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Magnetic flux tuning of Fano-Kondo interplay in a parallel double quantum dot system
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We investigate the Fano-Kondo interplay in an Aharonov-Bohm ring with an embedded noninteracting quantum
dot and a Coulomb interacting quantum dot. Using a slave-boson mean-field approximation we diagonalize the
Hamiltonian via scattering matrix theory and derive the conductance in the form of a Fano expression, which
depends on the mean-field parameters. We predict that in the Kondo regime the magnetic field leads to a
gapped energy level spectrum due to hybridization of the noninteracting QD state and the Kondo state, and can
quantum-mechanically alter the electron’s path preference. We demonstrate that an abrupt symmetry change in
the Fano resonance, as seen experimentally, could be a consequence of an underlying Kondo channel.
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I. INTRODUCTION

One of the most fascinating manifestations of many-body
physics in mesoscopic systems is the Kondo effect. It was
originally observed in the 1930s in gold wires and formally
explained in 1964 by Jun Kondo1 in metals that contain
magnetic impurities. The Kondo effect became an intense topic
of research in the context of mesoscopic systems2 after its
observation in quantum dots (QDs) in the late nineties.3 The
Kondo effect in QDs is revealed as a zero-bias conductance
enhancement at low temperatures when the QD is spin polar-
ized and strongly coupled to the conduction electrons (such
as a QD that is tunnel coupled to leads). Since its discovery
in QDs, the Kondo effect has been observed and studied in
a variety of exciting mesoscopic systems: individual atoms,4

carbon nanotubes,5 molecules,6 bucky balls,7 and graphene.8

Since the Kondo transport can strongly influence the Fano
phenomenon, there has recently been a lot of interest in the
interplay between these two effects in QDs. This interest comes
from the use of Fano resonances as a tool to study coherence
and to provide valuable transport information9,10 that may
result in future nanoscale device applications.11–13 The Fano
effect results from the interference between a scattering event
within a continuum of states (background process) and another
one by means of a discrete energy level (resonant process). A
Fano resonance manifests itself as an asymmetric conductance
line shape.14 Fano resonances have been observed in many
different physical systems and extensively studied in nanoscale
systems.15 Scientific awareness of the interaction between the
Fano and the Kondo effect began with STM measurements
on metal surfaces,16 however, it found its greatest impact
in mesoscopic systems. The Fano-Kondo effect is observed
when Kondo transport takes over the background scattering
process in the Fano effect. The trademark of such interaction
is a conductance valley when tuning the energy level of the
resonant process.

So far, only a small number of dedicated Fano-Kondo
studies have been reported.17–20 Sasaki et al.20 performed
transport measurements through a side-coupled double QD
configuration and found a strong modulation of the Kondo
conductance by the Fano effect. Their results are in good
agreement with a tight-binding model presented in a parallel
theoretical publication.21 In a theoretical work, Fang and
Luo22 have calculated the conductance in an Aharonov-

Bohm interferometer containing a Kondo QD coupled to a
noninteracting QD. They predict a Fano-Kondo effect that
could decouple the two dots through the manipulation of the
Kondo resonance by varying the interdot coupling.

In this publication we investigate the Fano-Kondo interplay
in an Aharonov-Bohm ring, containing a noninteracting QD
and a Coulomb interacting QD. Using a scattering matrix
approach combined with the slave-boson mean-field approx-
imation (SBMF), we calculate the conductance and the Fano
parameter. The derivation of the Fano form for the conductance
allows us to analyze in-depth the Fano-Kondo phenomenon
and, especially, the origin of the transport features. In addition,
we present a qualitative comparison with the experiment
performed by Verduijn et al.9 and suggest an explanation
of their observations in terms of a Fano-Kondo interference
phenomenon in an Aharonov-Bohm geometry.

The paper is organized as follows: In Sec. II we introduce
the Anderson Hamiltonian for a noninteracting QD and a
Coulomb interacting QD connected in parallel. We diagonalize
this Hamiltonian resulting in a set of self-consistent equations,
which we solve numerically to obtain the conductance. In
Sec. III we present our calculations. These lead us to predict
a Fano footprint of an underlying Kondo channel and to show
that the magnetic flux can open a gap between two resonances
and alter the electron’s path preference for transport. We con-
clude in Sec. IV with a discussion of applications of our results.

II. MODEL & METHODOLOGY

We consider two QDs embedded in an Aharonov-Bohm
ring which is attached to two 1D conducting leads. Figure 1
shows a schematic representation of the nanostructure. A
magnetic field is used to create a magnetic flux (�) through
the ring, which gives a phase contribution (φ) to the electron’s
wave function. The Hamiltonian of the system is given by

H = εF

∑
j,σ

c
†
j,σ cj,σ − t0

∑
j,σ

(c†j,σ cj+1,σ + c.c.)

+
∑
n,σ

εnf
†
n,σ fn,σ + Udf

†
d↑fd↑f

†
d↓fd↓

−
∑
n,σ

(tn,Lc
†
−1,σ fn,σ + tn,Rc

†
1,σ fn,σ + c.c). (1)
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FIG. 1. (Color online) Tight-binding model for two QDs embed-
ded in an Aharonov-Bohm ring nanostructure. The QDs are labeled
with indexes u and d for the upper and lower QD, respectively.

We assume that each QD has one single energy level labeled
εn (with n = u for the upper QD and n = d for the QD in the
lower path). In the leads each site has a single-particle energy at
the Fermi energy εF . The hopping energy between neighboring
sites in the leads is t0. Taking into account the Aharonov-Bohm
phase picked up by the electron (φ), the hopping between
the 1D leads and the ring structure is given by tn,L = tne

±i
φ

4

and tn,R = tne
∓i

φ

4 , where tn,L and tn,R (n = u,d) describe the
hopping of an electron from the upper (u) or lower (d) QD
to the left (L) or right (R) lead. The operators cj,σ (c†j,σ ) and

fn,σ (f †
n,σ ) correspond to the annihilation (creation) operators

in the leads and in the QDs, respectively. Finally a Coulomb
interaction is present in the lower QD with strength Ud .

We calculate the conductance of this nanostructure in three
regimes, depending on εd , the energy level of the lower QD:
(i) the Kondo regime (εd < εF , Ud > εF − εd and �d < εF −
εd , where �d is the tunnel coupling of the lower QD to the
leads), (ii) the mixed-valence regime (εd < εF , Ud > εF − εd

and �d ≈ εF − εd ), and (iii) the empty orbital regime (εd >

εF ). For simplicity, we take Ud → ∞ and use the infinite-
U slave boson mean-field approximation to diagonalize the
Hamiltonian H [Eq. (1)].23,24 Within this scheme we introduce
a boson creation (annihilation) operator b

†
d (bd ) that acts on the

lower QD. Now the b
†
d |0〉 state represents the empty state in

the lower QD. We then have to create a boson when removing
an electron from the QD to leave it in the empty state, fd,σ →
fd,σ b

†
d . Since Ud → ∞ double occupancy is forbidden which

is imposed by the constraint b
†
dbd + ∑

σ f
†
d,σ fd,σ = 1. Within

this exact representation, the Hamiltonian H of the system
[Eq. (1)] becomes

HSB = εF

∑
j,σ

c
†
j,σ cj,σ − t0

∑
j,σ

(c†j,σ cj+1,σ + c.c.)

+
∑
n,σ

εnf
†
n,σ fn,σ + λd

(
b
†
dbd +

∑
σ

f
†
d,σ fd,σ − 1

)

−
∑

σ

(tu,Lc
†
−1,σ fu,σ + tu,Rc

†
1,σ fu,σ + c.c)

−
∑

σ

(td,Lc
†
−1,σ fd,σ b

†
d + td,Rc

†
1,σ fd,σ b

†
d + c.c). (2)

Here the constraint has been added by means of a Lagrange
multiplier λd . Since the Hamiltonian HSB [Eq. (2)] remains
difficult to solve, we use the mean-field approximation where
fluctuations around the average value of the boson operators
in Eq. (2) are neglected. By substituting the boson operators
with their real expectation values, bd → 〈bd〉, the slave-boson
Hamiltonian [Eq. (2)] is replaced by an effective mean-field

Hamiltonian,

HSB,MF = εF

∑
j,σ

c
†
j,σ cj,σ − t0

∑
j,σ

(c†j,σ cj+1,σ + c.c.)

+ 2(εd + λd )f †
d fd + λd (〈bd〉2 − 1)

+ 2εuf
†
u fu − 2(tu,Lc

†
−1fu + tu,Rc

†
1fu + c.c)

− 2〈bd〉(td,Lc
†
−1fd + td,Rc

†
1fd + c.c). (3)

The factor of 2 takes into account the contribution from both
spin directions. We now minimize the ground state energy of
Eq. (3) with respect to the Lagrange multiplier λd and the
boson expectation value 〈bd〉,

∂〈HSB,MF 〉
∂λd

= 2〈f †
d fd〉 + 〈bd〉2 − 1 = 0, (4a)

∂〈HSB,MF 〉
∂〈bd〉 = λd〈bd〉2 − Rd = 0, (4b)

where

Rd = 〈bd〉(td,L〈c†−1fd〉 + td,R〈c†1fd〉
+ t∗d,L〈f †

d c−1〉 + t∗d,R〈f †
d c1〉). (5)

The fermion expectation values in Eq. (4) are obtained
by diagonalizing the mean-field Hamiltonian [Eq. (3)]. We
take as ansatz the linear combination of atomic orbitals,
|	k〉 = ∑

n ak
n |n〉 + ∑

j ak
j |j 〉, where ak

j and ak
n are the

probability amplitudes to find the electron, with momentum
k and energy w = εF − 2t0 cos (k), at site j in the leads
and at quantum dot n = u,d, respectively. We assume that
the transport of electrons is described by an incoming plane
wave that is reflected and transmitted at the Aharonov-Bohm
nanostructure. Assuming an incoming electron from the left
lead (L), where the chemical potential is at εF + VL, yields
ak

jL = eik·j + rLLe−ik·j for j < 0 and ak
jL = τRLeik·j for j >

0, where 0 � k � kL = arccos( VL

2t0
). τRL and rLL correspond

to the transmission amplitude from the left to the right lead
and the reflection amplitude in the left lead, respectively.25,26

By substituting the ansatz |	k〉 into the Schrödinger
equation using the mean-field Hamiltonian [Eq. (3)], we arrive
at the following system of linear equations:

−t0rLL + tue
i

φ

4 auL + t̃de
−i

φ

4 adL = t0 (6a)

−t0τRL + tue
−i

φ

4 auL + t̃de
i

φ

4 adL = 0 (6b)

tue
−i

φ

4 rLL + tue
i

φ

4 τRL + (w − εu)e−ikauL = −tue
−i

φ

4 e−2ik

(6c)

t̃de
i

φ

4 rLL + t̃de
−i

φ

4 τRL + (w − ε̃d )e−ikadL = −t̃de
i

φ

4 e−2ik,

(6d)

where we have renormalized the coupling and the energy level
of the lower QD as t̃d = 〈bd〉td and ε̃d = εd + λd , respectively.
By solving Eq. (6) we obtain all the probability amplitudes,
ak

jL and ak
nL, for an incoming wave from the left. In the same

way we solve for an incoming wave from the right lead, where
the chemical potential is at εF + VR , by using the coefficients
ak

jR = e−ik·j + rRReik·j for j > 0 and ak
jR = τLRe−ik·j for

j < 0, where 0 � k � kR = arccos(VR

2t0
). Since the magnetic

field breaks the time reversal symmetry, coefficients and
probability amplitudes for a left and right incoming wave are
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different. With all the coefficients we can compute the fermion
expectation values in Eq. (4).25 We obtain the boson parameter
〈bd〉 and Lagrange multiplier λd from the self-consistent set of
equations [Eqs. (4)–(6)], at equilibrium and zero temperature.
From the transmission coefficient in Eq. (6) the conductance
at the Fermi energy (k = π/2) reads G = 2e2

h
|τRL(π/2)|2, with

τRL(π/2) = − εu�̃de
i

φ

2 + ε̃d�ue
−i

φ

2

[εu − i�u][ε̃d − i�̃d ] + �u�̃d cos2
(

φ

2

) . (7)

In Eq. (7) we have set the Fermi level to zero (εF = 0)

and introduced the coupling strengths �u = 2 t2
u

t0
and �̃d =

2 t̃2
d

t0
. Equation (7) reduces to the transmission calculated by

Kubala and König27 and López et al.28 for identical QDs and
symmetric coupling to the leads.

Having obtained the ingredients to calculate the conduc-
tance in the presence of Coulomb interaction in the lower
QD, we now consider the regime in which the lower arm of
the Aharonov-Bohm ring is tuned to the Kondo regime and
scattering occurs within a continuum (background process).
In the upper arm transport occurs through the discrete QD
energy level (resonant process). The interference between both
processes will give rise to a Fano line shape in the conductance.
The transport is then characterized by the Fano parameter q,
which in general is a complex number. The parameter |q|
measures the ratio of the resonant scattering to the background
scattering amplitude. When |q| � 1 the electronic transport
is dominated by the resonant process and the conductance
takes a Lorentzian shape. As the background process starts to
contribute, the Fano parameter increases. When both processes
contribute significantly |q| ≈ 1, and the line shape becomes
asymmetric. When the background process takes over as the
main mechanism for transport |q| ≈ 0 and the conductance
shows a symmetrical dip centered at the resonance.15 Below,
we show that by tuning the energy level of the interacting QD
we can set the conductance to any of the line shapes mentioned
before, and that interference tuned by the magnetic flux leads
to interesting behavior of the transmission. First we use Eq. (7)
to write the conductance, in terms of εu, in a Fano form:14

G = Go

|(εu + εo) + q�|2
(εu + εo)2 + �2

, (8)

where the amplitude Go, the resonant point εo, the peak
broadening �, and the Fano parameter q are given by:

Go = 2e2

h

1

η2 + 1
, (9a)

εo = �u

η

η2 + 1
cos2

(
φ

2

)
, (9b)

� = �u

η2 + sin2
(

φ

2

)
η2 + 1

, (9c)

q = η
[
η2 cos(φ) − sin2

(
φ

2

) − i(η2 + 1) sin(φ)
]

η2 + sin2
(

φ

2

) , (9d)

with η = ε̃d

�̃d
. Equation (8) reveals a shift by εo of the center

of the resonance away from its bare value εu = εF = 0, as a
consequence of interference.

III. CALCULATIONS & RESULTS

In this section we analyze the result for the conductance
[Eq. (8)] from the previous section by solving the system of
equations [Eqs. (4)–(6)] numerically. Unless stated otherwise
we take the wide band limit and the symmetric case: �u =
�d = t0

100 , where t0 is taken as the unit of energy.

A. Kondo channel as continuum scattering path

We begin by showing that our calculations indicate that
the Kondo channel through the lower QD is acting as the
continuum scattering path within the Fano effect. Figure 2(a)
shows the different line shapes for the three regimes mentioned
in Sec. II. When εd � �d the probability of an electron at
the Fermi level to tunnel to the lower QD is negligible. The
conductance is therefore determined by electrons transversing
the upper QD. This gives a resonance with a Lorentzian shape
centered at the Fermi level εu = 0 [red point-dashed curve in
Fig. 2(a)] for an arbitrary magnetic phase shift φ [Figs. 2(b)–
2(e)]. In this regime there is no Kondo effect, η � 1, and
Eq. (8) reduces to

G =
(

2e2

h

)
1

η2

|εu + ηe−iφ�u|2
ε2
u + �2

u

. (10)

We also find |q| � 1, hence the system behaves as if there
were no lower path in the ring and transport is dominated by
the resonant channel.

We now consider the interacting QD to be in the mixed-
valence regime εd ≈ −�d . Here, both arms contribute to the
transmission through the structure. The interference between
the resonant upper path and the mixed-valence lower path,
acting as a continuum, gives rise to a Fano shape [dashed
curve in Fig. 2(a)] with its symmetry tuned by the magnetic
phase shift φ [Figs. 2(b)–2(e)]. This symmetry is obtain by
computing the argument of the Fano parameter9 [Eq. (9d)]:

arg(q) = arctan

[
2

tan
(

φ

2

) − η2

η2+1 cot
(

φ

2

)
]
. (11)

In this regime the Fano parameter gives |q| ≈ 1, which agrees
with the interpretation of |q| [for the purple dashed curve in
Fig. 2(a) |q| = 1.2].

−

FIG. 2. (Color online) (a) Normalized conductance G for the
three different regimes: Lorentzian (resonant channel dominates,
red dot-dashed curve), mixed-valence (resonant channel and Kondo
channel contribute, green dashed curve), and Fano-Kondo (Kondo
channel dominates, black continuous curve). (b)–(e) Normalized
conductance G versus energy levels εu and εd for different magnetic
phase shifts through the ring.
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FIG. 3. (Color online) Calculations performed for �d = 10�u.
(a) Degree of symmetry of the resonance obtained from Eq. (11)
for εd = 3�d (black continuous) and εd = −3�d (purple dashed).
(b) Calculated conductance for an energy level of the interacting QD
as in the experiment (εd = −3�d ). Inset in (b) shows the reported
data and fit of the experiment (Ref. 9).

B. Symmetry change due to Fano-Kondo interplay

In a transport experiment performed by Verduijn et al.9 us-
ing a three-dimensional silicon field effect transistor (FinFET),
where a few arsenic dopants diffuse to the transistor channel,
an asymmetric Fano resonance for one of the arsenic atoms
was observed at zero-bias voltage, and speculated that the
Fano resonance results from the interference between a Kondo
transport channel and a direct transport process. The geometry
consists of two parallel paths with an impurity in each one.
Using parameters similar to the ones in this experiment,
�d = 10�u and εd = −3�d , we obtain qualitative agreement.
Figure 3(b) shows the calculated conductance for a magnetic
phase shift of 2π/5, in order to obtain a comparable degree of
symmetry with the reported resonance [inset in Fig. 3(b)].
In this calculation, a value of |q| = 1.14 was obtained,
which indicates that the measured asymmetric conductance
profile originates from the interference between the upper QD
resonant path and an underlying mixed-valence scattering path
of the lower QD. The degree of symmetry [arg(q)] versus
magnetic field was calculated in the experiment, and an abrupt
jump in symmetry at half a period was found.9 We recognize
this sudden symmetry change as a trademark of an underlying
Kondo channel of the transport process. Figure 3(a) shows
the argument of the calculated Fano parameter [Eq. (11)] for
�d = 10�u. A linear change in symmetry occurs when the
lower QD is completely outside the Kondo regime [black
continuous line in Fig. 3(a)]. As soon as the QD enters the
Kondo regime (even in the mixed-valence regime) an abrupt
symmetry change begins to form at half a period [purple dashed
line in Fig. 3(a)]. This transition becomes more abrupt as the
lower QD enters deeper into the Kondo regime (η � 1).29

In the Fano-Kondo regime the lower QD is tuned to the
Kondo state by lowering its energy level to εd � −�d [black
continuous curve in Fig. 2(a)]. The shape of the conductance
then changes from a peak to a dip line shape. As was observed
experimentally,16 this conductance behavior indicates that the
Kondo channel has taken over the role of scattering within
a continuum in a Fano effect, interfering with a discrete
scattering process mediated by the upper QD. For a magnetic
phase shift away from φ = 2πn, with n an integer, transport
is dominated by the Kondo channel regardless of the degree of
interference [Figs. 2(b)–2(e)].15,30 Within this regime the lower

QD is in the Kondo state, then λ → −εd such that η � 1. In
this limit |q| = η � 1 and

G =
(

2e2

h

) |εu|2
ε2
u + [

�u sin2
(

φ

2

)]2 . (12)

The width of the conductance suppression is found to be
modulated by sin2 (φ

2 ) as seen in Figs. 2(b)–2(e). This
suppression of conductance and its modulation has also been
found in the noninteracting counterpart of our model. These
two predictions can be reconciled if we think of the interactions
so as to fix the lower QD energy level to the Fermi level due to
the Kondo effect, yielding an effective noninteracting model
of two QD’s with one of them resonant at the Fermi level.27

Furthermore, the expression for q [Eq. (9d)] is in accordance
with the appropriate interpretation of the phenomenon [for the
black continuous curve in Fig. 2(a) |q| = 0.3].

C. Tuning the electron’s path preference

So far, we have seen that our system can be in three different
regimes depending on the relative position of the energy level
of the interacting QD. Our results show that the magnetic
flux can be used as a tool to tune the conductance within
each of the regimes with characteristic landmarks: no effect in
the resonant regime, symmetry change of Fano resonance in
the mixed-valence regime, and change of the dip broadening
in the Fano-Kondo regime. It is in this last regime where the
magnetic flux can have the extra role of tuning the gap between
two resonances and influences not only the interference at the
end of the ring, but affects the probability of the electron taking
the lower or upper path.

When φ ≈ 2nπ the conductance [Eq. (8)] cannot be written
as Eq. (12). Even though the conductance for small magnetic
shifts φ [Figs. 4(a)–4(c)] has a distinctive line shape, the dip
near εu = 0, of width � ∝ ε̃2

d + �̃2
d sin2 (φ

2 ), is present for any
value of the magnetic phase shift except when φ = 2πn,
with n an integer. This destructive interference at εu = 0
[Figs. 4(b)–4(d)], is a consequence of the presence of the
Kondo effect interfering with the resonant noninteracting
level. A conductance peak at εu = 0 represents a suppression

FIG. 4. (Color online) Calculations performed for εd = −5�d .
(a)–(d) Conductance G versus the noninteracting QD energy level εu

for different magnetic phase shifts φ. (e) Conductance G versus εu

and magnetic phase φ. Figs. (a)–(d) are different horizontal cuts of
(e). (f) Absolute value of the Fano parameter [Eq. (9d)] for the same
parameters as in (e). The black dashed line in (e) and (f) is a contour
of the maximum conductance G.
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of the Kondo effect (there is no Kondo effect to interfere
with the noninteracting resonant energy level). We find this
Kondo suppression at φ = 2πn [Fig. 4(a)], in agreement with
Dias da Silva et al.31 Then, the Kondo effect remains robust
for any magnetic phase shift different from 2πn, with n

integer. Moreover, two sharp resonances appear when φ ≈
2πn [Figs. 4(b)–4(c)]. Since these two resonances originate
from the contribution of the discrete energy level path and the
Kondo path [|q| ≈ 1 in Fig. 4(f) as indicated by the contour
black dashed line], we speculate that they appear due to a
hybridization of the noninteracting QD state with the Kondo
state, which leads to a gap opening between two hybrid states.
This gapped system could lead to interesting physics as we
control the state of the system (under or above the gap) as
well as the size of the gap, by tuning the noninteracting QD
energy level and the magnetic flux, respectively. In the same
geometry as we study here, a flux-tuned pseudogap in the
density of states has been predicted.31

We can also use the magnetic field to alter the electron’s
path preference, even if the interacting QD is deep in the
Kondo regime and this path becomes the preferred channel for
the scattering process. Figure 4(e) shows how the conductance
behavior changes near φ = 0 and the corresponding absolute
value of the Fano parameter [Fig. 4(f)] indicates that the
transport mechanism changes from dominance of the Kondo
channel (|q| ≈ 0) to a mechanism in which both scattering
paths contribute (|q| ≈ 1). The effect is a consequence of the
decrease of the Kondo temperature via the manipulation of
the Kondo-QD tunnel coupling by the magnetic flux. The
tunnel coupling decreases until it becomes equally probable to
tunnel to either QD, such that both scattering paths contribute
significantly to the conductance. The dependence of the Kondo
temperature on magnetic flux can be derived by writing the
Fano form for conductance [Eq. (8)] in terms of the interacting
energy level ε̃d , such that the expression found will describe
the Kondo resonance. Then, the derived state broadening (�)
is substituted into the expression for the Kondo temperature
using SBMF Hamiltonian,32

kBTK =

√√√√
ε̃2
d + �̃2

d

[
ζ 2

ζ 2 + 1
+ sin2

(
φ

2

)
ζ 2 + 1

]2

, (13)

with ζ = εu

�u
, kB the Boltzman constant and TK the Kondo

temperature.

IV. CONCLUSIONS

In this paper, we have studied coherent transport through
an Aharonov-Bohm ring structure with two embedded QDs.
In particular, we have analyzed the influence of a Coulomb
interacting channel to a discrete scattering transport process
in an Aharonov-Bohm configuration. Three regimes were
identified, depending on the contribution of the Kondo channel
to the conductance. These regimes yield different conductance
line shapes: Lorentzian, asymmetric Fano and symmetric dip.
The influence of a magnetic phase shift to these regimes
is to tune the Fano resonance asymmetry and to tune the
broadening of the symmetrical dip. We have shown that the
Fano resonance line shape can be explained by an underlying
scattering mechanism through a Kondo channel, and that the
shape can vary from an asymmetric resonance to a symmetric
dip as we drive the Coulomb blocked QD further into the
Kondo regime. We have also shown that we can identify the
presence of an underlying Kondo channel by an abrupt change
in symmetry of the discrete channel resonance. Furthermore,
we have found agreement with experimental data that support
our findings. We predict a gap opening between two resonances
that we speculate is a consequence of gapped hybrid states.
Finally, we predict that even if the interacting channel is
fully in the Kondo regime, we can use the magnetic flux to
diminish its contribution by lowering the characteristic Kondo
temperature (Kondo state broadening), producing an alteration
in the electron’s path preference.
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