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Nonuniversal shot noise in quasiequilibrium spin valves
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We show that the breakdown of the Wiedemann-Franz law due to electron-electron scattering in diffusive
spin valves may result in a strong suppression of the Fano factor that describes the ratio between shot noise
and average current. In the parallel configuration of magnetizations, we find the universal value

√
3/4 in the

absence of a normal-metal spacer layer, but including the spacer leads to a nonmonotonous suppression of this
value before reaching back to the universal value for large spacer lengths. On the other hand, in the case of an
antiparallel configuration with a negligibly small spacer, the Fano factor is

√
3(1 − P 2)/4, where P denotes the

polarization of the conductivities. For P → ±1, the current through the system is almost noiseless.
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I. INTRODUCTION

Shot noise is often used as a tool for characterizing
the magnitude of energy relaxation, for example, due to
electron-phonon scattering in small electron systems (for a
recent example, see Ref. 1). This method relies on the fact
that the noise power SI (ω), defined as the Fourier transform
of the current-current correlator, through a given conductor
is quite generally proportional to the average of the electron
temperature in this sample. Biasing the system with a voltage
V induces Joule heating, and the static electron temperature
follows from a balance between this heating and the energy
relaxation out of the system. This way the strength of energy
relaxation can be read off from the noise.

At low temperatures in metals the main energy relaxation
mechanism is due to the direct diffusion of electrons to the
electrodes. This heat conduction is typically characterized
by the Wiedemann-Franz (WF) law,2 according to which the
heat conductivity κ = L0σT is directly proportional to the
charge conductivity σ and the local electron temperature T .
The proportionality factor L0 = π2k2

B/(3e2) is known as the
Lorenz number. In the limit of a large voltage compared
to the temperature T0 of the electrodes, |eV | � kBT0, the
WF law results in shot noise which is proportional to
the average current 〈I 〉, with a universal Fano factor F ≡
SI /(2e|〈I 〉|) = √

3/4.3,4 This Fano factor is independent of
the sample geometry and applies even in the presence of
a nonuniform electron conductivity or a nonuniform cross
section of the sample. The only requirements are the validity
of the WF law and the quasiequilibrium limit,5 where the
electron-electron scattering is strong enough, so that the
electron distribution function can everywhere be described
via a Fermi-Dirac distribution function with a well-defined
position-dependent electron temperature. This value has been
demonstrated experimentally6 more than a decade ago and it
is now well established.

Recently a lot of interest has been devoted to the problem
of heat transfer in magnetic systems.7 One of the key findings
is that as internal energy relaxation of the electrons couples
the energies in the two spin systems without relaxing their
charges, the WF law breaks down.8,9 In this paper we show
how the breakdown of the WF law leads to a shot noise with a

Fano factor deviating from the universal value in these devices.
In particular, we find that in a spin valve with antiparallel
orientation of magnetizations (Fig. 1), the Fano factor is
strongly suppressed implying an almost noiseless transmission
of current through the device. This is counterintuitive, as the
antiparallel magnetization orientation can be envisaged as a
reduced overall transmission of electrons through the spin
valve—compared to the parallel orientation—and typically
such a reduction of transmission leads to an increased Fano
factor rather than a reduced one.10 This behavior also sharply
contrasts with the results for spin valves with spin-flip
scattering in the paramagnetic metal,11 where the maximum
Fano factor corresponds to the maximum resistance.

If there were no spin-flip and electron-electron scattering,
a diffusive spin valve could be considered as two isolated
parallel conducting channels with spin-up and spin-down
electrons connecting the same reservoirs. Each channel would
separately give a Fano factor 1/3, yielding the same overall
Fano factor characteristic of diffusive wires out of equilibrium.
This value would be independent of electrode magnetizations
or the details of the sample.12,13

If each spin subsystem were in local equilibrium but there
were no heat exchange between electrons with opposite spins,
this quantity would change to

√
3/4 and remain sample

independent because of the direct proportionality between the
electric and heat conductivities. However if the heat exchange
between spin subsystems is switched on, it results in a heat
transfer between the channels, which is not accompanied by
any charge transfer and hence may violate the Wiedemann-
Franz law. This increases the effective κ/σ ratio and decreases
the Fano factor below

√
3/4.

For parallel magnetizations of the electrodes and a van-
ishing normal region, the spatial dependence of the electron
temperature in both spin-up and spin-down channels would
have the same symmetric shape and therefore would not be
affected by heat exchange between the channels. However
for antiparallel magnetizations, the distribution of temperature
in thermally isolated channels would be strongly asymmetric
(see Fig. 2). The regions where the electrons with given
spin direction are minority carriers would have a much
lower conductivity and a much higher temperature than the
ones where they are in the majority. Therefore it is the
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FIG. 1. Spin valve considered in this paper: Two ferromagnetic
wires with length LF are connected to each other via a normal-metal
spacer of length LN and to electrodes held at different potentials μL

and μR = μL − eV and at a temperature T0 � |eV |/kB .

minority-carrier regions that would be the dominant sources
of noise. As the heat exchange between the spin subsystems is
switched on, the hotter minority-carrier regions appear to be
in direct thermal contact with much colder majority carriers
in the opposite-spin channel. As the majority carriers have
much larger electric and thermal conductivity, they represent
almost perfect heat sinks for the minority carriers and strongly
suppress their effective temperature together with the Fano
factor.

II. MODEL AND BASIC EQUATIONS

We describe the ferromagnet–normal-metal–ferromagnet
(FNF) system shown schematically in Fig. 1, where the ferro-
magnets of equal length LF are connected to a normal-metal
spacer with length LN and conductivity σN . For simplicity
we only consider the collinear orientation of magnetizations.
For parallel magnetizations, the majority (minority) spin, i.e.,
“up” (“down”), electrons in both electrodes have conductivity
σM (σm) with σm � σM , whereas in the case of antiparallel
magnetization orientation the conductivities of the spin-up
and spin-down channels are interchanged in the right ferro-
magnet. An alternative way to describe the spin-dependent
conductivities is to define the average conductivity σF ≡
(σM + σm)/2 and spin polarization P = (σM − σm)/(2σF ).

FIG. 2. (Color online) The would-be distribution of temperature
along the spin valve for spin-up and spin-down electrons in the
absence of interaction between them for the antiparallel magnetiza-
tions of the electrodes in the extreme case LN = 0. As the higher
temperature corresponds to the lower conductance, the would-be
temperature profiles are highly asymmetric, and switching on the
interaction results in a heat exchange whose direction is shown by
the wide arrows.

In the diffusive limit, where all length scales in the problem
are large compared to the elastic mean free path �el, the electron
distribution function fs(x,E) for spin s ∈ {↑ ,↓} electrons
satisfies14

Ds∂
2
xfs = I s

e-e[fs,fs̄] + I s
e-ph[fs,nph], (1)

where Ds is the diffusion constant for spin s, s̄ denotes the
spin opposite to s, Ie-e and Ie-ph are the collision integrals for
electron-electron (e-e) and electron-phonon (e-ph) scattering.
In what follows, we concentrate on low temperatures where
the latter can be disregarded.15 The role of e-e scattering is to
equilibrate the electron system into a common local tempera-
ture without any transfer of electron energy to nonelectronic
excitations. However, whereas in the absence of spin-flip
scattering the spin-dependent potentials are unaffected by
e-e scattering, the energies of the two spin ensembles are
coupled,9,16–18 and therefore in the limit of strong e-e scattering
spin-up and spin-down electrons can be described with the
same temperature T (x).

In the quasiequilibrium limit the distribution hence
reads fs(x,E) = f0(E; μs(x),T (x)), where f0(E; μ,T ) =
{exp[(E − μ)/(kBT )] + 1}−1 is the Fermi function. The spin-
dependent potentials satisfy the continuity equation

∂x[σs∂xμs(x)] = 0, (2)

which is obtained by integrating Eq. (1) over the energy.
We assume a position-dependent conductivity σs = e2DsNs ,
where Ns is the density of states for spin s. The vanishing
energy flux out of the electron system due to e-e scattering
requires that

∑
s Ns

∫
dE EIs

e-e(E) = 0. With the help of this
equality we obtain the heat diffusion equation for temperature
T (x) by multiplying Eq. (1) by Ns times energy, summing over
spin and integrating over the energy. This yields

L0∂x

[(∑
s

σs

)
T ∂xT

]
= − 1

e2

∑
s

σs (∂xμs)
2 . (3)

This equation describes the diffusion of the thermal energy
(left-hand side) in response to Joule heating (right-hand side)
generated throughout the sample for both spins.

As we assume the interface resistances to be negligible as
compared with those of the wires, the boundary conditions
for Eqs. (2) and (3) consist in continuity of the potentials and
the temperature and in conservation of the heat current and
spin-resolved charge currents [terms in square brackets on the
left-hand sides of Eqs. (2) and (3)] across the interfaces.

Once the potential profile has been found, the position-
independent average current is easily calculated as

〈I 〉 = A
∑

s

σs

∫
dE ∂xfs(x,E) = A

∑
s

σs∂xμs, (4)

where A is the cross section of the sample and the sum goes
over the two spin directions. The Langevin equation for the
current fluctuation4 may be written in the form

δI =
∑

s

[
Aσs∂xδμs + δI ext

s (x)
]
, (5)

where the correlation function of the Langevin sources is given
by 〈

δI ext
s (x) δI ext

s ′ (x ′)
〉 = 4Aσs δss ′ δ(x − x ′) 	s(x), (6)
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FIG. 3. (Color online) Potential (top) and temperature (bottom)
profiles in spin valves with different magnetization configurations.
The shaded regions refer to the ferromagnets, where the magnetiza-
tion directions are denoted by the arrows. In the top figures, the blue
curves (upper on the left part of the figure) are for μ↑, whereas the
red (lower on the left) are for μ↓. The three sets of curves are for
σF /σN = 0.2 (solid lines), σF = σN (dashed lines), and σF = 50σN

(dash-dotted lines). We have chosen LN = LF and P = 0.8.

and 	s(x) = ∫
dE fs(x,E)[1 − fs(x,E)]. In the quasiequi-

librium limit 	s(x) = kBT (x) is independent of spin. As
δI is independent of x in the low-frequency limit,19 the
zero-frequency current noise power can be easily obtained
from Eq. (5) in the form

SI = 4A
∑

s

∫
dx 	s(x)/σs(x)[ ∫

dx σ−1
s

]2 . (7)

The solution of the quasiequilibrium equations (2) and (3) is
straightforward but somewhat lengthy. The obtained potential
and temperature profiles are plotted for a few example cases
in Fig. 3.

With knowledge of the temperature, the shot noise is
obtained from Eq. (7). The expressions for the Fano factor for
an arbitrary range of parameters are presented in the Appendix,
and in the following we consider some simpler limits and
present the more general results in Figs. 4 and 5. In general,
the Fano factor depends on the magnetization configurations
(parallel or antiparallel), spin polarization P , and the ratio of
the spin-averaged conductances of the ferromagnets and the
normal-metal spacer, i.e., α ≡ σF LN/(σNLF ). Alternatively,
we can describe this dependence with the parameters αM/m =
σM/mLN/(σNLF ) = (1 ± P )α.

III. PARALLEL ORIENTATION

In the absence of spin heat accumulation, the validity of the
Wiedemann-Franz law depends on the presence or absence of
spin accumulation. The latter vanishes if σM = σm, i.e., P = 0,
and both in the limit where the majority of the resistance
comes from the normal-metal spacer, i.e., α � 1 or in the
opposite limit α � 1. In the latter case the absence of spin

FIG. 4. (Color online) Fano factor of the spin valve for parallel
magnetizations as a function of the ratio of minority electron
conductance σmA/LF to the normal-metal conductance σNA/LN for
different ratios σM/σm. Note the log scale in the horizontal axis. For
σNA/LN → 0 the normal metal dominates the resistance, and the
Fano factor tends to the value

√
3/4 ≈ 0.433. In the opposite limit

σN/LN � σM/LF a symmetric spin valve does not maintain any spin
accumulation, and the same Fano factor

√
3/4 is retained.

accumulation results from the symmetry of the setup. The
temperature distributions in the thermally uncoupled spin-up
and spin-down channels would be identical and therefore
would not be affected by the heat exchange. In those limits
we hence obtain the universal result FP = √

3/4 for the Fano
factor. The intermediate case is plotted in Fig. 4. We find that F
obtains a minimum when αm ≈ 1 and this minimum becomes
wider and deeper as the polarization increases. For αM → ∞
the curve approaches its limiting shape given by

FP

αM�αm,1−→
√

3

4

(
α2

m + 2αm + 2
)3/2

(αm + 1)(αm + 2)2
. (8)

FIG. 5. (Color online) Fano factor for antiparallel magnetizations
as a function of the ratio of the conductance for minority electrons
to the conductance of the normal metal, for different ratios σM/σm.
Note the log scale in the horizontal axis. For σNA/LN → 0 the normal
metal dominates the resistance, and the Fano factor tends to

√
3/4. In

the opposite limit σN/LN � σM/LF the Fano factor tends to FAP �√
3/4 given by Eq. (9).
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Hence F ≈ √
6/8 in a wide range αm � 1 � αM . The

minimal value F = 9
√

71 − 173/2/32 ≈ 0.27 is obtained at
αm = (

√
17 − 1)/4. Note that this limit requires quite a strong

polarization of the ferromagnets (see Fig. 4).

IV. ANTIPARALLEL ORIENTATION

In the antiparallel configuration of the magnetizations, the
spin accumulation is nonzero even in the case of a negligible
resistance of the normal-metal spacer (i.e., α � 1). In this
case

FAP
α�1→

√
3σMσm

2(σM + σm)
=

√
3

4

√
1 − P 2. (9)

The shot noise power is therefore suppressed by interspin
relaxation due to e-e scattering. The quasiequilibrium Fano
factor is below the nonequilibrium limit FAP = 1/3 when
P >

√
11/27 ≈ 0.64 and the shot noise (almost) vanishes

in the half-metal limit P → 1 (note that also the average
current vanishes there, but the noise vanishes faster). The
reason is that the distribution of temperature for thermally
uncoupled spin-up and spin-down channels would be strongly
asymmetric in this case. The electron-electron scattering
balances these temperatures, resulting in a strongly sup-
pressed average temperature together with a suppressed Fano
factor.

As shown in Fig. 5, the normal-metal spacer limits the
suppression of shot noise. For αM � 1 (or P → 1) we
obtain

FAP
αM�1−→

√
3

4

α2
m

(1 + αm)2
. (10)

This function thus interpolates between the full suppression
of noise at αm � 1 and the normal quasiequilibrium limit
F = √

3/4 for αm � 1.

V. DISCUSSION

Let us now estimate the parameter regime where our
discussion is valid. We have assumed that the length L =
2LF + LN is shorter than the spin diffusion length. Spin-flip
scattering would suppress the spin accumulation, and therefore
also the violation of the Wiedemann-Franz law. The deviations
of the Fano factor from

√
3/4 would therefore be smaller in

systems with stronger spin-flip scattering. On the other hand,
the quasiequilibrium limit generally requires �ee � LF ,LN �
�e-ph, where �e-e is the electron-electron scattering length and
�e-ph is the electron-phonon scattering length. We may now
generalize the overall behavior of the Fano factor from Ref. 6 to
spin valves: For L � �e-e, the Fano factor is 1/3, independent
of the magnetization configuration or the microscopic details.
Increasing the voltage and thereby decreasing �e-e, the Fano
factor tends to another value, which now depends on both the
magnetization configuration and the relative sizes of the spacer
and the ferromagnets.

VI. SUMMARY

In summary, we showed that the breakdown of the
Wiedemann-Franz law via interspin energy relaxation leads
to a drastic change in the shot noise through a diffusive spin
valve. Unlike spin-flip scattering, the heat exchange between
the two spin subsystems leads to a suppression of the noise
for the antiparallel magnetization of the electrodes when the
resistance of the valve is maximal. This effect may be used for
determining the parameters of electron-electron scattering in
ferromagnets.
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APPENDIX: FULL FANO FACTORS

For reference, here we write the full analytic forms for the Fano factors. In the parallel case the Fano factor is of the form

FP =
√

3

4π (αm + αM + αmαM )

[
A1 + 2A3

√
A2

(2 + αm)2(2 + αM )2(αm + αM )
arcsin

(√
(αm + αM )A2

A3

)]
, (A1)

where A1, A2, and A3 are given by equations

A1 = 8 (αm + αmαM + αM ) 2

√
(αm + αM ) [αmαM (αm + αM + 8) + 4(αm + αM )]

arcsin

(√
αmαM (αm + αM + 8) + 4(αm + αM )

2(αm + 2)(αM + 2)(αm + αmαM + αM )

)
,

A2 = 2α2
M + 2α2

m + αmαM (2αM + αmαM + 2αm),

A3 = α3
m [αM (αM + 2) + 2] + α2

m(αM [αM (αM + 12) + 22] + 16) + 2αm(αM [αM (αM + 11) + 16] + 8)

+ 2αM [αM (αM + 8) + 8] .

In the antiparallel case, the Fano factor is of the form

FAP =
√

3 (N1 + N2)

D
, (A2)
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where N1, N2, and D are given by equations

N1 = 4
√

αmαM (αm + αM )(αm + αM + αmαM )2 arcsin

(√
αm + αM

2(αm + αmαM + αM )

)
,

N2 = αmαM (αm + αM ) [αmαM (αm + αM + 8) + 4 (αm + αM )] arccot

(
2

√
(αm + 2αmαM + αM )

αmαM (αm + αM )

)
,

D = 2π (αm + αM ) 2 (αm + αmαM + αM ) 2.
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