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Intrinsic plasmons in two-dimensional Dirac materials

S. Das Sarma and Qiuzi Li
Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA

(Received 3 May 2013; published 17 June 2013)

We consider theoretically, using the random phase approximation (RPA), low-energy intrinsic plasmons for
two-dimensional (2D) systems obeying Dirac-like linear chiral dispersion with the chemical potential set precisely
at the charge neutral Dirac point. The “intrinsic Dirac plasmon” energy has the characteristic

√
q dispersion in

the 2D wave vector q, but vanishes as
√

T in temperature for both monolayer and bilayer graphene. The intrinsic
plasmon becomes overdamped for a fixed q as T → 0 since the level broadening (i.e., the decay of the plasmon
into electron-hole pairs due to Landau damping) increases as 1/

√
T as temperature decreases, however, the

plasmon mode remains well defined at any fixed T (no matter how small) as q → 0. We find the intrinsic
plasmon to be well defined as long as q < kBT

e2 . We give analytical results for low and high temperatures, and
numerical RPA results for arbitrary temperatures, and consider both single- and double-layer intrinsic Dirac
plasmons. We provide extensive comparison and contrast between intrinsic and extrinsic graphene plasmons, and
critically discuss the prospects for experimentally observing intrinsic Dirac point graphene plasmons.
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I. INTRODUCTION

Collective plasma oscillations of free carriers in doped
or gated graphene1 (we would refer to this situation as
“extrinsic” graphene where the chemical potential or the Fermi
level is doped away from the Dirac point) have attracted
considerable interest both from fundamental and technological
perspectives.2–33 The fundamental interest arises from the
fact that graphene plasmons are a priori quantum-mechanical
entities with no classical analogs whatsoever10 (since in
classical physics energy is always proportional to the square
of the momentum and never has a linear dispersion as in
graphene). This is manifested in the fact that the long-
wavelength plasma dispersion relation in extrinsic graphene
goes as ωp = √

2rsh̄vF qEF , where EF = h̄vF kF = h̄vF

√
πn

is the Fermi energy (i.e., the chemical potential at T = 0)
associated with a doping carrier density of n and vF is
the (constant) graphene velocity defining the linear energy
dispersion, and rs = e2/(κh̄vF ) is the so-called graphene
fine-structure constant (defining the dimensionless strength
of Coulomb interaction with κ being the background lattice
dielectric constant), with an “h̄” appearing explicitly in the
definition of the plasma frequency (ωp =

√
2e2qvFh̄

√
πn/κ

in terms of the experimentally controlled variables q, n, and
κ). This is in sharp contrast to the corresponding parabolic
dispersion systems34,35 with an effective mass m where ωp

(∝
√

ne2

κm
) is the same classically or quantum mechanically

in the long-wavelength (q → 0) limit in any dimensionality.
The technological interest arises from the considerable recent
progress in graphene nanoplasmonics36–50 for prospective
optoelectronic applications.51–60

In contrast to the extensively studied extrinsic graphene
plasmons, there has been little interest in the collective modes
of intrinsic or undoped graphene, where the chemical potential
sits right at the Dirac point with a completely filled valence
band a completely empty conduction band at T = 0. [Our
interest here is in low-energy ∼meV two-dimensional (2D)
collective modes and not very high-energy ∼10 eV band or
so-called π plasmons where the whole valence band charge

response is involved.61–66] By definition, the doping carrier
density vanishes at the Dirac point with n = 0 (∝ kF ∝ EF ),
and the extrinsic graphene dispersion relation ωp ∝ n1/4

implies that no intrinsic graphene plasmons (or more generally,
Dirac plasmons) are possible.

The above is certainly true strictly at T = 0 where there can
be no free carriers for EF = 0. But, for nonzero temperatures
T �= 0, the gapless nature of graphene leads to a thermal
population of electrons (in the conduction band) and holes
(in the valence band) with equal density (ne = nh = n).
This thermal electron-hole excitation process is known to
be a power law (in fact n ∝ T 2) due to the gaplessness of
graphene.67 Putting n ∝ T 2 in the formula for the graphene
extrinsic plasma frequency, we conclude that there should
be a finite-temperature intrinsic graphene plasmon with a
long-wavelength plasma frequency going as ωp ∼ √

qT . But,
finite temperature implies that the collective mode will decay
into electron-hole pairs even at long wavelength, and therefore,
such an intrinsic Dirac plasmon may be ill defined even for
q → 0 since its decay (i.e., damping) rate (or level broadening)
γ could exceed the mode frequency ωp making the mode an
overdamped excitation of little interest.

In this work, we theoretically study intrinsic Dirac plasmons
for both monolayer and bilayer graphene and for single-
and double-layer systems. We obtain both asymptotic the-
oretical analytical results at long wavelengths and low/high
temperatures, and quantitative numerical results for arbitrary
wave vectors and temperatures. We use the random phase
approximation (RPA) approach which should be well valid
for graphene plasmons at arbitrary wave vectors by virtue of
its relatively small value of rs (�1 typically). We compare
and contrast the temperature dependence of intrinsic and
extrinsic graphene plasmon frequency (and their Landau
damping) in order to comment on the feasibility of the
experimental observation of our theoretical predictions. The
possible existence of high-temperature intrinsic graphene
plasmons (with EF = 0) is a qualitative difference between
graphene and gapped 2D semiconductor-based electron/hole
systems.
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II. THEORY AND RESULTS

Within the RPA, the collective plasmon modes of an
electron system are given by the zeros of the complex dielectric
function ε(q,ω):

ε(q,ω) = 1 − V (q)�(q,ω) = 0, (1)

where V (q) is the relevant bare electron-electron (i.e.,
Coulomb) interaction and �(q,ω) is the noninteracting polar-
izability of the system. [As an aside, we note that ε(q,ω) = 1 −
V (q)�(q,ω) is the exact expression for the microscopic di-
electric function if �(q,ω) is the exact interacting irreducible
polarizability function which, of course, is unknown; RPA
consists of replacing the exact �(q,ω) by the corresponding
noninteracting or bare polarizability function.] Equation (1),
as it stands, applies for a single-component (i.e., single-layer
in our case) system; for the double-layer case ε(q,ω) should
be interpreted as a matrix in the layer index with Eq. (1) being
interpreted as a determinantal equation |1 − V �| = 0.

In general, Eq. (1) will have complex solutions in frequency
ω = ωp(q) + iγ (q), with ωp and γ being, respectively, the
collective mode (i.e., plasma) frequency (which we will often
refer to as the plasmon) and its damping. If ωp � γ , the
plasmon collective mode is well defined, and by contrast for
γ � ωp, the plasmon is heavily damped (or even overdamped)
and is not particularly relevant experimentally as a self-
sustaining normal mode of the system.

Before proceeding with the theoretical details for intrinsic
graphene collective modes, we write the full formal expression
for the graphene noninteracting polarizability1,68 to be used in
Eq. (1):

�(q,ω) = − 4

A

∑
k,s,s ′

fs,k − fs ′,k′

ω + εs,k − εs ′,k′ + iη
Fs,s ′ (k,k′), (2)

where A is the area of the 2D layers and the factor of 4 arises
from the valley/spin degeneracy (two each) of graphene. In
Eq. (2), k′ ≡ k + q and s,s ′ = ±1 with Fs,s ′ (k,k′) = (1 +
cos θ )/2 arising from the matrix element effect associated with
the chiral nature of Dirac fermions. The functions εs,k, εs ′,k′

are single-particle energies for wave vectors k, k′ respectively,
and fs,k, fs ′,k′ are the corresponding noninteracting Fermi
distribution functions. We mention that explicit forms for
the polarizability function in monolayer and bilayer graphene
were derived in Refs. 1 and 69, respectively, at the zero
temperature. The finite-temperature polarizability, which can
not be obtained in a closed analytic form for arbitrary T , can be
directly obtained from Eq. (2) using finite-temperature Fermi
distribution functions or (numerically more conveniently) by
using the following integral identity to obtain the finite-T
polarizability from its known analytic form1 at T = 0:

�(q,ω,μ; T ) =
∫ ∞

0
dμ′ �(q,ω,μ′; T = 0)

4kBT cosh2[(μ − μ′)/2kBT ]
. (3)

We also note that the 2D Coulomb interaction is given by

V (q) = 2πe2

κq
e−q|z|, (4)

where z = 0 for single-layer systems and |z| = d, where d is
the interlayer separation for double-layer systems.

A. Monolayer graphene

We first consider the intrinsic plasmon modes in monolayer
graphene (MLG). We use units such that h̄ = 1 throughout so
that frequency/energy and wave vector/momentum have the
same units in our notations.

For intrinsic graphene, there are no free carriers at zero
temperature and the chemical potential μ is precisely at
the Dirac point: μ = 0. We note that this is true even for
T �= 0, i.e., μ(T ) = μ(0) = EF = 0 for intrinsic graphene,
by definition. The zero-temperature polarizability �(q,ω) for
intrinsic graphene is − q2

4
√

v2
F q2−(ω+i0)2

as given in Ref. 1. Since

the real part of V (q)�(q,ω) is pure negative, there can be
no 2D plasmon modes in intrinsic graphene within RPA at
T = 0 according to Eq. (1). Thus, our work on intrinsic Dirac
plasmons, using RPA, focuses entirely on finite-temperature
collective modes in undoped intrinsic graphene.

Setting μ = 0 and taking the long-wavelength limit
vF q/kBT → 0, we get from Eqs. (1) and (2) the following
expression for the finite-temperature (kBT /vF q � 1) intrinsic
graphene polarizability function [we mention that the complete
analytical �(q,ω) at T = 0 for both intrinsic and extrinsic
cases, i.e., intraband and interband, can be found in Ref. 1]:

�(q,ω) ≈ 2 ln 2

π

q2

ω2
kBT + i

16

q2√
ω2 − q2v2

F

ω

kBT
, (5)

which reduces to (in the limit ω � qvF as q → 0)

�(q,ω) ≈ 2 ln 2

π

q2

ω2
kBT + i

16

q2

kBT
. (6)

Putting Eq. (6) in Eq. (1), and solving for the complex
frequency defining the intrinsic plasmon, we get

ωp =
√

(4 ln 2)rsh̄vF qkBT , (7)

γ = πh̄vF qrs

8
√

kBT

√
(ln 2)rsh̄vF q. (8)

We have restored h̄ in Eqs. (7) and (8) for the sake of clarity and
usefulness (and rs = e2/κh̄vF is the graphene fine-structure
constant).

Equations (7) and (8) define the long-wavelength (and nec-
essarily finite-temperature) intrinsic MLG plasmon, which is
determined by the variables temperature and wave vector (and
not by any carrier density n as in all ordinary plasmon modes).
We note that ωp,γ → 0 as q → 0, but obeying different power
laws: ωp ∼ √

q consistent with the 2D plasmon behavior and
γ ∼ q3/2. We also note that ωp ∼ √

T and γ ∼ 1/
√

T whereas
ωp ∼ √

rs and γ ∼ r
3/2
s with rs ∼ κ−1 giving the dependence

on the background dielectric constant.
We note that ωp/γ = 16κkBT /(πe2q) from Eqs. (7)

and (8), and therefore the long-wavelength intrinsic plasmon
is well defined as long as

q <
16κkBT

πe2
, (9)

which defines the condition for the existence of a well-
defined long-wavelength intrinsic MLG plasmon. Thus, the
intrinsic plasmon remains well defined at long wavelength for
arbitrarily low temperature as long as one is probing wave
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vectors shorter than the critical wave vector qc defined by

qc = 16κkBT

πe2
. (10)

For q < qc, the MLG intrinsic plasmon exists as a well-
defined long-wavelength collective mode, and for q > qc, it
is overdamped (i.e., γ > ωp).

Before providing our full numerical results for the MLG
intrinsic plasmon for arbitrary q and T , we briefly compare
the analytical results for intrinsic and extrinsic MLG plasmons,
which were earlier considered in Refs. 1 and 10. The T = 0
plasmon dispersion for extrinsic (i.e., doped) graphene is given
in the long-wavelength limit by

ωp = (2rsh̄vF qEF )1/2 =
(

2e2h̄vF q

κ

√
πn

)1/2

, (11)

where n is the carrier density (with a Fermi level EF =
h̄vF

√
πn �= 0). It is easy to obtain the low-temperature

analytical result for the MLG plasmon dispersion by using
the finite-temperature expansion for the chemical potential:
μ(T ) ≈ EF [1 − π2

6 ( T
TF

)2] for T � TF = EF /kB . We get for
T � TF

ωp =
{

2rsh̄vF qEF

[
1 − π2

6

(
T

TF

2)]}1/2

. (12)

Thus, ωp(T ) = ωp(T = 0)[1 − π2

12 ( T
TF

)2], which is a small
correction to the T = 0 result. We note that the Landau
damping for extrinsic plasmons at long wavelengths and low
temperatures is exponentially suppressed, going as e−T/TF . We
remark here that the reason that the finite-T extrinsic plasmon
is exponentially weak by Landau damped (as T → 0) whereas
the corresponding intrinsic plasmon has power law (γ ∼
1/

√
T ) divergent Landau damping as T → 0 is that, by defi-

nition, the intrinsic plasmon is always in the high-temperature
regime for any temperatures since EF = kBTF = 0
for intrinsic plasmons. (In the following, we will discuss the
high-temperature limit for the extrinsic plasmon.)

An interesting exercise (alluded to in the Introduction of
this paper) is to ask whether the long-wavelength intrinsic
plasmon dispersion [i.e., Eq. (7)] can be obtained from the
corresponding extrinsic plasmon dispersion [i.e., Eq. (11)]
by reinterpreting the doping carrier density n in Eq. (11) as
the thermally excited carrier density n(T ) for the intrinsic
case. The thermally excited carrier density n(T ) for intrinsic
graphene with the Fermi level at the Dirac point (EF = 0) is
easily calculated to be

n(T ) =
∫

D(E)f (E)dE, (13)

where D(E) = 4E/(2πv2
F ) is the graphene density of states.

Integrating over the Fermi distribution function f (E) at
temperature T with μ = 0 we get

n(T ) = π

6

(kBT )2

h̄2v2
F

. (14)

Inserting Eq. (13) for n in Eq. (11) we get

ωp =
[(

2

√
π2

6

)
rs(h̄vF q)(kBT )

]1/2

. (15)

Equation (15) has the same parameter dependence√
rsh̄vF qkBT as in the correct intrinsic plasmon dispersion

given by Eq. (7) with the only difference is that the pref-
actor in Eq. (15) is 2

√
π2/6 ≈ 2.6 versus the prefactor in

Eq. (7) is 4 ln 2 ≈ 2.8. Thus, the plasma frequency is given
by 1.67

√
rsh̄vF q(kBT )1/2 and by 1.60

√
rsh̄vF q(kBT )1/2 in

Eq. (15).
We now consider the high-temperature limit of the extrinsic

plasmon dispersion for gated or doped graphene taking T �
TF (=EF /kB). The asymptotic high-temperature expression
for �(q,ω) in doped graphene is given by (again for qvF � ω)

�(q,ω) ≈ 2 ln 2

π

q2

ω2
kBT

(
1 + TF

4

128(ln 2)3T 4

)

+ i

16

q2√
ω2 − q2

ω

kBT

(
1 − ω2

48k2
BT 2

)
. (16)

We emphasize that Eq. (16) is valid for extrinsic graphene in
the limit of T � TF and qvF � ω. Using Eq. (16) to solve
for the plasmon modes in Eq. (1), we get

ωp =
√

4 ln 2 rsh̄vF qkBT

(
1 + TF

4

128(ln 2)3T 4

)
, (17)

γ = πh̄vF qrs

8
√

kBT

√
ln 2 rsh̄vF q

(
1 − h̄vF qrs ln 2

12kBT

)
. (18)

A direct comparison between Eqs. (17), (18) and (7), (8) show
that the T/TF → ∞ limit of the extrinsic plasmon dispersion
and broadening indeed agree with the corresponding intrinsic
plasmon results in the leading order, as indeed it must. We
mention, however, that this agreement is only in the T/TF →
∞ limit (i.e., the TF = 0 limit of the extrinsic situation).
Thus, there is a correction to the leading-order extrinsic
plasmon dispersion in Eq. (17) going as O(T 4

F /T 4) which,
by definition, can not exist in the intrinsic plasmon dispersion
where the leading-order dispersion comes entirely as

√
qT

with no correction term in temperature. All higher-order
temperature corrections to the intrinsic plasmon dispersion
occur in higher-order terms in the wave vector q.

We now present in Figs. 1 and 2 our calculated numerical
results for the intrinsic graphene energy dispersion and
level broadening for arbitrary values of wave vector q and
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FIG. 1. (Color online) Plasmon dispersion of intrinsic MLG.
(a) Presents the plasmon dispersion in the high-temperature regime
(kBT � h̄vF q). The dashed and solid lines correspond to the
analytical results [given in Eq. (7)] and the numerical results,
respectively. (b) Numerical results for the plasmon dispersion as a
function of h̄vF q/(kBT ). The dashed and solid lines correspond to
κ = 1 and 5, respectively.
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FIG. 2. (Color online) Plasmon damping rate of intrinsic MLG.
(a) Presents the plasmon damping rate in the high-temperature
regime (kBT � h̄vF q). The dashed and solid lines correspond to
the analytical results [given in Eq. (8)] and the numerical results,
respectively. (b) Numerical results for h̄γ /(kBT ) as a function of
h̄vF q/(kBT ). (c) γp/ω as a function of h̄vF q/(kBT ). The dashed and
solid lines correspond to κ = 1 and 5, respectively.

temperature T . [Our analytical results presented above in
Eqs. (7) and (8) are necessarily restricted to the h̄vF q � kBT

regime.] In presenting our results, we find that there are only
two dimensionless (independent) variables that completely
characterize the intrinsic graphene plasmon properties: κ and
h̄vF q/kBT . In Figs. 1 and 2, we use two values of κ = 1
(suspended graphene) and 5 [graphene on boron nitride (BN)
substrate] as representative examples of strongly (κ = 1,
i.e., rs ≈ 2.2) and weakly (κ = 5, i.e., rs ≈ 0.4) interacting
systems to show our numerical results for the numerically
calculated plasmon energy h̄ωp and level broadening h̄γ in
units of kBT as functions of the dimensionless 2D wave vector
h̄vF q/(kBT ). Our numerical results solve Eq. (1) to obtain the
complex solution with the real part being the plasma frequency
and the imaginary part the broadening. We obtain �(q,ω) at
arbitrary temperatures numerically in order to solve for the
plasmon modes at arbitrary temperatures and wave vectors.
In Fig. 1, the plasma frequency is shown as a function of
wave vector, both for the small-q regime and over a large
range of q. The small-q results serve to verify the accuracy of
our asymptotic analytic result given in Eq. (7). In Fig. 2, we
depict our calculated plasmon broadening as a function of wave
vector again for small-q [Fig. 2(a)] and extended-q [Fig. 2(b)]
regions, whereas in Fig. 2(c) we depict the dimensionless ratio
γ /ωp as a function of the dimensionless variable h̄vF q/kBT .

The most notable, and perhaps somewhat unexpected,
feature of our numerical results in Figs. 1 and 2 is that the
intrinsic plasmon mode remains well defined, i.e., ωp > γ ,
for all values of h̄vF q/kBT with a shallow maximum around
h̄vF q � kBT manifesting a surprising nonmonotonic behavior
for both values of κ in Fig. 2(c). For κ = 1 (rs = 2.2),
suspended graphene, the maximum value of ωp/γ reaches
0.4, but for κ = 5 (rs = 0.4), graphene on BN, the maximum

value of ωp/γ is below 0.1. Thus, the intrinsic MLG plasmon
should, in principle, be experimentally observable, particularly
on substrates with large dielectric constant where γ /ωp � 1,
making the Landau damping problem fairly irrelevant. Our
results in Figs. 1 and 2 also indicate that the leading-order
formula of Eqs. (7) and (8) remains reasonably well valid for
arbitrary values of h̄vF q/kBT .

Although our focus in this work is the intrinsic Dirac point
plasmon mode for undoped graphene, it is useful to compare
the temperature dependence of the extrinsic plasmon in doped
graphene with that of intrinsic graphene, particularly since
the temperature dependence of extrinsic graphene plasmon
has not much been studied in the literature. Understanding
temperature-dependent plasmon dispersion and damping of
doped graphene is also relevant here since extrinsic and
intrinsic graphene plasmons become the same at very high
temperatures (T � TF ). We therefore provide a large set of
finite-temperature results for extrinsic plasmon dispersion and
damping, comparing them with our derived analytical low- and
high-temperature results and with the corresponding intrinsic
plasmon results. Our motivation for such a detailed finite-
temperature RPA study of extrinsic graphene plasmons comes
partially from the fact that temperature could in principle be
used (in addition to wave vector and/or carrier density) to
tune the plasmon energy in graphene (particularly at lower
carrier densities and higher temperatures where T/TF is not
necessarily extremely small), a fact which has not been much
appreciated in the literature.

In showing our full numerical solutions for ωp(q) and
γ (q) using Eq. (1) [and the full finite-temperature �(q,ω)]
for extrinsic graphene, the first problem we face is that
there are far too many independent variables (i.e., q,T ,n,κ)
which determine the plasmon properties. Since three of these
variables are independent continuously tunable experimental
variables (i.e., q,T ,n), we need four-dimensional plots (for
several values of κ , i.e., for different substrates) or perhaps
even five-dimensional plots showing ωp and γ as functions
of q, T , n, and κ . A significant simplification arises from
using kF (= √

πn) and EF (= h̄vF kF = h̄vF

√
πn) as the units

of wave vector and energy, respectively, so that the carrier
density shows up implicitly as a scaling variable rather than
explicitly, eliminating one variable. We also show results only
for two values of the background dielectric constant κ = 1
(suspended graphene) and 5 (graphene on h-BN substrates)
corresponding to rs = e2/(h̄vF κ) = 2.2 and 0.4, respectively.
Thus, we present all our numerical results for ωp/EF and
γ /EF as functions of q/kF and T/TF for κ = 1 and 5 in
the following. A particular goal of the presented numerical
results for arbitrary q and T is comparison with our analytical
low- and high-temperature results in Eqs. (12) and (17)/(18),
respectively. Since we will be presenting a very large number
of figures, we do not discuss all the figures individually in the
text following, instead only highlighting the important salient
features. We provide detailed figure captions in the figures
themselves which should be self-explanatory.

In Figs. 3–5, we present results as a function of T/TF

for fixed q/kF = 0.01; 0.5; 1. The extrinsic plasmon energy
for fixed q generically shows a nonmonotonic dependence on
temperature with a shallow minimum around T ∼ 0.4TF . This
arises from the fact that the degenerate system (T � TF ) has

235418-4



INTRINSIC PLASMONS IN TWO-DIMENSIONAL DIRAC . . . PHYSICAL REVIEW B 87, 235418 (2013)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

T TF

ω
p
E F

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.15

0.20

0.25

T TF
ω
p
E F

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

T TF

γ
E F

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.001

0.002

0.003

0.004

0.005

T TF

γ
ω
p

(a) (b)

(c) (d)

κ = 1

κ = 5

κ = 1

κ = 5

κ = 1

κ = 5

κ = 1

κ = 5

FIG. 3. (Color online) Results for extrinsic MLG with q/kF =
0.01. (a) Presents the plasmon dispersion in the low-temperature
regime. The dashed and solid lines correspond to the analytical
results [given in Eq. (11)] and the numerical results, respectively.
(b) Numerical results for ωp/EF as a function of T/TF . (c) Numerical
results for γ /EF as a function of T/TF . (d) Numerical results for
γ /ωp as a function of T/TF . The dashed and solid lines correspond
to κ = 1 and 5, respectively.

a plasma frequency decreasing with increasing temperature
[according to Eq. (12)], whereas the nondegenerate system
has the plasma frequency increasing (as ∼T for T � TF ) with
temperature. The broadening γ is suppressed exponentially for
small T/TF except for large q(�kF ) where intraband Landau
damping starts playing a role, particularly for larger values of rs

(smaller κ). The analytic formula (12) for the low-temperature
plasmon dispersion (and damping) seems to work very well

FIG. 4. (Color online) Results for extrinsic MLG with q/kF =
0.5. (a) Numerical results for ωp/EF as a function of T/TF .
(b) Numerical results for γ /EF as a function of T/TF . (c) Numerical
results for γ /ωp as a function of T/TF . The dashed and solid lines
correspond to κ = 1 and 5, respectively.

FIG. 5. (Color online) Results for extrinsic MLG with q/kF =
1.0. (a) Numerical results for ωp/EF as a function of T/TF .
(b) Numerical results for γ /EF as a function of T/TF . (c) Numerical
results for γ /ωp as a function of T/TF . The dashed and solid lines
correspond to κ = 1 and 5, respectively.

(somewhat surprisingly) all the way to T/TF ∼ 0.4, i.e., all the
way to the shallow minimum in ωp(T ). According to Figs. 3–5,
the plasmon damping manifests a shallow maximum around
the same value of T/TF (∼0.4) where the plasmon energy is a
maximum, and thus γ /ωp shows a generic peak for T/TF ∼
0.4 (which is much sharper for larger rs values). In general, we
find γ /ωp < 1 for smaller q values in the T/TF < 1 regime,
thus, the plasmon is well defined for T < TF .

FIG. 6. (Color online) Plasmon dispersion as a function of q/kF

for extrinsic MLG. (a) and (b) present ωp/EF in the long-wavelength
limit. The dashed and solid lines correspond to the analytical results
[given in Eq. (12)] and the numerical results, respectively. (a) is for
T = 0 and (b) is for T/TF = 0.1. (c) and (d) present ωp/EF for
different temperatures. (c) is for κ = 1 and (d) is for κ = 5.
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FIG. 7. (Color online) Plasmon damping rate as a function of
q/kF for extrinsic MLG. (a), (c) γ /EF as a function of q/kF for
different temperatures. (b), (d) Present γ /ωp as a function of q/kF .
(a), (b) For κ = 1; (c), (d) for κ = 5. Note that the legend applies to
all subfigures.

In Figs. 6–8, we show the plasmon energy and broadening
at various finite-T values as a function of wave vector, thus,
Figs. 6–8 are effectively complementary to Figs. 3–5. First, we
note that the analytic results are essentially in exact agreement
with the full numerical results up to q ∼ 0.5kF . In Fig. 7,
we show that γ < ωp is well satisfied for all q values well
up to T ∼ TF . In general, the broadening is exponentially

FIG. 8. (Color online) Results for extrinsic MLG with T/TF =
10.0. (a) Presents plasmon dispersion in the long-wavelength limit.
The dashed and solid lines correspond to the analytical results [given
in Eq. (17)] and the numerical results, respectively. (b) Plasmon
damping rate versus q/kF . The dashed and solid lines correspond
to the analytical results [given in Eq. (18)] and the numerical results,
respectively. (c) γ /ωp versus q/kF . The dashed and solid lines
correspond to the analytical results [given in Eq. (17)] and the
numerical results, respectively.

FIG. 9. (Color online) Results for extrinsic MLG. (a), (c) Present
plasmon dispersion versus T/TF . The dashed and solid lines
correspond to the analytical results [given in Eq. (17)] and the
numerical results, respectively. (b), (d) Present plasmon damping
rate versus T/TF . (a), (b) For q/kF = 0.1; (c), (d) for q/kF = 0.5.
The dashed and solid lines correspond to the analytical results [given
in Eq. (18)] and the numerical results, respectively.

suppressed at low q and low T , but increasing either q or T

eventually leads to intraband and interband Landau damping.
In Fig. 7, the onset of the intraband Landau broadening,
where the extrinsic plasmon dispersion enters the intraband
electron-hole single-particle excitation continuum even at
T = 0, can clearly be seen around q ∼ 0.4–0.7kF , whereas
for higher-T values, the extrinsic plasmon can decay even
at long wavelength due to interband electron-hole excitation
process.

Whereas in Figs. 3–7 we focus on low-temperature (T �
TF ) extrinsic plasmon dispersion and damping, we now present
in Figs. 8–13 higher-T (>TF ) results. The higher-temperature
(T > TF ) extrinsic plasmon results are relevant for under-
standing intrinsic plasmon behavior in graphene since, as
emphasized in our analytical theory [see Eqs. (17), (18), and
the discussions following their derivations], the leading-order
(in TF /T ) results for both plasmon energy and damping for
intrinsic and extrinsic plasmons are the same for T � TF .
Physically, the reason for this is obvious: For T � TF ,
the thermal interband electron-hole excitations dominate the
collective behavior over the contribution by the doped carriers
even for extrinsic doped graphene (of course, the actual
temperature scale needed to satisfy the T � TF condition
increases as

√
n with increasing the doping density).

One of the most important as well as interesting aspects
of the numerical results shown in Figs. 8–13 is the great
quantitative accuracy of our leading-order analytic high-
temperature (T � TF ) results [i.e., Eqs. (17) and (18)] for
extrinsic plasmon dispersion and damping as compared with
the full RPA finite-temperature numerical solutions for ωp(q)
and γ (T ). In particular, our analytical theory seems to hold
very well all the way down to T � TF although the analytic
theory represents an asymptotic expansion in TF /T . This
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FIG. 10. (Color online) Results for extrinsic MLG with q/kF =
0.5 over a wide T/TF = 0–10 range. (a) Numerical results for ωp/EF

as a function of T/TF . (b) Numerical results for γ /EF as a function
of T/TF . (c) Numerical results for γ /ωp as a function of T/TF . The
dashed and solid lines correspond to κ = 1 and 5, respectively.

remarkable reliability of the high-temperature analytic theory
(for T � TF ) as well as that of the low-temperature (T � TF )
analytic theory (derived as an asymptotic expansion in T/TF ),
which we discussed in the context of Figs. 3–7 above, implies
that the analytical finite-temperature theory developed in this
work could be extremely useful for experimental works in
graphene plasmonics with no need for the full numerical
solution of the RPA theory, which is, in fact, quite complex and
demanding at finite temperatures since the finite-temperature
graphene polarizability �(q,ω; T ) does not have any simple
analytical form and must be carefully calculated through

FIG. 11. (Color online) Results for extrinsic MLG with q/kF =
1.0 over a wide T/TF = 0–10 range. (a) Numerical results for ωp/EF

as a function of T/TF . (b) Numerical results for γ /EF as a function
of T/TF . (c) Numerical results for γ /ωp as a function of T/TF . The
dashed and solid lines correspond to κ = 1 and 5, respectively.

FIG. 12. (Color online) Results for extrinsic MLG with κ = 5.
(a) Numerical results for ωp/EF as a function of q/kF . (b) Numerical
results for γ /EF as a function of q/kF . (c) Numerical results for γ /ωp

as a function of q/kF . The solid, dashed, dotted, and dotted-dashed
lines correspond to T/TF = 0, 1, 5, and 10, respectively.

a numerical integration at each value of T . If necessary,
one could easily develop a numerical interpolation scheme
between our low- and high-temperature analytical theories
(e.g., using a suitable Padé approximation) which should
provide a reasonable and quantitatively accurate theory at
arbitrary temperatures. Since the high-temperature analytical
extrinsic plasmon theory [i.e., Eqs. (17) and (18)] essentially
agree with the intrinsic plasmon results, the T � TF results
provided in Figs. 8–13 could be construed as numerical results
for the intrinsic plasmon as well.

FIG. 13. (Color online) Results for extrinsic MLG with κ = 1.
(a) Numerical results for ωp/EF as a function of q/kF . (b) Numerical
results for γ /EF as a function of q/kF . (c) Numerical results for γ /ωp

as a function of q/kF . The solid, dashed, dotted, and dotted-dashed
lines correspond to T/TF = 0, 1, 5, and 10, respectively.
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B. Double-layer graphene

Collective modes of two (i.e., “double”) parallel 2D
graphene layers (along the x-y plane) separated by a distance
“d” in the third direction (z direction) were first theoretically
considered by Hwang and Das Sarma70 and later by other
authors.62,71–79 In this work, we focus on the double-layer
system considering their plasmon modes at finite temperatures,
when one (or both of the layers) is (are) intrinsic or undoped.
Thus, our work is the finite-temperature generalization of the
Hwang–Das Sarma work, concentrating on intrinsic plasmons
in undoped double layers.

The collective modes of a double-layer system are obtained
by diagonalizing the 2 × 2 determinantal equation80 defined
in Eq. (1), which gives

(1 − V1111�11)(1 − V2222�22) − V 2
1212�11�22 = 0, (19)

where �ll (with l = 1,2) is the polarizability of the lth layer,
Vllll is the Coulomb interaction [i.e., 2πe2/(κlq)] in the lth
layer and Vll′ll′ is the Coulomb interaction between electrons
in the l and l′ layers. We ignore here (and throughout this
paper) the possibility of electron hopping between the two
layers which is an excellent approximation for graphene. For
our double-layer system, we have

V1111 = V2222 = 2πe2

κq
(20)

and

V1212 = 2πe2

κq
e−qd , (21)

where we have assumed both layers to be submerged in the
same background dielectric with κ as the common background
lattice dielectric constant. (A generalization74 to the situation
with κ1, κ2 is straightforward, but will not be considered in our
work since it will add more parameters to a problem which
already has far too many variables.)

Using the known analytical expressions for � = �11 =
�22 in the long-wavelength limit for intrinsic graphene
[Eqs. (5) and (6)], we can solve Eq. (19) to get the following
two coupled long-wavelength collective modes (ωop and ωap)
for the double-layer system when both layers are intrinsic
graphene:

ωop =
√

(8 ln 2)(h̄vF q)(kBT )rs, (22)

ωap =
√

(4 ln 2)(rsdq)(h̄vF q)kBT , (23)

γop = πrsh̄vF q√
8kBT

√
(ln 2)rsh̄vF q, (24)

γap = πrsh̄vF q2d

8
√

kBT

√
(ln 2)rsh̄vF q2d. (25)

Equations (22)–(25) define the long-wavelength collective
modes and their damping for an intrinsic double-layer
graphene system where both layers are undoped (and the Fermi
level in both layers is sitting at the Dirac point).

We first discuss the implications of our derived [Eqs. (22)–
(25)] analytical results for double-layer graphene intrinsic
plasmons. It sounds crazy that two undoped graphene layers
(i.e., no free carriers whatsoever) can have two low-energy

collective modes (ωop and ωap above) when they are proximate
to each other, but it is apparently true. One of these modes, ωop,
is nothing other than the combined collective intrinsic plasmon
mode of each independent layer with ω2

op = 2ω2
p, where ωp

is the intrinsic plasmon frequency of a single graphene layer
as given in Eq. (7). Thus, ωop is simply the in-phase intrinsic
plasma oscillation of the two intrinsic plasmons in the two
layers. The ωop mode is sometimes referred to as the “optical
plasmon” mode80 of the two-component (i.e., two layers)
double-layer system since it involves the in-phase collective
charge density oscillation of the two layers (analogous to an
optical phonon mode in a lattice). The second mode, ωap,
which has no analog in the single-layer system, is the acoustic
plasmon mode80 where the charge density oscillates out of
phase between the two layers.

The ωop(∝ √
q) obviously has the same dispersion as the

single=layer plasmon whereas the ωap ∝ q has an acoustic
dispersion linear in q at long wavelengths. Both modes
have the basic intrinsic plasmon property of ωp ∝ √

T as
expected, and vanish in the T → 0 limit. The broadening
[Eqs. (24) and (25)] has a higher-order q dependence q3/2 (q3)
for ωop (ωap), respectively, ensuring that both modes are
well-defined collective modes in the long-wavelength limit.
In particular, we have

ωop/γop = 8kBT κ

πe2q
, (26)

ωap/γap = 16kBT κ

πe2q2d
. (27)

Thus, the optical plasmon mode of the double-layer system
has very similar behavior for ωp/γ as in the corresponding
single-layer intrinsic plasmon case except that the ratio of
ωp/γ is a factor of 2 smaller for the double-layer case than
the single-layer case. The ωop mode therefore remains well
defined (i.e., ωop > γop) down to a cutoff wave vector

qoc = 8κkBT

πe2
(28)

with ωop > γop for all q < qoc.
The situation for the intrinsic acoustic plasmon ωap is,

however, qualitatively different since ωap ∝ q (rather than
√

q

as for ωop) and thus it decreases fast as q → 0. The cutoff
wave vector for a well-defined ωap mode is

qac = 4

√
κkBT

dπe2
(29)

with ωap > γap for all q < qac.
We point out that the analytical results for the acoustic

plasmon given above [Eqs. (23) and (25)] apply only when
kBT > h̄vF /(4 ln 2 rsd) in order to satisfy the criterion ω >

h̄vF q used in the expansion of �(q,ω) to derive the long-
wavelength plasmon dispersion relation.

In Figs. 14 and 15, we provide our full RPA numerical
results for the double-layer intrinsic plasmon modes and
compare them with our analytical results [Eqs. (22)–(25)]
obtained above. To keep the number of presented figures
tractable, we only change q and T for showing our results.
In general, the theory no longer scales with h̄vF q/kBT as the
corresponding single-layer intrinsic problem does because of
the presence of the layer separation d in the problem. For a
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FIG. 14. (Color online) Results for an intrinsic double-layer
graphene system in the small-q regime with κ = 1, d = 300
Å, and T = 100 K. (a) Plasmon dispersion versus h̄vF q/(kBT ).
(b) Plasmon damping rate versus h̄vF q/(kBT ). The dashed and solid
lines correspond to the analytical results [given in Eqs. (22)–(25)]
and the numerical results, respectively.

fixed “d” and “T ,” however, we can still show results using
kBT as the energy unit remembering that these double-layer
results of Figs. 14 and 15 apply only for fixed results of κ,d,T

as shown in the figure (but for varying q).
In Fig. 14, we show the coupled intrinsic plasmon modes

of double-layer graphene for small values of h̄vF q/kBT

where our analytical expressions derived in Eqs. (22)–(25) are
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FIG. 15. (Color online) Numerical results for an intrinsic
double-layer graphene system. (a), (b) Plasmon dispersion versus
h̄vF q/(kBT ); (c), (d) plasmon damping rate versus h̄vF q/(kBT ); (e),
(f) γ /ωp versus h̄vF q/(kBT ). (a), (c), and (e) are for the optical
plasmon mode. (b), (d), and (f) are for the acoustic plasmon mode.
For κ = 5, d = 40 Å, and T = 20 K, the acoustic plasmon mode
ωap is degenerate with the boundary of the single-particle excitation
region. Note that the legend applies to all subfigures.

essentially exact. The ωop (ωap) modes show the expected
√

q

(q) dispersion, and typically ωop > γop (ωap > γap). In Fig. 15,
we depict the typical plasmon dispersion and damping for the
coupled modes for three values of κ,d,T over a broader range
of h̄vF q/kBT , finding that for layer values of d (=300 Å)
and smaller κ (=1) the damping could be quite large.

Next, we consider the double-layer graphene plasmons
when one layer is doped (“extrinsic”) and one undoped
(“intrinsic”), i.e., one layer has carrier density n �= 0 and
the other has n = 0 at T = 0. The long-wavelength and
low-temperature RPA collective modes of such a mixed
intrinsic-extrinsic graphene double-layer system are easily
derived to be given by

ωop =
[

2rsh̄
2v2

F qkF

(
1 + (2 ln 2)

T

TF

− π2

6

T 2

T 2
F

)]1/2

,

(30)

ωap =
√

(8 ln 2)rsh̄vF q2dkBT

[
1 − (2 ln 2)T

TF

+4(ln 2)2T 2

T 2
F

]
,

(31)

γop =
[
π2r3

s h̄
3v3

F q3EF

128k2
BT 2

(
1 + (2 ln 2)

T

TF

− π2

6

T 2

T 2
F

)]1/2

,

(32)

γap=
√

π2 ln 2r3
s h̄

3v3
F q6d3

8kBT

[
1− (10 ln 2)

T

TF

+ 60(ln 2)2
T 2

T 2
F

]
.

(33)

Here, rs = e2/(κh̄vF ) refers to both layers, and kF =
(πn)1/2 and TF = EF /kB = h̄vF kF /kB refer to the doped
extrinsic layer.

While the above results are valid in the T/TF � 1 (as
well as leading order in q) limit, we can also obtain the high-
temperature (T/TF � 1) asymptotic analytical results to be
exactly the same as those given in Eqs. (22)–(25) for double-
layer intrinsic graphene. This is, of course, expected since in
the T � TF limit, there is no difference in the leading order
between intrinsic and extrinsic graphene.

The mixed double-layer intrinsic-extrinsic graphene system
depends in a complicated manner on a large number of
independent parameters: q,n,T ,d,κ . The plasmon modes now
really depend on all five of these parameters (plus the value
of vF which in principle is also a free parameter of the
theory). We refrain from overloading the readers with a
large number of results varying all five parameters freely.
We provide some representative plasmon dispersion and
damping results in Figs. 16–20 showing the full numerical RPA
solutions for the plasmon energy and damping for the mixed
double-layer system, emphasizing that our low-temperature
(high-temperature) analytical results seem to work very well in
the T < TF (T > TF ) regimes, providing an easy and effective
way for quick calculations of the plasmon dispersion and
damping in double-layer intrinsic-extrinsic plasmon systems.
The captions in each figure (in Figs. 16–20) clearly describe
in details the parameter values and the numerical results for
the mixed intrinsic-extrinsic double-layer system.
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FIG. 16. (Color online) Results for a mixed double-layer
intrinsic-extrinsic graphene system with n1 = 1012 cm−2, n2/n1 =
0.0, d = 300 Å, and κ = 1. (a) ωp/EF versus q/kF for T/TF = 0.1.
(b) γ /EF versus q/kF for T/TF = 0.1. (c) ωp/EF versus T/TF

for q/kF = 0.01. (d) γ /EF versus T/TF for q/kF = 0.01. The
dashed and solid lines correspond to the analytical results [given
in Eqs. (30)–(33)] and the numerical results, respectively.

Finally, we conclude this section with a brief discussion of
the finite-temperature double-layer extrinsic plasmon system
when both layers are doped. Since the T = 0 case for this
system was considered in details by Hwang and Das Sarma70

with some followup T �= 0 double-layer plasmon calculations
in the literature,62,71–79 we only provide some brief analytical
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FIG. 17. (Color online) Numerical results for a mixed double-
layer intrinsic-extrinsic graphene system over a wide q/kF = 0–1
range with n1 = 1012 cm−2, n2/n1 = 0.0, d = 300 Å, and κ = 1.
(a) ωp/EF versus q/kF for different temperatures. (b) γ /EF versus
q/kF for different temperatures. (c) γ /ωp versus q/kF for different
temperatures. For T/TF = 0, the acoustic plasmon mode ωap is
degenerate with the boundary of the single-particle excitation region.
Note that the legend applies to all subfigures.
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FIG. 18. (Color online) Numerical results for a mixed double-
layer intrinsic-extrinsic graphene system over a wide T/TF = 0–1
range with n1 = 1012 cm−2, n2/n1 = 0.0, d = 300 Å, and κ = 1. (a)
ωp/EF versus T/TF for different q/kF . (b) γ /EF versus T/TF for
different q/kF . (c) γ /ωp versus T/TF for different q/kF . Note that
the legend applies to all subfigures.

results for the sake of completeness (and comparison with our
intrinsic plasmon double-layer results). We mention that the
extrinsic double-layer plasmons are in principle determined by
six independent parameters (n1,n2,T ,q,d,κ), and providing
complete numerical results here will simply make our paper
far too long.
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FIG. 19. (Color online) Numerical results for a mixed double-
layer intrinsic-extrinsic graphene system over a wide q/kF = 0–1
range with n1 = 1012 cm−2, n2/n1 = 0.0, d = 40 Å, and κ = 5.
(a) ωp/EF versus q/kF for different temperatures. (b) γ /EF versus
q/kF for different temperatures. (c) γ /ωp versus q/kF for different
temperatures. For T/TF = 0, the acoustic plasmon mode ωap is
degenerate with the boundary of the single-particle excitation region.
Note that the legend applies to all subfigures.
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FIG. 20. (Color online) Numerical results for a mixed double-
layer intrinsic-extrinsic graphene system over a wide T/TF = 0–1
range with n1 = 1012 cm−2, n2/n1 = 0.0, d = 40 Å, and κ = 5. (a)
ωp/EF versus T/TF for different q/kF . (b) γ /EF versus T/TF for
different q/kF . (c) γ /ωp versus T/TF for different q/kF . Note that
the legend applies to all subfigures.

Using the asymptotic forms for the graphene polarizability
in the long-wavelength limit, we get the following analytical
formula for the low-temperature (T � TF ) plasmon disper-
sion and damping in the leading order:

ωop =
√

2rsh̄
2v2

F q(kF1 + kF2)

(
1 − π2

6

T 2

TF1TF2

)
, (34)

ωap =
√√√√4rsh̄

2v2
F dq2kF1kF2

kF1 + kF2

(
1 − π2

6
T 2

T 2
F1

)(
1 − π2

6
T 2

T 2
F2

)
1 − π2

6
T 2

TF1TF2

,

(35)

where kF1,2 = √
πn1,2, kBTF1,2 = EF1,2 = h̄vF kF1,2 depend

on the doping carrier density n1,2 in the two layers, and
T � TF1,2 is assumed in obtaining Eqs. (34) and (35). The
corresponding low-temperature long-wavelength damping γ

for both plasmon modes is exponentially suppressed as in the
corresponding single-layer extrinsic plasmon case.

We can also carry out the high-temperature T � TF1,2

asymptotic expansion of �1,2 to derive the corresponding
high-temperature results and we get precisely Eqs. (22)–(25)
in the leading order in TF1,2/T , i.e., TF drops out in the
leading order, leaving us precisely the intrinsic double-layer
plasmon results, as expected. The precise agreement between
the extrinsic and the intrinsic results arises in the leading order
in TF /T because the finite-T chemical potential in the extrinsic
case goes as μ ≈ Ef

4 ln 2
TF

T
for TF � T .

We just show three representative sets of numerical results
for double-layer extrinsic graphene in Figs. 21–23. In Fig. 21,
the small-q and small-T numerical results are shown manifest-
ing excellent agreement with our T � TF analytical results.
In Fig. 22, we show the results for the same parameters in a
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FIG. 21. (Color online) Results for a double-layer extrinsic
graphene system with n1 = 1012 cm−2, n2/n1 = 0.25, d = 300 Å.
(a), (b) ωp/EF1 versus q/kF1. (c), (d) ωp/EF1 versus T/TF1. The
dashed and solid lines correspond to the analytical results [given in
Eqs. (34) and (35)] and the numerical results, respectively.

much more expanded scale of q/kF1. In Fig. 23, we show the
temperature dependence at fixed q.

C. Bilayer graphene

Finally, we very briefly consider the theory for intrinsic
plasmons in undoped bilayer graphene (BLG) for the sake
of completeness. For our purpose, we assume the bilayer
graphene to have parabolic chiral band structure69,81–84 (char-
acterized by an effective mass m rather than a velocity vF ) in
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FIG. 22. (Color online) Results for a double-layer extrinsic
graphene system with n1 = 1012 cm−2, n2/n1 = 0.25, d = 300 Å,
and κ = 1. (a) ωp/EF1 versus q/kF1 for different temperatures. (b)
γ /EF1 versus q/kF1 for different temperatures. (c) γ /ωp versus
q/kF1 for different temperatures. Note that the legend applies to
all subfigures.
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FIG. 23. (Color online) Results for a double-layer extrinsic
graphene system with n1 = 1012 cm−2, n2/n1 = 0.25, d = 300 Å,
and κ = 1. (a) ωp/EF1 versus T/TF1 for different q/kF1. (b) γ /EF1

versus T/TF1 for different q/kF1. (c) γ /ωp versus T/TF1 for different
q/kF1. Note that the legend applies to all subfigures.

contrast to the linear chiral band structure of MLG (which is
what we have considered so far in this work).

The BLG 2D polarizability function is given by69

�(q,ω) = − 4

A

∑
k,s,s ′

fs,k − fs ′,k′

h̄ω + εs,k − εs ′,k′ + iη
Fs,s ′ (k,k′), (36)

where k′ = k + q, s,s ′ = ±1, εs,k = sh̄2k2/(2m), and Fs,s ′ =
(1 + cos 2θ )/2 is the chiral wave-function overlap. The func-
tions “f ” in Eq. (36) are the Fermi distribution functions
at temperature T . The bilayer dynamical polarizability first
calculated by Sensarma et al.69 who also first obtained the
bilayer graphene plasmon dispersion for the extrinsic (doped)
system. Following, we give the analytical results for intrinsic
BLG plasmons in the absence of any doping.

In the long-wavelength limit (q → 0) and at high temper-
atures h̄2q2/(2m) � kBT , we have the following asymptotic
formula for BLG �(q,ω) in the intrinsic (n = 0) regime [from
a direct expansion of Eq. (36) above]:

�(q,ω) ≈ 4 ln 2

π

q2

ω2
kBT + i

q2

8kBT
. (37)

Using Eq. (1) for the plasmon oscillation, we get the mode
dispersion and damping for intrinsic BLG to be

ωp =
√

8e2(ln 2)(kBT )q

κ
, (38)

γ = πe2q

2κ
√

2κkBT

√
(ln 2)e2q. (39)

This gives for the BLG intrinsic plasmon

ωp/γ = 8kBT κ

πe2q
. (40)

For well-defined modes, we must have ωp/γ > 1, leading to
the condition that

kBT >
πe2q

8κ
. (41)

Thus, similar to the MLG intrinsic plasmon although γ ∝
1/

√
T , there is a well-defined intrinsic plasma mode at long

wavelength for arbitrarily low temperatures.
Comparing the BLG intrinsic plasmon dispersion given in

Eq. (38) with the corresponding MLG expression given in
Eq. (7), we see that the MLG and the BLG results are identical
except for an extra factor of 2 [8 ln 2 in Eq. (38) and 4 ln 2
in Eq. (7)] in the BLG case. [Remember that rs = e2/(κh̄vF )
making Eq. (7) equivalent to ωp =

√
(4 ln 2)e2kBT q/κ.] Thus,

the intrinsic plasmon frequency, in sharp contrast to the
extrinsic plasmon frequency, is independent of the Fermi
velocity (MLG) or the effective mass (BLG) and depends
only on a single material constant κ , the background dielectric
constant. We note that the expressions for the intrinsic plasmon
damping are also very similar for MLG [Eq. (8)] and BLG
[Eq. (40)], again except for a factor of

√
8, the two expressions

are identical (and independent of vF or m).
We can also obtain the analytical results for the intrinsic

plasmons in the double-layer BLG system composed of two
BLG layers separated by a distance “d.” Solving the 2 × 2
determinantal equation [Eq. (18)] for the double-layer BLG
system, we get the following analytic leading-order results for
the intrinsic plasmons of the double-layer BLG system:

ωop =
√

(16 ln 2)qkBT
e2

κ
, (42)

ωap =
√

(8 ln 2)q2dkBT
e2

κ
, (43)

γop = πqe2

κ
√

kBT

√
(ln 2)

e2

κ
q, (44)

γap = πq2de2

2κ
√

2kBT

√
(ln 2)q2d

e2

κ
. (45)

These formulas for the intrinsic double-layer BLG plasmons
are essentially identical to the corresponding double-layer
MLG intrinsic plasmons [Eqs.(22)–(25)] except for numerical
factors. Again, the plasmon mode dispersion and damping do
not depend on the effective mass or the Fermi velocity and are
universal properties of the intrinsic system.

III. DISCUSSION

Given the very large number of systems considered in
this work (MLG, BLG, intrinsic, extrinsic, single layer,
double-layer, . . .) and the numerous analytical (as well
as numerical) results presented in Sec. II, it is useful to
summarize all the analytical results in Tables I and II so
that the similarities/differences/connections among the various
derived results for plasmon modes (and their damping) become
apparent. Some of the results in Tables I and II were obtained
in the literature before, but our emphasis in this work is on
intrinsic plasmon modes and their temperature dependence.
Results in the last row of Tables I and II are for the
ordinary (nonchiral) 2D electron gas systems (as occurring,

235418-12



INTRINSIC PLASMONS IN TWO-DIMENSIONAL DIRAC . . . PHYSICAL REVIEW B 87, 235418 (2013)

TABLE I. Summary of high-temperature analytical results. We denote ωpi =
√

4(ln 2)(kBT )e2q

κ
, γpi = π

8

√
ln 2
kBT

(
e2q

κ

) 3
2
.

Material System
High temperature T → ∞

ωp γ

Comments

MLG

Intrinsic ωpi γpi

Extrinsic ωpi 1 + TF
4

128(ln 2)3T4 γpi 1 − (ln 2)e2q
12κkB T

Double
MLG

Two
intrinsic

OP
√

2ωpi

√
8γpi

AP
√

qd ωpi (qd)
3
2 γpi

Intrinsic-
extrinsic

OP
Same as results
for double
intrinsic layers

For T → ∞,
chemical potential
of MLG μ → 0

AP

Two
extrinsic

OP

AP

BLG
Intrinsic

√
2ωpi

√
8γpi

Extrinsic 2 +
T2

F
(4 ln 2)T2 ωpi

√
8 1 − 8 ln 2−2

32 ln 2

T2
F

T2 γpi

Double
BLG

Two
intrinsic

OP 2ωpi 8γpi

AP
√

2qdωpi

√
8(qd)

3
2 γpi

Intrinsic-
extrinsic

OP
Same as results
for double
intrinsic layers

For T → ∞,
TF /T → 0

AP

Two
extrinsic

OP

AP

2DEG

Single layer 2πne2q
mκ

[1 + 3
4

qκkBT
πe2n

] π
kBT

πe2n
κq

3
2

exp − πe2n
κkBTq

− 3
2

Double

layera

OP
2πe2q(n1+n2)

mκ
π(n1+n2)

kBT
πe2

κq

3
2

e
− πe2n1

κkB T q
− 3

2 n1 + e
− πe2n2

κkB T q
− 3

2 n2

AP 4πe2q2d
mκ

n1n2
n1+n2

π
kBT

2πe2

κ
dn1n2
n1+n2

3
2 exp[− πe2n2

κkB T q
− 3

2 ]n1+exp[− πe2n1
κkB T q

− 3
2 ]n2

n1+n2

aOnly the leading-order terms are kept in obtaining results for a double-layer two-dimensional electron gas (2DEG) system.

for example, in semiconductor quantum wells), which are by
definition extrinsic systems since the large band gap (between
conduction and valence bands) in the semiconductor ensures
that for n = 0, there is no plasmon mode in the system.

The key issue to be discussed in this section is the
feasibility of an experimental observation of the graphene
intrinsic Dirac point plasmon, which will be the manifestation
of a qualitatively new phenomenon since such intrinsic
plasmons at zero doping density in a charge neutral system
are essentially impossible in any 2D (or 3D) semiconductors
where the existence of free carriers necessitates doping by
some means. (As an aside, we mention that even in a very
narrow gap semiconductor, e.g., InAs or InSb, the band gap
is �100 meV, which implies that T > 2000 K is necessary
for any appreciable thermal population of free carriers making
it impossible to study any kind of “intrinsic plasmons” in
undoped semiconductors.)

There has been a great deal of recent experimental interest
in studying the properties of graphene Dirac point (i.e., the
charge neutrality point) in both MLG and BLG systems.85–88

Various exotic quantum phases89–97 and non-Fermi-liquid
behavior98 are theoretically predicted at the graphene Dirac
point, and thus the possibility of understanding the Dirac
point behavior through the observation of intrinsic plasmon
properties is both interesting and intriguing. For example,

our theory of intrinsic Dirac point plasmon modes devel-
oped in this work is based entirely on the random phase
approximation assuming a generic Fermi-liquid ground state,
and consequently, any observed qualitative departure in the
experimentally observed Dirac point plasmon behavior (e.g., a
completely different temperature dependence compared with
that given in Tables I and II) would imply a failure of
RPA, indicating the fundamental and qualitative importance
of interaction effects or perhaps even the emergence of a
new spontaneously symmetry-broken ground state as has been
predicted theoretically in the literature.99–105 Since collective
modes (e.g., Goldstone modes, Higgs bosons, zero sound
modes, etc.) typically tell us a great deal about the fundamental
nature of the field theoretic vacuum (i.e., the ground state
of the system), the study of graphene intrinsic plasmons
could turn out to be a very useful route to understanding the
nature of the Dirac point. A good example of the possible
usefulness of intrinsic plasmons could be in the determination
of whether the nonperturbative aspects of electron-electron
interaction induce a chiral anomaly in graphene leading to
the spontaneous formation of an energy gap at the Dirac
point as has been predicted in some lattice quantum Monte
Carlo simulation.102,106,107 Such an energy gap at the Dirac
point, if it exists in the experimental samples, would show up
as an exponential (going as e−�/T where � is the induced
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TABLE II. Summary of low-temperature analytical results. We denote ωpx1 =
√

2 e2√
πn1h̄vF q

κ
, ωpx2 =

√
2 e2√

πn2h̄vF q

κ
, ωpi =

√
4(ln 2)(kBT )e2q

κ
,

and γpi = π

8

√
ln 2
kBT

(
e2q

κ

) 3
2
.

Material System
Low temperature T → 0

ωp γ

Comments

MLG

Intrinsic N/A N/A No plasmon
mode at T = 0

Extrinsic ωpx1 1 − π2

6
T2

T2
F

N/A
γ exponentially
suppressed

Double
MLG

Two
intrinsic

OP
N/A

No plasmon mode
at T = 0AP

Intrinsic-

extrinsica

OP ωpx1 1 + (2 ln 2) T
TF1

− π2

6
T2

T2
F1

γpi
TF1

(2 ln 2)T
+ 1 − π2

12 ln 2
T

TF1
]

AP ωpi 2qd 1 − (2 ln 2) T
TF1

+ 4(ln 2)2 T2

T2
F1

γpi 8(qd)3[1 − (10 ln 2)T
TF1

]

Two
extrinsic

OP (ω2
px1 + ω2

px2) 1 − π2

6
T2

TF1TF2
N/A

γ exponentially
suppressed

AP 2qdωpx1ωpx2

√
kF1kF2

kF1+kF2

(1− π2
6

T2

T2
F1

)(1− π2
6

T2

T2
F2

)

1− π2
6

T2
TF1TF2

BLG
Intrinsic N/A No plasmon

Extrinsic 2πne2q
mκ

N/A γ exponentially
suppressed

Double
BLG

Two
intrinsic

OP
N/A No plasmon mode

AP

Intrinsic-

extrinsica

OP 2πe2qn
mκ

1 + 2 ln 2 T
TF1

γpi
4TF1

(ln 2)T

AP ωpi 4qd 1 − (2 ln 2) T
TF1

8(qd)
3
2 γpi

Two
extrinsic

OP 2πe2q(n1+n2)
mκ

N/A γ exponentially
suppressed

AP 4πe2q2d
mκ

n1n2
n1+n2

2DEG

Single layer 2πne2q
mκ

N/A γ exponentially
suppressed

Double
layer

OP 2πe2q(n1+n2)
mκ

N/A
γ exponentially
suppressed

AP 4πe2q2d
mκ

n1n2
n1+n2

aResults for a mixed intrinsic-extrinsic graphene double-layer system are obtained in the limit h̄vF q � kBT � EF1. For kBT � h̄vF q, there
is only an optical plamson mode ωop , determined by the extrinsic layer, in a mixed double-layer graphene system.

gap) suppression of the intrinsic plasmon energy (i.e., the
simple power laws in temperature derived in our RPA theory
will fail qualitatively), which could be directly experimentally
observed thus validating (or not) the existence of a Dirac point
chiral anomaly.

Thus, an experimental investigation of intrinsic Dirac
plasmons is highly desirable. It may appear to be a straight-
forward, even a trivial, task to study intrinsic Dirac plasmons
experimentally by carrying out plasmon experiments keeping
the Fermi level fixed at the charge neutrality point by
appropriately tuning the gate voltage in gated graphene.
Transport measurements in gated samples routinely enable
sitting precisely at the charge neutrality point since the
graphene conductivity has a typical “V” or “U” shape as a

function of gate voltage with the conductivity (resistivity)
minimum (maximum) being located at the nominal Dirac
point. The serious complication is, however, disorder since
it is well known108–114 that the charge neutrality point as
determined by transport or other experiments is not the
theoretical Dirac point because of the existence of electron-
hole puddles in the system. In particular, random charged
impurities in the graphene environment become qualitatively
important in the n � ni regime (where ni is the impurity
density and n the carrier density), and drive the system
into a highly inhomogeneous state with randomly distributed
puddles of electrons and holes dominating the landscape. This
puddle-dominated highly inhomogeneous (i.e. carrier density
fluctuates spatially) regime has been shown108,109,115,116 to
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correspond to the so-called minimum conductivity plateau
in the graphene transport data (i.e. the bottom of the “V”
or “U” in the conductivity versus gate voltage plot). Thus,
the charge neutrality point in transport corresponds only to
the total charge density in the whole sample being zero, and
not to the absence of electrons and holes in the system. The
puddle-dominated regime around the charge neutrality point
should be best thought of as a random spatial variation in the
Dirac point with respect to the spatially constant chemical
potential (as controlled by the external gate voltage) where
at each point in space the Dirac point is either above (“hole
regions”) or below (“electron regions”) the chemical potential.
Within the mean field theory,108,109,115–118 the system has a
finite fluctuation induced carrier density (n∗ ∼ ni) even at the
Dirac point (i.e., the charge neutrality point) because of the
Coulomb disorder induced electron-hole puddles.

The existence of electron-hole puddles means that the Dirac
point is ill defined experimentally up to a carrier density of n∗
(with n∗ being determined by the details of the random charged
impurity configuration in the system, but typically n∗ � ni),
and n∗ can be approximately estimated experimentally by
looking at the size of the conductivity minimum plateau
region.119 The lack of the precise existence of the Dirac point
has obvious implications for the intrinsic plasmon which we
discuss in the following.

Electron-hole puddles make it impossible, as a matter
of practice, to explore the precise Dirac point in graphene
(or other similar materials), and therefore, our assumption
of n ≡ 0 at the Dirac point is no longer applicable in our
consideration of intrinsic plasmons. This, however, should
not be construed as a complete disaster for the observation
of the intrinsic plasmon since the Dirac point, being a set
of measure zero, would naturally be difficult to approach in
any experiment,118 and all experimental claims of studying
Dirac point phenomena are suspect because of the fragile
and unstable nature of this “measure-zero” fixed point. Any
experimental technique requiring the precise placement of the
Fermi level at the Dirac point (i.e., n ≡ 0 everywhere in the
sample) is doomed to fail no matter what.

From our presented results in Sec. II (see also Tables I
and II), it is rather obvious that for the physics of intrinsic
plasmons to manifest itself experimentally, there would be
a lower cutoff (T ∗) in the temperature below which (i.e.,
for T < T ∗) the electron-hole puddles would inhibit any
observation of intrinsic plasmon behavior with the collective
mode basically crossing over from being intrinsic for T � T ∗
to being extrinsic for T � T ∗. Clearly, the temperature scale
for this crossover is given by

T ∗ = TF (n∗) = h̄vF

√
πn∗/kB, (46)

where n∗ is the average puddle-induced carrier density in the
system (i.e., n∗ is a function of ni). Thus, intrinsic Dirac point
behavior is essentially a high-temperature phenomenon with
the intrinsic plasmon manifesting itself only for T � T ∗ and
then crossing over to extrinsic plasmons of the puddle carriers
for T � T ∗. The fact that the intrinsic Dirac point behavior
is an effective “high-temperature” behavior has already been
emphasized earlier in the context of approaching the Dirac
point through transport measurements,118 and in the current
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FIG. 24. (Color online) The temperature scale for the crossover of
the collective mode from being intrinsic to being extrinsic. The dashed
curve shows T ∗

1 (n) = √
πnh̄vF /kB . The solid curve shows T ∗

2 (n) =√
πnh̄vF

kB
(1 + rs

8 ln nc

n
) including Fermi velocity renormalization due

to electron-electron interactions (see Ref. 120 for details), where
rs = 0.4 (κ = 5) and nc = 1015 cm−2 is the high-density cutoff.

work, we establish the same qualitative finding for approaching
the Dirac point through collective mode properties. In Fig. 24,
we show two possible crossover behaviors between intrinsic
and extrinsic plasmons around the Dirac point with intrinsic
plasmon being always the “high-temperature” mode appearing
in the quantum critical “fan” region and extrinsic plasmon
dominating the noncritical low-temperature and high-density
region.

In standard graphene on SiO2 substrates, with substantial
impurity content in the environment, the typical puddle-
induced carrier density n∗ ∼ 1012 cm−2, which gives T ∗ ∼
1500 K, and obviously it makes no sense to discuss any exper-
imental study of intrinsic plasmons in such “impure” graphene
samples because the required temperature scale is impracti-
cally high. One can, of course, study extrinsic graphene in
such samples by creating a doped carrier density n > n∗, and
induced extrinsic graphene plasmons have been studied in such
disordered samples at high carrier density.40,43,44 In suspended
graphene121 or graphene on h-BN substrates,122 however, the
environmental charged impurity density is very low (ni < 109

cm−2), and very low n∗ (∼109 − 108 cm−2) has been reported
with very sharp and narrow conductivity minimum at the
charge neutrality point. Such ultrapure graphene samples
(with typical mobility μm > 100 000 cm2/V S) with very
low puddle density are the appropriate samples for studying
intrinsic graphene. For n∗ = 109 (108) cm−2, TF ≈ 50 K
(15 K), and then the necessary condition (T � T ∗) for the
manifestation of intrinsic plasmon collective behavior would
necessitate T ≈ 20–100 K, which is very reasonable from
an experimental perspective. We have already emphasized in
Sec. II (and this is apparent in Tables I and II) that the extrinsic
plasmon behaves precisely as an intrinsic plasmon (i.e., ωp ∝√

T and a broadening γ ∝ 1/
√

T ) for T � TF , which then
crosses over to the temperature-independent plasma frequency
and exponentially suppressed broadening, the characteristic
features of extrinsic plasmon, at low temperatures T � TF .
This is what we would expect for high-quality graphene
samples (n∗ ∼ 108–109 cm−2) at the Dirac point with respect
to their plasmon properties. The plasmon properties will
behave like those shown in Fig. 9 at higher temperatures
(T � T ∗ ∼ 10–50 K) to those shown in Fig. 1 at lower
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temperatures (T � T ∗ ∼ 10–50 K). Such an observation will
be a direct manifestation of intrinsic Dirac point behavior.

Before concluding this section, we comment on the ex-
pected plasmon level broadening (or damping) as manifested
by the linewidth of the experimental plasmon peak. Our
calculated damping (γ ) corresponds to the inherent Landau
damping induced level broadening which changes the plasmon
peak from a pure delta-function-like pole in the response
function to an approximate broadened Lorentzian shape:

δ(ω − ωp) → 

(ω − ωp)2 + 2
. (47)

The broadening  in the Lorentzian plasmon peak in Eq. (47)
would, in general, have two contributions, arising from Landau
damping (γ ) and impurity broadening (γt ) which can be
written as γt = h̄/(2τ ) where τ is the transport relaxation time
for impurity scattering as extracted from the mobility. In the
leading order, we can simply use

 = γ + γt , (48)

where γ is the Landau damping calculated in Sec. II (see e.g.,
Tables I and II) and γt is the impurity-scattering-induced level
broadening which is given by

γt = h̄/(2τt ). (49)

For high-mobility samples τt ∝ μm is very large, and
γt ∝ μ−1

m is small. Such a small impurity-induced broadening
will also be necessary for an unambiguous identification of
the intrinsic plasmon; it is not enough to just have small
values of only the intrinsic Landau damping γ . Fortunately,
the necessary condition for the suppression of n∗ and T ∗
(i.e., the suppression of puddles) also necessitates very large
(small) values of τt (γt ) since low impurity density (ni ∼ n∗)
implies high mobility (since μm ∼ 1/ni) and low τt . Thus,
very high-mobility samples with very low puddle density,
ensuring both γt and n∗ to be small, would be necessary for
the experimental study of intrinsic plasmons. Fortunately, such
high-quality samples already exist in the laboratory,86 where
the background impurity density (ni) is very low, thus ensuring
that both T ∗ and γt are low enough for the experimental
investigation of intrinsic plasmons.

IV. CONCLUSION

We have provided a rather comprehensive theory for the
intrinsic collective plasmon modes in graphene associated
with the Dirac point within the dynamical finite-temperature
random phase approximation. We have considered monolayer
graphene, bilayer graphene, and double-layer graphene (con-
sisting of two MLG or BLG layers parallel to each other
separated by a distance in the third direction). We have
obtained within RPA extensive analytical results for both plas-
mon dispersion and damping in the experimentally relevant
long-wavelength limit, and have provided detailed numerical
results valid for arbitrary wave vectors and temperatures.
We have critically discussed the experimental feasibility for
observing the graphene intrinsic plasmon modes.

Among our more important qualitative conclusions (arising
from the theory developed in this paper) are as follows:

(i) although the intrinsic plasmon modes, being inherently
finite-temperature excitations, are strongly Landau damped
even at low temperatures, they remain well defined in the sense
that the energy of the mode is larger than its damping in a very
large regime of temperature, wave vector, and background
dielectric constant; (ii) the intrinsic plasmon is inherently a
“high-temperature” phenomenon since the Dirac point has no
energy scale (and thus any finite temperature, no matter how
low, is inherently a high temperature); (iii) closely connected
with the last item is the corollary that the best experimental
approach toward the observation of the intrinsic plasmon is
to study low-density extrinsic plasmon at temperatures high
enough (i.e., T � TF so that the effect of doping density
is minimal); (iv) high-quality currently available graphene
samples (either suspended graphene or graphene on h-BN
substrates) with very high mobility should manifest clear-cut
evidence for the intrinsic plasmon (e.g., plasmon energy
increasing as

√
T and plasmon damping decreasing as

√
T

with increasing temperature) if experiments are carried out
at T ≈ 100 K with the gate voltage tuned to the nominal
charge neutrality point; (v) the collective mode dispersion and
damping for intrinsic MLG and BLG plasmons is essentially
identical (with ωp ∝ √

qT and γ ∝ q
√

qT in both) except for
numerical factors); (vi) our theoretically calculated analytical
formula for plasmon dispersion and damping (both for intrinsic
and for extrinsic plasmons) seems to agree with the full RPA
numerical results essentially at all wave vectors and tempera-
tures as long as our low-temperature analytical formula is used
for T � TF and the high-temperature analytical formula is
used for T � TF for extrinsic graphene; (vii) for double-layer
systems, we establish that it should be experimentally possible
to observe both the optical and the acoustic intrinsic plasmons.

Before concluding, we mention that the graphene plasmon
frequency is likely to be affected by interaction effects
even at long wavelength, unlike the long-wavelength plasma
frequency in parabolic band systems which is protected by
Galilean invariance and the associated f -sum rule so that only
the band mass enters the definition of the long-wavelength
plasma frequency since graphene energy dispersion obeys
Lorentz invariance. We believe that RPA is still an excellent
approximation for the graphene plasmon properties (since RPA
accounts for the long-range Coulomb potential correctly and
nonperturbatively) except perhaps that the velocity entering
the expression for the graphene plasmon mode should be
modified to be the renormalized graphene velocity due to
electron-electron interaction as calculated, for example, in
Ref. 98. This simple modification, plus possibly some quantum
critical correction arising from the Dirac point which has to be
calculated from the renormalization group flow well beyond
the scope of our RPA theory, in the spirit of Landau Fermi-
liquid theory should suffice to incorporate the leading-order
interaction effect in the plasma frequency since the rs values
characterizing Coulomb interaction strength in graphene are
typically not too large. A more detailed theory for including
interaction effects in the graphene plasmon properties is well
beyond the scope of our work and would require substantial
future theoretical efforts.

We now conclude by discussing one important point which
follows directly from our theoretical work with implications
for graphene plasmonics. The recent interest in graphene
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plasmonics arises from the fact that graphene is a nanostructure
allowing for very tight size confinement123 and that the
graphene (extrinsic) plasmon has energy tunable by gate
voltage (i.e., ωp ∼ q1/2n1/4) through the carrier density. In
the case of intrinsic plasmon, however, the plasma energy
goes as ωp ∼ q1/2T 1/2 since basically the doping density
n in the extrinsic formula gets replaced by the thermal
electron-hole excitation density (i.e., n ∼ T 2). This implies
that it should be relatively easy to tune the intrinsic plasmon
energy simply by changing temperature while sitting at the
charge neutrality point,. Since the temperature dependence
(∼√

T ) of the intrinsic plasmon frequency is much stronger

than the doping density dependence (i.e., n1/4) of the extrinsic
plasmon frequency, it may be more convenient to use the
thermal tuning of the plasma frequency than the gate voltage
tuning considered so far. In addition, the intrinsic plasmon
should be a relatively strong and well-defined mode at room
temperatures (T ∼ 300 K) in high-mobility graphene samples,
making it an interesting candidate for possible plasmonic
applications.
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