖ (τ ) = ∑
i e

−iqzi I α
(·)q(τ ) with zi = a i‖, where i‖ denotes

the longitudinal nuclear spin lattice site index and with a being
the lattice constant, we obtain the action corresponding to Hne

as

Sne = A0

N⊥

1

N

∫
dτ

∑
q

[S11,q(τ ) + S22,q (τ )] · I s,q(τ )

+ A0

N⊥

1

N

∫
dτ

∑
q

[S12,q(τ ) + S21,q (τ )] · I a,q(τ ),

(A1)

where N = L/a is the number of lattice sites in longitudinal di-
rection, and with Sij,q(τ ) = ∑

α,β,k c
†
iαk+q(τ )(σ αβ/2)cjαk(τ ) .

The RKKY interaction can be obtained by expanding the total
action S = Se + Sne to second order in Sne and integrating
over the fermions. Re-exponentiation then yields the action

SRKKY = A2
0

N2
⊥

1

2N2

∫
dτ

∫
dτ ′ ∑

q

(A2)

× [
Iα

s,−q (τ ) χαβ
s,q (τ − τ ′) Iβ

s,q(τ ′)

+ Iα
a,−q (τ ) χαβ

a,q(τ − τ ′) Iβ
a,q(τ ′)

]
,

with the imaginary time spin susceptibilities

χαβ
s,q (τ − τ ′) = 〈

Sα
11,−q (τ )Sβ

11,q(τ ′) + Sα
22,−q (τ )Sβ

22,q(τ ′)
〉
,

(A3)

χαβ
a,q(τ − τ ′) = 〈

Sα
12,−q (τ )Sβ

21,q(τ ′) + Sα
21,−q (τ )Sβ

12,q(τ ′)
〉
.

(A4)

The averages are taken with respect to Se and evaluated
in Appendix C. Given that the nuclear spin dynamics are
associated with much longer time scales than the electron
dynamics, we can approximate (with β = 1/T in units of
kB = 1)

χ(·),q(τ − τ ′) = 1

β

∑
ωn

e−iωn(τ−τ ′)χ(·),q(ωn) (A5)

≈ 1

β

∑
ωn

e−iωn(τ−τ ′)χ(·),q(ωn = 0)

= δ(τ − τ ′)χ(·),q(ωn = 0).

The real time Hamiltonian corresponding to the action SRKKY

can finally be found by analytical continuation to the retarded
spin susceptibilities,

HRKKY = A2
0

N2
⊥

1

2N2

∑
q

[
Iα

s,−q(t) χαβ,ret
s,q (ω → 0) Iβ

s,q (t)

+ Iα
a,−q (t) χαβ,ret

a,q (ω → 0) Iβ
a,q(t)

]
. (A6)

APPENDIX B: DIAGONALIZATION OF
THE ELECTRON SECTOR

In order to diagonalize the electronic Hamiltonian He, we
first bosonize the annihilation operator for a particle of spin σ

as

rj,σ (z) = Urjσ√
2πα

e−i[rφjσ (z)−θjσ (z)], (B1)

where r = R,L ≡ +,−, the corresponding Klein factors are
denoted as Urjσ , and α is a short-distance cutoff (here taken
to be the lattice spacing). The bosonic fields φjσ and θjσ

fulfill the standard commutation relation [φjσ (z),θj ′σ ′(z′)] =
δjj ′δσσ ′ (iπ/2) sgn(z′ − z).31 Since the interaction U in Eq. (1)
is of density-density type, it can be taken into account
by an exact basis transformation. Because furthermore the
Fermi velocities vF1 and vF2 in the two bands are different,
it is most convenient to first diagonalize each subband
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separately by introducing spin and charge degrees of freedom
via the canonical transformation φ

j
c
s
(z) = (φj↑ ± φj↓)/

√
2

and θ
j

c
s
(z) = (θj↑ ± θj↓)/

√
2. In this basis, the electronic

Hamiltonian reads

He =
∑
i=1,2

∑
j=c,s

∫
dz

2π

[
uij

Kij

(∂zφij )2 + uijKij (∂zθij )2

]

+
∫

dz

2π

4U

π
(∂zφ1c)(∂zφ2c), (B2)

where the effective velocities and Luttinger parameters are as
usual given by

Kic =
(√

1 + 2U

πvFi

)−1

, uic = vFi

Kic

, (B3a)

Kis = 1, uis = vFi . (B3b)

The diagonal electronic Hamiltonian is now obtained by a
second canonical transformation,

φ1c =
√

vF1

uc+
(
1 + A2

c

) φc+ +
√

A2
c vF1

uc−
(
1 + A2

c

) φc−, (B4a)

φ2c =
√

A2
c vF2

uc+
(
1 + A2

c

) φc+ −
√

vF2

uc−
(
1 + A2

c

) φc−, (B4b)

θ1c =
√

uc+
vF1

(
1 + A2

c

) θc+ +
√

A2
c uc−

vF1
(
1 + A2

c

) θc−, (B4c)

θ2c =
√

A2
c uc+

vF2
(
1 + A2

c

) θc+ −
√

uc−
vF2

(
1 + A2

c

) θc−, (B4d)

with the velocities

uc± =

√√√√u2
1c + u2

2c

2
±
√(

u2
1c − u2

2c

2

)2

+
(

2U

π

)2

vF1vF2

(B5)

and with

Ac = (4U/π )
√

vF1vF2√(
u2

1c − u2
2c

)2 + (4U/π )2 vF1vF2 + u2
1c − u2

2c

.

(B6)

The electronic Hamiltonian can then be written as

He =
∑
k=±

uck

2π

∫
dz [(∂zφck)2 + (∂zθck)2]

+
∑
j=1,2

vFj

2π

∫
dz [(∂zφsj )2 + (∂zθsj )2]. (B7)

We note that a generalized form of the transformation given in
Eq. (B4) would also make it possible to take into account
the spin density-density interaction, charge current-current
interaction and spin current-current interaction neglected here.

APPENDIX C: EVALUATION OF THE SPIN
SUSCEPTIBILITIES

The real-time RKKY Hamiltonian given in Eq. (8) depends
on the zero-frequency components of the retarded spin suscep-
tibilities. The latter can most conveniently be derived starting
from the imaginary time susceptibilities given in Eqs. (A3)
and (A4). We obtain〈
Sα

ij,−q(τ )Sβ

i ′j ′,q(τ ′)
〉

=
∑
k,k′

∑
a,b,a′,b′

σα
ab

2

σ
β

a′b′

2
〈c†iak−q(τ )cjbk(τ )c†i ′a′k′+q(τ ′)cj ′b′k′(τ ′)〉

=
∑

a,b,a′,b′

σα
ab

2

σ
β

a′b′

2
L

∫
d(z − z′)eiq(z−z′)

×〈c†ia(z,τ )cjb(z,τ )c†i ′a′(z′,τ ′)cj ′b′ (z′,τ ′)〉. (C1)

Since the Hamiltonian conserves the total spin, these averages
(evaluated with respect to He) are diagonal in spin space.
In addition, we find that forward-scattering contributions
have a nonsingular spin susceptibility, while backscattering
events result in divergences. We therefore only evaluate the
backscattering terms. To this end, the electronic Hamiltonian
is bosonized and (depending on the fixed point one is interested
in) diagonalized as detailed in Appendix B. The divergent part
of the x and y components of the spin susceptibility within the
first band are identical and read

χx
11,q = χ

y

11,q =
∑
rσ

L

4

∫
d(z − z′)ei(q−2rkF1)(z−z′)

×〈r†1σ (z,τ )r̄1σ̄ (z,τ )r̄†1σ̄ (z′,τ ′)r1σ (z′,τ ′)〉
= − L

4(2πα)2

∫
d(z − z′)eiq(z−z′) (e−i2kF1(z−z′)

×{〈ei
√

2[φ1c(z,τ )+θ1s (z,τ )−φ1c(z′,τ ′)−θ1s (z′,τ ′)]〉
+ 〈ei

√
2[φ1c(z,τ )−θ1s (z,τ )−φ1c(z′,τ ′)+θ1s (z′,τ ′)]〉} + H.c.), (C2)

with r = R,L ≡ +,−. The backscattering part of the z

component reads

χz
11,q =

∑
rσ

L

4

∫
d(z − z′)ei(q−2rkF1)(z−z′)

×〈r†1σ (z,τ )r̄1σ (z,τ )r̄†1σ (z′,τ ′)r1σ (z′,τ ′)〉
= − L

4(2πα)2

∫
d(z − z′)eiq(z−z′) (e−i2kF1(z−z′)

×{〈e[i
√

2(φ1c(z,τ )+φ1s (z,τ )−φ1c(z′,τ ′)−φ1s (z′,τ ′)]〉
+ 〈ei

√
2[φ1c(z,τ )−φ1s (z,τ )−φ1c(z′,τ ′)+φ1s (z′,τ ′)]〉} + H.c.).

(C3)

The spin susceptibility within the second band can be obtained
from the one in the first band by exchanging the index 1 →
2. The spin susceptibility between the bands finally has the
divergent part,

χx
12,q = χ

y

12,q =
∑
rσ

L

4

∫
d(z − z′)ei[q−r(kF1+kF2)](z−z′)

×〈r†1σ (z,τ )r̄2σ̄ (z,τ )r̄†2σ̄ (z′,τ ′)r1σ (z′,τ ′)〉
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= −L

4(2πα)2

∫
d(z − z′)eiq(z−z′)(e−i(kF1+kF2)(z−z′)

×{〈ei(1/
√

2)[φ1c(z,τ )+φ1s (z,τ )+φ2c(z,τ )−φ2s (z,τ )]

× e−i(1/
√

2)[θ1c(z,τ )+θ1s (z,τ )−θ2c(z,τ )+θ2s (z,τ )]

× e−i(1/
√

2)[φ1c(z′,τ ′)+φ1s (z′,τ ′)+φ2c(z′,τ ′)−φ2s (z′,τ ′)]

× ei(1/
√

2)[θ1c(z′,τ ′)+θ1s (z′,τ ′)−θ2c(z′,τ ′)+θ2s (z′,τ ′)]〉
+ 〈ei(1/

√
2)[φ1c(z,τ )−φ1s (z,τ )+φ2c(z,τ )+φ2s (z,τ )]

× e−i(1/
√

2)[θ1c(z,τ )−θ1s (z,τ )−θ2c(z,τ )−θ2s (z,τ )]

× e−i(1/
√

2)[φ1c(z′,τ ′)−φ1s (z′,τ ′)+φ2c(z′,τ ′)+φ2s (z′,τ ′)]

× ei(1/
√

2)[θ1c(z′,τ ′)−θ1s (z′,τ ′)−θ2c(z′,τ ′)−θ2s (z′,τ ′)]〉}
+ (kFi → −kFi,φij → −φij )). (C4)

In addition, there is a contribution χx
21,q = χ

y

21,q which can be
obtained from χx

12,q = χ
y

12,q by the index swap 1 ↔ 2. The z

component finally has the expression

χz
12,q =

∑
rσ

L

4

∫
d(z − z′)ei[q−r(kF1+kF2)](z−z′)

×〈r†1σ (z,τ )r̄2σ (z,τ )r̄†2σ (z′,τ ′)r1σ (z′,τ ′)〉
= −L

4(2πα)2

∫
d(z − z′)eiq(z−z′)(e−i(kF1+kF2)(z−z′)

×{〈ei(1/
√

2)[φ1c(z,τ )+φ1s (z,τ )+φ2c(z,τ )+φ2s (z,τ )]

× e−i(1/
√

2)[θ1c(z,τ )+θ1s (z,τ )−θ2c(z,τ )−θ2s (z,τ )]

× e−i(1/
√

2)[φ1c(z′,τ ′)+φ1s (z′,τ ′)+φ2c(z′,τ ′)+φ2s (z′,τ ′)]

× ei(1/
√

2)[θ1c(z′,τ ′)+θ1s (z′,τ ′)−θ2c(z′,τ ′)−θ2s (z′,τ ′)]〉
+ 〈ei(1/

√
2)[φ1c(z,τ )−φ1s (z,τ )+φ2c(z,τ )−φ2s (z,τ )]

× e−i(1/
√

2)[θ1c(z,τ )−θ1s (z,τ )−θ2c(z,τ )+θ2s (z,τ )]

× e−i(1/
√

2)[φ1c(z′,τ ′)−φ1s (z′,τ ′)+φ2c(z′,τ ′)−φ2s (z′,τ ′)]

× ei(1/
√

2)[θ1c(z′,τ ′)−θ1s (z′,τ ′)−θ2c(z′,τ ′)+θ2s (z′,τ ′)]〉}
+ (kFi → −kFi,φij → −φij )), (C5)

plus again an additional contribution that is obtained under
1 ↔ 2. These averages are now evaluated with respect to the
diagonalized Hamiltonian He given in Eq. (B7). We explicitly
state the calculation of χx

11, the other susceptibilities can be
evaluated analogously. Following Ref. 31 and using Eq. (B4a),
we find that

χx
11,q = − L

2(2πα)2

∫
d(z − z′)[ei(q+2kF1)(z−z′)

+ ei(q−2kF1)(z−z′)]e−(A2F
(c+)
1 (z−z′,τ−τ ′)+B2F

(c−)
1 (z−z′,τ−τ ′))

× e−(1/Ks1)F (s1)
1 (z−z′,τ−τ ′), (C6)

with

A =
√

vF1

uc+
(
1 + A2

c

) , B =
√

A2
c vF1

uc−
(
1 + A2

c

) , (C7)

and where the function F
(·)
1 (z,τ ) is at zero temperature given

by

F
(·)
1 (z,τ ) = ln

[√
z2 + (u(·)|τ | + α)2

α

]
, (C8)

where u(·) is the velocity associated with the respective mode.
At finite temperatures, it becomes

F
(·)
1 (z,τ ) = ln

[
βu(·)
πα

√
sinh2

(
πz

βu(·)

)
+ sin2

(
πτ

β

)]
(C9)

(where β = 1/T in units of kB = 1). Being mainly interested
in the scaling behavior of susceptibilities, i.e., their power law
exponents, one can neglect the difference in velocities and
obtain

χx
11,q = − L

2(2πα)2

∫
dz[ei(q+2kF1)z + ei(q−2kF1)z]

×
⎡
⎣ πα/(βu)√

sinh2
(

πz
βu

)+ sin2
(

π(τ−τ ′)
β

)
⎤
⎦

A2+B2+1/K1s

.

(C10)

Here, u denotes the common velocity of the different modes in
this approximation. The physical response of the system can
now be obtained by analytic continuation of Eq. (C10). The
latter is described in detail in Ref. 31 and yields

χ
x,ret
11,q

∣∣
ω→0 = −L sin(πg11)

8π2u

(
βu

2πα

)2−2g11 ∑
κ=±

�2(1 − g11)

×
∣∣∣∣∣ �

[
g11

2 − i
βu

4π
(q + κ2kF1)

]
�
[ 2−g11

2 − i
βu

4π
(q + κ2kF1)

]
∣∣∣∣∣
2

, (C11)

where � is the standard � function and with

g11 = A2 + B2 + 1/K1s

2
. (C12)

At zero temperature, this translates into

χ
x,ret
11,q

∣∣
ω→0 = −L sin (πg11)

8π2u

∑
κ=±

∣∣∣∣ 2

α(q + κ2kF1)

∣∣∣∣
2−2g11

.

(C13)

The spin susceptibility within the first band χ11 thus diverges
with a power law exponent 2 − 2g11 at the backscattering
wave vector 2kF1. We find similar power law divergences
for χ22, χ21, and χ12 characterized by exponents 2 − 2gij .
These exponents are plotted in Figs. 5 and 6. Due to the
transformation detailed in Eq. (B4), they depend on the
interaction strength between the two bands as well as the ratio
of Fermi velocities vF1/vF2.

APPENDIX D: OVERHAUSER FIELDS AND THEIR
COUPLING TO THE ELECTRONIC MODES

In this Appendix, we briefly review how an Overhauser field
of one of the two effective nuclear spins affects the electrons
in the quantum wire. Let us first start with a helical field of
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positive helicity in the symmetric channel at 2kF1,

BOv,s(z) = 〈I s,z〉 = B0

⎛
⎜⎝

cos(2kF1z)

sin(2kF1z)

0

⎞
⎟⎠. (D1)

This Overhauser field is coupled to the electrons by the
hyperfine interaction,

Hen = A0

N⊥

∫
dz [S11(z) + S22(z)] · BOv,s(z)

= A0 B0

2N⊥

∫
dz (c†1↑ e−i2kF1z c1↓ + H.c.)

+ A0 B0

2N⊥

∫
dz (c†2↑ e−i2kF1z c2↓ + H.c.). (D2)

The only nonoscillating cosine terms deriving from this inter-
action (unless the two Fermi wave vectors are commensurate)
are backscattering terms of a right-moving spin-down and a
left-moving spin-up within the first band. Dropping the Klein
factors that cancel out when taking averages subsequently, the
bosonized version of this term reads

H non-osc.
en = A0B0

2παN⊥

∫
dz cos[

√
2(φ1c + θ1s)]. (D3)

This term is strongly RG relevant and gaps out the combination
φc1 + θs1 in the first band, corresponding to right-moving
spin-down particles and left-moving spin-up particles (see
Ref. 10 for a detailed discussion). An Overhauser field of
negative helicity would gap out the combination φc1 − θs1

that corresponds to right-moving spin-down particles and
left-moving spin-up particles. A helical Overhauser field
with momentum 2kF2, on the other hand, would gap out
the corresponding combinations φc2 ± θc2 in the second
band.

We now turn to an Overhauser field in the antisymmetric
channel. For

BOv,a(z) = 〈I a,z〉 = B0

⎛
⎝ cos[(kF1 + kF2)z]

− sin[(kF1 + kf 2)z]

0

⎞
⎠, (D4)

the hyperfine interaction is

Hen = A0

N⊥

∫
dz [S12(z) + S21(z)] · BOv,a(z) (D5)

= A0 B0

2N⊥

∫
dz [c†1↑ ei(kF1+kF2)z c2↓ + H.c.]

+ A0 B0

2N⊥

∫
dz [c†2↑ ei(kF1+kF2)z c1↓ + H.c.].

Bosonizing this Hamiltonian, we find two nonoscillating
cosine- terms. The first line allows for backscattering between
right-moving spin-up particles in the second band and left-
moving spin-down particles in the first band, while the
second one allows for scattering between right-moving spin-up
particles in the first band and left-moving spin-down particles
in the second band. Bosonization finally yields

H non-osc.
en = A0B0

2παN⊥

∫
dz cos[

√
2(φ12c − θ12s)]

+ A0B0

2παN⊥

∫
dz cos[

√
2(φ21c − θ21s)], (D6)

where

φijc = φi↑ + φj↓√
2

, θijs = θi↑ − θj↓√
2

. (D7)

Like the cosine terms within a single band, the interband cosine
terms are RG relevant if the exponent 2g12 defined in Eq. (9) is
smaller than 2 and open up gaps for φ12c − θ12s and φ21c − θ21s ,
or equivalently for right-moving spin-up particles in the both
bands and left-moving spin-down particles in both bands. A
field of opposite helicity would have gapped out φ12c + θ12s

and φ21c + θ21s , corresponding to left-moving spin-up particles
in both bands and right-moving spin-down particles in both
bands.

APPENDIX E: RG FLOW DUE TO THE
OVERHAUSER FIELDS

Taking into account the Overhauser fields, the electrons are
subject to the effective Hamiltonian

He =
∑
i=1,2

∑
j=c,s

∫
dz

2π

[
uij

Kij

(∂zφij )2 + uijKij (∂zθij )2

]

+
∫

dz

2π

4U

π
(∂zφ1c)(∂zφ2c)

+
∑
i=1,2

Bxy,i

2πα

∫
dz cos[

√
2(φic + θis)]. (E1)

As discussed in Sec. IV B, the Overhauser fields Bxy,i and
the interband interaction U have competing effects and, when
taken on their own, drive the system to two different fixed
points. Their combined effect is taken into account by first
analyzing the flow due to the strongly relevant Overhauser
field while neglecting the flow due to the marginal interband
interactions, which are treated in a second step.

At the initial fixed point described by the first line of
Eq. (E1), the cosine terms of the Overhauser fields have
the scaling dimensions gi = (Kic + 1/Kis)/2. To integrate
the flow of Bxy,i , we perform a canonical transformation
that switches from spin and change degrees of freedom to
fields φi+ ∼ φic + θis while preserving the scaling dimension
of the cosine term with respect to the diagonal part of the
Hamiltonian,

φic = Kic√
Ki

φi+ +
√

Kic

Kis Ki

φi−, (E2a)

θic = 1√
Ki

θi+ + 1√
Kic Kis Ki

θi−, (E2b)

φis = 1√
Ki

θi+ −
√

Kis Kic

Ki

θi−, (E2c)

θis = 1

Kis

√
Ki

φi+ −
√

Kic

Kis Ki

φi−, (E2d)

with Ki = Kic + 1/Kis = 2gi . This transformation yields

He = H1 + H2 + H12, (E3)
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with

Hi =
∫

dz

2π
[ui+(∂zφi+)2 + ui+ (∂zθi+)2]

+
∫

dz

2π
[ui−(∂zφi−)2 + ui− (∂zθi−)2]

+
∫

dz

2π
2Ui [(∂zφi+) (∂zφi−) + (∂zθi+) (∂zθi−)]

+ Bxy,i

2πα

∫
dz cos(

√
2Ki φi+), (E4)

where

ui+ = uicKic + uis/Kis

Ki

, (E5a)

ui− = uic/Kis + uis Kic

Ki

, (E5b)

Ui = uic − uis

Ki

√
Kic

Kis

, (E5c)

and where the marginal interband interaction reads

H12 =
∫

dz

2π

4U

π

(
K1c√
K1

∂zφ1+ +
√

K1c

K1s K1
∂zφ1−

)

×
(

K2c√
K2

∂zφ2+ +
√

K2c

K2s K2
∂zφ2−

)
. (E6)

From there, we derive the RG equation for Bxy,i in a real-space
RG scheme.31 Parametrizing the running short distance cutoff
as α(b) = b α, we obtain the flow of Bxy,i as

∂Bxy,i

∂ ln(b)
= (1 − gi) Bxy,i . (E7)

APPENDIX F: SELF-CONSISTENT DERIVATION OF THE
RKKY INTERACTION

In Appendix E, we established that the intermediate fixed
point c of Fig. 7, reached after integrating the flow of the
relevant Overhauser fields, can be described as two gapped
and two gapless spinless Luttinger liquids. The remaining
ungapped φi− modes now mediate an RKKY interaction
similar to case discussed in Appendix C. We derive the latter
in a mean-field approximation where the φi+ fields are locked
to the minima of the cosine terms. As one could expect,
Gaussian fluctuations around this mean field have been shown
to be unimportant,10 and will be neglected here. We also
neglect renormalizations of the Luttinger liquid parameters
and effective velocities during the flow between the fixed
points a and c of Fig. 7 since the gaps Bxy,i are strongly
RG relevant and the associated flow is thus short. In addition,
interband interactions are not important unless vF1 ≈ vF2, see
main text. In this approximation, the mean-field Hamiltonian
of the remaining gapless φi− modes reads

He,− =
∑
i=1,2

∫
dz

2π
[ui− (∂zφi−)2 + ui− (∂zθi−)2]

+
∫

dz

2π

4Ueff

π
(∂zφ1−) (∂zφ2−) , (F1)

where the effective interaction between the φi− modes is given
by

Ueff = U

√
K1c K2c

K1s K1 K2s K2
. (F2)

This Hamiltonian can be diagonalized with a transformation
similar to Eq. (B4), namely,

φ1− =
√

u1−
v+ (1 + A2−)

φ+ +
√

A2− u1−
v−(1 + A2−)

φ− (F3a)

φ2− =
√

A2− u2−
v+(1 + A2−)

φ+ −
√

u2−
v−(1 + A2−)

φ−, (F3b)

θ1− =
√

v+
u1−(1 + A2−)

θ+ +
√

A2− v−
u1−(1 + A2−)

θ−, (F3c)

θ2− =
√

A2− v+
u2−(1 + A2−)

θ+ −
√

v−
u2−(1 + A2−)

θ− , (F3d)

with

v± =

√√√√√u2
1− + u2

2−
2

±

√√√√(
δu2

12−
2

)2

+
(

2Ueff

π

)2

u1−u2−,

(F4)

where we used δu2
12− = u2

1− − u2
2− and with

A− = (4Ueff/π )
√

u1−u2−√(
δu2

12−
)2 + (4Ueff/π )2 u1−u2− + δu2

12−

. (F5)

This transformation brings the gapless sector of the Hamilto-
nian in the diagonal form

He,− =
∑
k=±

1

2π

∫
dz [(∂zφk)2 + (∂zθk)2], (F6)

which, in turn, allows us to evaluate the residual RKKY
interactions due to the gapless electronic modes φ+ and φ−. As
before, the residual RKKY interactions are determined by the
residual spin susceptibility. We start from Eq. (C3), apply the
transformation (E2), and drop the gapped fields φi+ (which
are simple constants in imaginary time and space and thus
drop out). For the x and y components of the residual spin
susceptibilities in the two bands, we obtain

χx
ii,q = χ

y

ii,q = −L

4(2πα)2

∫
d(z − z′)eiq(z−z′) {e−i2kFi (z−z′)

×〈ei
√

2
√

4Kic/(KisKi )[φi−(z,τ )−φi−(z,τ )]〉 + H.c.
}
, (F7)

and thus

χx
ii,q = χ

y

ii,q = −L

4(2πα)2

∫
d(z − z′)eiq(z−z′){e−i2kFi (z−z′)

×〈ei
√

2[Aiφ−(z,τ )+Biφ+(z,τ )−Aiφ−(z,τ )−Biφ+(z,τ )]〉 + H.c.
}
,

(F8)
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where

A1 =
√

4 K1c u1−
K1s K1 v+ (1 + A2−)

, (F9a)

B1 =
√

4 K1c A2− u1−
K1s K1 v−(1 + A2−)

, (F9b)

A2 =
√

4 K2c A2− u2−
K2s K2 v+ (1 + A2−)

, (F9c)

B2 = −
√

4 K2c u2−
K2s K2 v−(1 + A2−)

. (F9d)

Evaluating these expressions and neglecting the velocity
difference between φ+ and φ− yields the spin susceptibility as

χ
x,ret
ii,q

∣∣
ω→0 = −L sin(πg′

ii)

16π2ui−

(
βui−
2πα

)2−2g′
ii ∑

κ=±
�2(1 − g′

ii)

×
∣∣∣∣∣ �

[ g′
ii

2 − i
βui−
4π

(q + κ2kFi)
]

�
[ 2−g′

ii

2 − i
βui−
4π

(q + κ2kFi)
]
∣∣∣∣∣
2

, (F10)

where � is the standard � function and with

2g′
ii = A2

i + B2
i . (F11)

An analogous calculation can also be performed to calculate
g′

12. Due to the uncertainty principle, an ordering of φi+
regularizes terms that depend on θi+.15,33,35 Roughly speaking,
an expectation value involving the fields θi+ averages to
zero. For the same reason, also the z components of the
susceptibilities are nondivergent.

APPENDIX G: TYABLIKOV DECOUPLING AND
ORDERING TEMPERATURES

Neglecting the magnetic field due to the electron polariza-
tion, the symmetric sector of the nuclear spins is governed by
the Hamiltonian

H ′
RKKY = 1

N

∑
q,α

I α
s,−q

J αα
s,q

′

N2
⊥

Iα
s,q . (G1)

Using Iα
s,q = ∑

q e−iqzi I α
s,i‖ with zi = a i‖ and

(1/N )
∑

q eiqzi J αα
s,q

′ = J αα
s

′(zi), we obtain the real-space
RKKY Hamiltonian

H ′
RKKY =

∑
i,j,α

I α
s,i‖

J αα
s

′(zi − zj )

N2
⊥

Iα
s,j‖ . (G2)

This Hamiltonian allows us to calculate, for instance, the
critical temperature T ∗

1 for the ordering of the nuclear spins in
a helix of momentum 2kF1 in the symmetric channel. It is at
first useful to realize that the nuclear spin order as well as the
RKKY interaction essentially only have Fourier components
either close to ±2kF1 or ±2kF2. Since the different minima
of the RKKY interaction do not overlap, these two sets of
Fourier components can be analyzed independently. We can

thus rewrite the Hamiltonian as

H ′
RKKY = 1

N

∑
q≈±2kF1

∑
α

Iα
s,−q

J αα
s,q

′

N2
⊥

Iα
s,q (G3)

+ 1

N

∑
q≈±2kF1

∑
α

Iα
s,−q

J αα
s,q

′

N2
⊥

Iα
s,q (G4)

and treat the Fourier modes close to ±kF1 and ±kF2 separately.
Retaining at first only momenta q ≈ ±2kF1, we can go to
a rotated frame of reference where this order corresponds
to a ferromagnetic polarization. This is achieved by the
transformation

I rot.
s,i‖ =

⎛
⎝ cos(2kF1zi) sin(2kF1zi) 0

− sin(2kF1zi) cos(2kF1zi) 0
0 0 1

⎞
⎠I s,i‖ , (G5)

which transforms the RKKY exchange coupling to

J rot.
s

′(zi − zj ) =
⎛
⎝Aij Bij 0

Bji Aij 0
0 0 J zz

s
′(zi − zj )

⎞
⎠, (G6)

with

Aij = +Aji = J xx
s

′(zi − zj ) cos[2kF1(zi − zj )], (G7a)

Bij = −Bji = J xx
s

′(zi − zj ) sin[2kF1(zi − zj )]. (G7b)

In this basis, the Overhauser field resulting from the Fourier
components close to 2kF1 reads

〈
I rot.

s,i‖

〉 = I N⊥ m2kF1

⎛
⎝1

0
0

⎞
⎠. (G8)

Next, we apply the so-called Tyablikov decoupling which is
based on the decoupling of the equation of motion of the
nuclear spin Green’s function. The latter is defined as

Gret
ij,+−(t,t ′) = −iθ (t − t ′) 〈[I+

s,i‖ (t),I
−
s,j‖ (t

′)]〉, (G9)

with I±
s,i‖ (t) = I

y

s,i‖ (t) ± iI z
s,i‖ (t). The equation of motion for

this Green’s function reads

i∂t G
ret
ij,+−(t,t ′) = δ(t − t ′) 〈[I+

s,i‖ (t),I
−
s,i‖(t

′)]〉
+ iθ (t − t ′) 〈[[H ′

RKKY ,I+
s,i‖ (t)],I

−
s,j‖(t

′)]〉.
(G10)

Fourier transformation of the equation of motion finally yields∫
d(t − t ′) eiω(t−t ′) [i∂t G

ret
ij,+−(t,t ′)

]
= ω Gret

ij,+−(ω) + 〈[I+
s,i‖ (t),I

−
s,i‖ (t)]〉

−〈〈[[H ′
RKKY ,I+

s,i‖ ],I
−
s,j‖ ]〉〉ret.

ω (G11)

with

〈〈[[H ′
RKKY ,I+

s,i‖ ],I
−
s,j‖ ]〉〉ret.

ω

=
∫

d(t − t ′) eiω(t−t ′) − i θ (t − t ′)

×〈[[H ′
RKKY ,I+

s,i‖ (t)],I
−
s,j‖ (t

′)]〉. (G12)
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The commutation of the nuclear spin raising operator and the
Hamiltonian can be evaluated as

[H ′
RKKY ,I+

s,i‖ ]

=
∑
m

{
Ami

N2
⊥

(
I x

s,m‖ I+
s,i‖ + I+

s,i‖ I x
s,m‖

)

− Ami + J z
s

′(zm − zi)

2N2
⊥

(
I x

s,i‖ I+
s,m‖ + I+

s,m‖ I x
s,i‖

)
− Ami − J z

s
′(zm − zi)

2N2
⊥

(
I x

s,i‖ I−
s,m‖ + I−

s,m‖ I x
s,i‖

)
+ Bmi

N2
⊥

I+
s,m‖ I+

s,i‖ + Bmi

2N2
⊥

(I+
s,i‖ I−

s,m‖ + I−
s,m‖ I+

s,i‖ )

+ 2Bmi

N2
⊥

I x
s,m‖ I x

s,i‖

}
. (G13)

The essential approximation of the Tyablikov decoupling now
consists of the following simplifications,

〈〈
[
[
I x

s,i‖ ,I
±
s,j‖ ]+,I−

s,m‖

]〉〉ret.
ω

= 2
〈
I x

s,i‖

〉 〈〈[I±
s,j‖ ,I

−
s,m‖ ]〉〉ret.

ω , (G14a)〈〈[
I x

s,i‖I
x
s,j‖ ,I

−
s,m‖

]〉〉ret.
ω

= 0, (G14b)

〈〈[I±
s,i‖I

±
s,j‖ ,I

−
s,m‖ ]〉〉ret.

ω = 0, (G14c)

where [(·),(·)]+ is the anticommutator, while [(·),(·)] denotes
the anticommutator as before. At this point, these decouplings
are mathematically not justified. They have, however, suc-
cessfully been applied before and in this sense benefit from
an a posteriori justification.36,37 Physically, the Tyablikov
decouplings are indeed plausible. In the ordered state, the
fluctuations around the ground state are small, such that one
may approximate I x

s,i‖ → 〈I x
s 〉 = const., which implies the first

and second line of Eq. (G14). The third line may be interpreted
as following from the fact that any decoupling would involve
the ground-state expectation value of a spin raising or lowering
operator, which should, to good approximation, vanish in the
semiclassical ground state. In addition, we also drop the purely
local terms ∼Aii , J z

s (0). The equation of motion for the nuclear
spin Green’s function is then given by

ω̃ Gret.
ij,+−(ω̃) = 2δij

〈
I x

s

〉− 2
∑
m

Ami

N2
⊥

〈
I x

s

〉
Gret.

ij,+−(ω̃)

+
∑
m

Ami + J z
s

′(zm − zi)

N2
⊥

〈
I x

s

〉
Gret.

mj,+−(ω̃)

+
∑
m

Ami − J z
s

′(zm − zi)

N2
⊥

〈
I x

s

〉
Gret.

mj,−−(ω̃),

(G15)

with ω̃ = ω + i 0+. Now performing a second Fourier trans-
formation to momentum space, defined as

Gret.
q,+−(ω̃) = 1

N

∑
i,j

eiq(zi−zj ) Gij,+−(ω̃), (G16)

yields

ω̃ Gret.
+−(q,ω̃) = 2

〈
I x

s

〉− 〈
I x

s

〉 2A(q = 0) − A(q) − J z
s (q)

N2
⊥

×Gret.
+−(q,ω̃) + 〈

I x
s

〉 A(q) − J z
s (q)

N2
⊥

Gret.
−−(q,ω̃).

(G17)

The Green’s function Gret.
mj,−−(ω̃), i.e., the Fourier transform of

Gret
ij,−−(t,t ′) = −iθ (t − t ′) 〈[I−

s,i‖ (t),I
−
s,j‖ (t

′)]〉, can similarly be
shown to obey the equation of motion

ω̃ Gret.
−−(q,ω̃) = +〈I x

s

〉 2A(q = 0) − A(q) − J z
s (q)

N2
⊥

Gret.
−−(q,ω̃)

− 〈
I x

s

〉 A(q) − J z
s (q)

N2
⊥

Gret.
+−(q,ω̃). (G18)

We may thus define

α̃q = 〈
I x

s

〉 2A(q = 0) − A(q) − J z
s (q)

N2
⊥

, (G19a)

β̃q = 〈
I x

s

〉 A(q) − J z
s (q)

N2
⊥

, (G19b)

and obtain by plugging Eq. (G17) into Eq. (G18) that

Gret.
+−(q,ω̃) = 2

〈
I x

s

〉
ω̃ +

√
α̃2

q − β̃2
q

+
2
〈
I x

s

〉 (
α̃q −

√
α̃2

q − β̃2
q

)
ω̃2 − (

α̃2
q − β̃2

q

) .

(G20)

In a final step, we now have to self-consistently determine the
magnetization 〈I x

s 〉. To this end, we realize that quite generally
the Green’s function and the associated density fulfill

〈I−
s,j I

+
s,i〉q =

∫
dω nB(ω)

(
− 1

π
Im{Gret.

+−(q,ω̃)}
)

, (G21)

where nB is the Bose distribution function. From there, we
find by Fourier transformation to real space that

〈I−
s,iI

+
s,i〉 = 2

〈
I x

s

〉
N

∑
q

⎡
⎣ α̃q√

α̃2
q − β̃2

q

nB

(√
α̃2

q − β̃2
q

)

+
α̃q −

√
α̃2

q − β̃2
q

2
√

α̃2
q − β̃2

q

⎤
⎦ . (G22)

At the same time, we know from the angular momentum
algebra that I−

s,iI
+
s,i = (IN⊥)(IN⊥ + 1) − I x

s,i − (I x
s,i)

2. This
leads us to a self-consistent equation for 〈I x

s 〉 (through α̃q

and β̃q),

〈
I x

s

〉 = p IN⊥ (IN⊥ + 1)

1 + a
π

∫
dq

α̃q√
α̃2

q−β̃2
q

nB

(√
α̃2

q − β̃2
q

)+ α̃q−
√

α̃2
q−β̃2

q

2
√

α̃2
q−β̃2

q

,

(G23)

where p IN⊥(IN⊥ + 1) = IN⊥(IN⊥ + 1) − 〈(I x
s,i)

2〉. Due to
the appearance of 〈(I x

s,i)
2〉, this equation is not sufficient to

determine the magnetization for IN⊥ > 1/2. One rather has
to construct a set of 2IN⊥ − 1 coupled equations by evaluating
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Green’s functions of the form Gn ∼ 〈[I+
s ,(I z

s )n I−
s ]〉, see

Ref. 36. To determine the critical temperature, however, one
may recall that for T = Tc1, the magnetization 〈I x

s 〉 considered
here (i.e., the Fourier components close to q = 2kF1) vanishes.
For T ≈ Tc1, the expectation value 〈(I x

s,i)
2〉 is dominated

by the large fluctuations of the magnetization around the
ordered state. It is thus given by 〈(I x

s,i)
2〉 ≈ IN⊥(IN⊥ + 1)/3,

since the system is disordered for T = T +
c1 , and spin rotation

symmetry is not broken at high temperatures. Because we
are considering a finite size wire, the average 〈(I x

s,i)
2〉 is also

not allowed to jump at the transition. This sets p ≈ 2/3.
With this approximation, we can finally expand the Bose
function for T = Tc1 − δT in the small magnetization 〈I x

s 〉

and solve the self-consistent equation. Approximating finally
IN⊥(IN⊥ + 1) → (IN⊥)2 yields

Tc1 = 2 I 2

3

[
a

π

∫
dq

α̃′(q)

α̃′(q)2 − β̃ ′(q)2

]−1

, (G24)

with

α̃′(q) = [
2A(q = 0) − A(q) − J z

s (q)
]
, (G25a)

β̃ ′(q) = [
A(q) − J z

s (q)
]
. (G25b)

The critical temperature of the second band can be derived
analogously.
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