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Nonlinear magnetotransport in dc current biased graphene
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A balance-equation scheme is developed to investigate the magnetotransport in a dc current biased graphene. We
examine the Shubnikov–de Haas oscillation under a nonzero bias current. With an increase in the current density,
the oscillatory differential resistivity exhibits phase inversion, in agreement with recent experimental observation.
In the presence of surface optical phonons, a second phase inversion may occur at higher dc bias due to the reduced
influence of electron heating and the enhanced direct effect of current on differential magnetoresistivity. We also
predict the appearance of current-induced magnetoresistance oscillation in suspended graphene at lower magnetic
fields and larger current densities. For the graphene mobility currently available (≈20 m2/V s), the oscillatory
behavior may be somewhat altered by magnetophonon resonance arising from intrinsic acoustic phonon under
finite bias current conditions.
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I. INTRODUCTION

Since its isolation for the first time in 2004,1 graphene,
a two-dimensional (2D) single-layer of carbon atoms, has
attracted an explosion of interest2–4 due to both its funda-
mental physics and its potential technological applications.
In contrast to ordinary semiconductors, the application of
a strong perpendicular magnetic field on pristine graphene
results in an energetic quantization proportional to the square
root of external magnetic field with the existence of a true
zero-energy sharing equally by electrons and holes. As a
result, magnetotransport in graphene may exhibit unusual
properties. For example, the unique quantum Hall effect in
graphene showing half-integer Hall plateaus5,6 has become
the experimental evidence of massless linear-energy fermionic
excitation.

Similarly, the resistivity minima of Shubnikov–de Hass
oscillation (SdHO) of graphene appear when the filling factor
equals 4(n + 1

2 ), with n being an integer. Recently, Tan et al.7

found that in addition to the damp of oscillation due to elevated
carrier temperature, a phase inversion of the differential
magnetoresistivity occurs under dc bias in graphene with
relatively low zero-field mobility, i.e., SdHO maxima (minima)
invert to minima (maxima). They attributed the observed
interesting phenomenon to the elevated electron temperature.
The dominant energy dissipation they referred to arises from
the diffusion of hot carriers to electrodes. However, when
graphene is on a polar substrate, inelastic carrier scattering
with surface optical phonons (SO phonons) is important
and offers an intrinsic energy-dissipation mechanism.8–10

This notable phase-inversion effect has also been observed
experimentally in the usual two-dimensional electron
gas (2DEG) with high mobility.11 So far, a microscopic
theoretical analysis including a carrier-phonon scattering
effect on dc-current-induced phase inversion of SdHO has
still been lacking even for the parabolic energy-band system.

The magnetoresistance oscillation directly induced by
a dc current, periodic in current density and in inverse
magnetic field, is another noteworthy nonlinear transport
phenomenon, which was first observed a decade ago in
conventional 2DEG.12,13 The effect is ascribed to the Zener

tunneling between Hall-field-tilted Landau levels due to short-
range impurity scattering.12,14 Later, by including inelastic
phonon scattering, a microscopic balance-equation scheme
was constructed, conveniently accounting for this current-
induced nonlinear transport phenomenon and considering the
electron heating.15 So far, however, investigations of nonlinear
magnetoresistance oscillation have been carried out only for
high-mobility 2DEGs with parabolic energy dispersion.12–17

Owing to the absence of many extrinsic impurities and SO
phonons, the suspended graphene can achieve relatively high
mobility,18,19 such that Landau levels can be well resolved
even in a quite weak magnetic field. Hence, it is expected
that this kind of nonlinear magnetoresistance oscillation could
be observed in suspended graphene. Therefore, an efficient
scheme capable of dealing with magnetotransport in graphene
under an external current bias is sorely needed.

The balance-equation approach, which is especially suit-
able for dealing with current-controlled nonlinear transport,
was established based on the separation of the center-of-mass
motion from the relative carrier motion in parabolic energy-
band systems.20–24 It turns out that this scheme can be applied
to systems with linear energy dispersion.25 In this paper, we
will generalize this scheme to graphene subject to a magnetic
field and a finite dc current. The paper is organized as follows.
In Sec. II, the force- and energy-balance equations are derived
for graphene in the presence of normal magnetic field and
external dc current. The effect of a finite dc bias on the SdHO in
graphene on a SiO2 substrate is investigated in Sec. III A. The
current-control magnetoresistance oscillation in a suspended
graphene is discussed in Sec. III B. A summary is given in
Sec. IV. The derivation of the energy-balance equation is
presented in the Appendix.

II. BALANCE-EQUATION FORMULATION

We consider a single-layer graphene in the x-y plane under
the influence of a uniform magnetic field B = Bẑ along the
z direction and a dc electric field E = (Ex,Ey) applied in the
layer plane. Carriers having enough density near the K or K ′
points in the graphene interact with each other, coupled with
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lattice vibrations of the graphene as well as the oxide interface
and scattered by randomly located disorders. The Hamiltonian
of this system consists of a carrier part He, a phonon part Hph,
and carrier-impurity and carrier-phonon interactions Hei and
Hep:

H = He + Hph + Hei + Hep. (1)

Here the carrier Hamiltonian can be written as

He =
∑
j,α

[
vF(πx

j σ x
j + cαπ

y

j σ
y

j ) + erj · E
]
, (2)

where rj = (xj ,yj ), pj = (pjx,pjy), π j ≡ pj + eA(rj ) =
(πx

j ,π
y

j ), and σ j = (σx
j ,σ

y

j ,σ z
j ) stand, respectively, for the

coordinate, momentum, canonical momentum, and Pauli
operators of the j th carrier with charge −e in the pseudospin
space formed by the A and B sublattices; cα is a valley-related
coefficient equaling +1 or −1 for a carrier in the α = K or K ′
valley; A(r) = (−By,0) is the vector potential of the magnetic
field in the Landau gauge; and vF = 1.1 × 106 m/s is the Fermi
velocity. The forms of Hei and Hep are similar to those given
in Refs. 23 and 24, without intervalley transition of carriers.

In the frame work of the balance-equation approach,20–22

we introduce the 2D center-of-mass (c.m.) momentum and
coordinate Pα = ∑

j∈α pj and Rα = N−1
α

∑
j∈α rj and the

relative-carrier momenta and coordinates p′
j = pj − Pα/Nα

and r ′
j = rj − Rα for carriers in the α valley having carrier

number Nα to write Hamiltonian He into the sum of a single-
particle c.m. partHcm = ∑

α Hα
cm and a many-particle relative-

carrier part Her = ∑
α Hα

er: He = Hcm + Her, with

Hα
cm = vF

(
Πα

x σ y
αc + cαΠα

y σ x
αc

) + NαeE · Rα, (3)

Hα
er =

∑
j∈α

[
vF

(
π ′x

j σ
y

j + cαπ
′y
j σ x

j

)]
. (4)

Here Πα ≡ Pα + NαeA(Rα) = (Πα
x ,Πα

y ) is the center-of-
mass canonical momentum of the α valley, and π ′

j ≡ p′
j +

eA(r ′
j ) = (π ′x

j ,π
′y
j ) is the canonical momentum for the j th

relative carrier. Here we have also introduced c.m. spin
operators σx

αc ≡ N−1
α

∑
j∈α σ x

j and σ
y
αc ≡ N−1

α

∑
j∈α σ

y

j for
the α valley. The commutation relations between the c.m.
Pauli operators σx

αc and σ
y
αc and the Pauli operators σx

j and
σ

y

j of the j th carrier are of the order of 1/Nα . Therefore, for a
macroscopically large Nα system, the c.m. part Hcm actually
commutes with the relative-carrier partHer in the Hamiltonian;
i.e., the c.m. motion and the relative motion of carriers are truly
separated from each other. The couplings between the two
emerge only through the carrier-impurity and carrier-phonon
interactions. Furthermore, the electric field E shows up only
in Hcm. And, in view of [r ′

iβ1
,p′

jβ2
] = iδβ1β2 (δij − 1/Nα) �

iδβ1β2δij , i.e., the relative-carrier momenta and coordinates can
be treated as canonical conjugate variables, the relative-motion
part Hα

er is just the Hamiltonian of Nα carriers in the α valley
of graphene in the magnetic field without electric field.

In terms of the c.m. coordinate Rα and the relative carrier
density operator ρα

q = ∑
j∈α ei q·r ′

j , the carrier-impurity and

carrier-phonon interactions can be written as21,22

Hei =
∑
α,q,a

U (q) ei q·(Rα−ra )ρα
q , (5)

Hep =
∑
α,q,ν

M(q,ν) ϕqνe
i q·Rαρα

q . (6)

Here U (q) and M(q,ν) are, respectively, the impurity potential
(an impurity at randomly distributed position ra) and the
carrier-phonon coupling matrix element in the plane-wave
representation, and ϕqν ≡ bqν + b

†
−qν is the phonon field

operator, with b
†
qν and bqν being the creation and annihilation

operators for a 2D phonon of wave vector q in the branch ν

having frequency �qν .
The derivation of balance equations starts by noticing that

the c.m. velocity (operator) V α is the time variation of its co-
ordinate, V α = Ṙα = −i[Rα,H] = vF(σy

αc î + cασ x
αc ĵ ), and

proceeds from the Heisenberg equations for the rate of change
of the center-of-mass canonical momentum Π̇α = −i[Πα,H]
and that of the relative-carrier energy Ḣα

er = −i[Hα
er,H]. The

statistical average of the above operator equations can be
determined to linear order in the carrier-impurity and carrier-
phonon interactions Hei and Hep using the initial density
matrix ρ̂0 = Z−1e−Hph/T e−Her/Te with lattice temperature T

and a common carrier temperature Te for carriers in both
valleys in view of the symmetry of graphene band structure,
which give rise to equal carrier number densities NK = NK ′

and equal average c.m. velocities v = vα = 〈V α〉 (α = K,K ′).
Steady-state transport balance equations are obtained by

setting
∑

α〈Π̇α〉 = 0 and
∑

α〈Ḣα
er〉 = 0. The derived force-

and energy-balance equations, which are identical for both
valleys, can be written (for a graphene system of unit area) as

0 = −Nev × B − NeE + f i + f p, (7)

0 = ( f i + f p) · v + w. (8)

The derivation of the energy-balance equation is given in the
Appendix. Here N = ∑

α Nα is the total number density of
carriers (in both valleys) for a system of unit area, f i and f p
are total frictional forces experienced by the center of mass
due to impurity and phonon scatterings,

f i = ni

∑
q

|U (q)|2 qΠ2(q,ω0), (9)

f p =
∑
q,ν

|M(q,ν)|2 qΠ2(q,�qν + ω0)

×
[
n

(
�qν

T

)
− n

(
�qν + ω0

Te

)]
, (10)

and w is the rate of carrier energy dissipation to the lattice due
to carrier-phonon interactions:

w =
∑
q,ν

|M(q,ν)|2 �qνΠ2(q,�qν + ω0)

×
[
n
(�qν

T

)
− n

(�qν + ω0

Te

)]
. (11)

In these equations ni is the impurity density, n(x) = (ex − 1)−1

is the Bose distribution function, ω0 ≡ q · v, and Π2(q,ω) =∑
α Πα

2 (q,ω), with Πα
2 (q,ω) standing for the imaginary part of
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the Fourier spectrum of the relative-carrier density correlation
function of the α valley in the magnetic field defined by

Πα(q,t − t ′) = −i θ (t − t ′)
〈[
ρα

q (t), ρα
−q(t ′)

]〉
0, (12)

where ρα
q (t) = ei Hert ρα

q e−i Hert and 〈· · · 〉0 denotes the statisti-
cal averaging over the initial density matrix ρ̂0.20,24

In the magnetic field the imaginary part of the relative-
carrier density correlation function Π2(q,ω) can be calcu-
lated in the Landau representation.26 The eigenstates of the
single-particle Hamiltonian hα = vF(πxσ x + cαπyσ y) in the
magnetic field Bẑ can be specified by a set of quantum numbers
{n,kx,σ,λ,α}, with n, kx , σ , and λ denoting the Landau index,
the x component of the wave vector, the pseudospin index, and
the band index (electron λ = 1 or hole λ = −1), respectively.
The eigenenergies of hα are

ελn = λvF

√
2|eB|n = λεn (n = 0,1,2, . . .), (13)

which is pseudospin and valley degenerate. The corresponding
eigenfunctions can be written as �αλ

nkxσ
= ψαλ

nkx
⊗ χσ , with χσ

standing for the eigenstate of Pauli matrix σz and

ψKλ
nkx

(r) = eikxx

√
1 + sn

(
−λsnφn−1,kx

(y)

φn,kx
(y)

)
, (14)

ψK ′λ
nkx

(r) = eikxx

√
1 + sn

(
φn,kx

(y)

−λsnφn−1,kx
(y)

)
. (15)

Here sn = 1 − δn,0, and φn,kx
(y) is the harmonic oscillator

eigenfunction:

φn,kx
(y) = 1√

2nn!lB
√

π
exp

[
− (y − yc)2

2l2
B

]
Hn

(
y − yc

lB

)
,

(16)

with Hn(x) being the Hermite polynomial, lB = √
1/|eB|, and

yc = kx/(eB).
The Π2(q,ω) can be expressed in the Landau representation

in the form25,27,28

Π2(q,ω) = gsgv

2πl2
B

∑
n,n′
λ,λ′

C
λ,λ′
n,n′

(
l2
Bq2

2

)
Π2(n,n′; λ,λ′; ω),

(17)

Π2(n,n′; λ,λ′; ω) = − 1

π

∫
dε[f (ε) − f (ε + ω)]

× ImGλn(ε + ω)ImGλ′n′(ε). (18)

Note that despite different forms of wave functions
the Π2(n,n′; λ,λ′; ω) function and the transform factor
C

λ,λ′
n,n′ (l2

Bq2/2) are identical for both valleys and for both
pseudospin directions, hence the valley and spin summations
just give rise to the multiplication of degenerate constants
gv = gs = 2. Here the transform factor

C
λ,λ′
n,n′ (x) = xn2−n1e−x

(1 + sn)(1 + sn′)

n1!

n2!

[
Ln2−n1

n1
(x)

+ λλ′snsn′

√
n2

n1
L

n2−n1
n1−1 (x)

]2

, (19)

with n1 = min(n,n′), n2 = max(n,n′), and Lm
n (x) being asso-

ciated Laguerre polynomials.

The Landau levels are broadened due to impurity, phonon,
and carrier-carrier scatterings. We model the imaginary part
of the retarded Green’s function ImGλn(ε) in Eq. (18), or
the density of state (DOS) of the λnth Landau level, using a
Gaussian form29

ImGλn(ε) = −
√

2π

Γλn

exp

[
−2(ε − ελn)2

Γ 2
λn

]
, (20)

with a half width30

Γλn = [2ωλn/(πτs)]
1/2 , (21)

where τs is the single-particle lifetime and ωλn = |ελn+1 −
ελn| is the level distance or the cyclotron frequency of the
λnth Landau level, with ωλn ≈ vF(|eB|/2n)1/2 = |eB|v2

F/εn

for large n irrespective of the band index, giving rise to valley-
and band-independent broadening Γλn = Γn.

In the following we restrict ourselves to the n-doped case
at relatively low temperature, i.e., the carriers are electrons, so
that we only need to consider states with band index λ = 1.
For conciseness we will no longer write out the band index λ

in the expressions and equations and denote Π2(n,n′; 1,1; ω),
C

1,1
n,n′ (x), and ImG1n(ε) simply as Π2(n,n′; ω), Cn,n′ (x), and

ImGn(ε). The Landau-level summation indices n and n′ in
all the equations are taken over 0,1,2, . . . , but the ImG0(ε)
function should be replaced by ImG

p

0 (ε) = θ (ε)ImG0(ε) due
to the electron-hole symmetry of the band structure.25

The total electron number density N is related to the
chemical potential εf of the Landau quantized graphene
system by the equation

N = − gsgv

2(πlB)2

∑
n

∫
dεf (ε)ImGn(ε), (22)

in which f (ε) = {exp[(ε − εf )/Te] + 1}−1 is the Fermi dis-
tribution function at electron temperature Te.

Force- and energy-balance equations (7) and (8), in which
the frictional forces f i, f p and the electron dissipation
rate w are functions of carrier drift velocity v and electron
temperature Te, describe the steady-state nonlinear magneto-
transport in the graphene. With given carrier drift velocity v

or the dc current density J = −Nev, the electron temperature
Te can be determined by the energy-balance equation, and
the magnetoresistance is obtained from the force-balance
equation. Note that the frictional forces f i and f p are
in the opposite direction of the drift velocity v and their
magnitudes are functions of v = |v| only: f i = −vfi(v)/v and
f p = −vfp(v)/v. In the Hall configuration, e.g., with a drift
velocity v = (v,0) in the x direction, the force-balance equa-
tion (7) yields a transverse resistivity Rxy = −Ey/(Nev) =
−B/(Ne), a longitudinal resistivity Rxx = −Ex/(Nev) =
−(fi + fp)/(N2e2v), and a longitudinal differential resistivity
rxx = −(N2e2)−1d(fi + fp)/dv.

III. NUMERICAL CALCULATIONS AND DISCUSSIONS

We will use a phenomenological parameter α� to relate the
single-particle lifetime τs to the transport scattering time in the
system,31 τtr = α�τs , and by expressing τtr with the zero-field
mobility μ,32,33 we can write the Landau-level broadening in
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the vicinity of Fermi energy εF = vF

√
πN for positive B as

Γ = (evF/π )[2Bα�/(Nμ)]1/2. (23)

The broadening parameter will be taken to be α� = 2 through-
out the calculation.

We consider two cases: a graphene monolayer on a SiO2

substrate7 and a suspended monolayer graphene. The electrons
in graphene are scattered by charged impurities distributed at
a distance d from the layer with d = 4 Å for the graphene
on SiO2 substrate and d = 0 for the suspended one, having a
scattering potential

U (q) = Ze2

2ε0κavgq
e−qd . (24)

Here κavg is the average dielectric constant of two regions
(air and SiO2 or air) surrounding the graphene. Hence κavg ≈
(1 + κ)/2 = 2.45 for nonsuspended graphene34,35 (κ = 3.9 is
the static dielectric constant of SiO2), while κavg ≈ 1 for the
suspended one.

For intrinsic acoustic phonon scatterings in the graphene
layer, there are two 2D modes, the sum of which can be
treated as the isotropic one36,37 with a scattering matrix
element

|M(q,AC)|2 = D2q

2ρmvph
(25)

and an averaged sound velocity38 vph = 2 × 104 m/s. We
choose the deformation potential constant with a moderate
value38,39 D = 19 eV and the mass density ρm = 7.6 ×
10−8 g/cm2.38

The electrons can also be scattered by the intrinsic optical
phonons in graphene. However, the energies of these intrinsic
optical modes are greater than 150 meV (≈1740 K), which
is much larger than the lattice and electron temperatures
concerned and can be neglected. For graphene on the SiO2

substrate, the surface optic phonon couples to the electrons in
graphene by an effective electric field. Due to the small van der
Waals distance between the polar substrate and the interface,
the 2D surface optical (SO) phonon plays a more prominent
role in transport in graphene than in usual heterojunctions. The
coupling matrix element can be written as8

|M(q,SO)|2 = e2Ωso

2ε0q

(
1

κ∞ + 1
− 1

κ + 1

)
e−2qd , (26)

where Ωso is the frequency of the SO phonon and κ∞ is the
optical dielectric constant of the substrate. For SiO2, κ∞ =
2.4, and there are two SO-phonon modes having frequencies35

Ω (1)
so = 59 meV and Ω (2)

so = 155 meV. The second mode is
negligible in the present study owing to its large frequency.

A. SdHO under nonzero dc current

In order to study the SdHO under a finite bias dc current in
graphene we calculate the magnetoresistivity of a graphene
monolayer on a SiO2 substrate having electron density
N = 3.16 × 1012 cm−2 and zero-magnetic-field mobility μ =
0.8 m2/V s in the magnetic fields ranging from 0 to 15 T at
lattice temperature T = 2 K on the basis of balance equations
(7) and (8). The calculated longitudinal magnetoresistivity Rxx
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R
xx
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Ω
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FIG. 1. (Color online) (a) Magnetoresistivity Rxx is shown vs
magnetic field B at various dc current densities J = 0, 5, 10,
15 A/m. The integers near the valleys indicate the filling factors.
(b) Differential magnetoresistivity rxx is plotted as a function of the
magnetic field for various current densities at lattice temperature
T = 2 K. These rxx curves of different J values are vertically offset
for clarity. The current densities are J = 0,1,2, . . . ,20 A/m in 1 A/m
steps for the lower 21 steps and are indicated in the plot for others. The
system is a monolayer graphene on a SiO2 substrate having electron
density N = 3.16 × 1012 cm−2 and zero-magnetic-field mobility μ =
0.8 m2/V s.

and differential magnetoresistivity rxx are shown in Figs. 1(a)
and 1(b) as functions of the magnetic field B for different
current densities J . The standard SdHO curves of graphene are
obtained, where the valleys of magnetoresistivity Rxx locate
at the magnetic fields corresponding to the half-integer filling
factors5,7 ν = 2πN

eB
= 4(n + 1

2 ), with n = 2,3,4, . . . , as indi-
cated in Fig. 1. The increasing current density suppresses the
oscillation, while the peak/valley positions remain essentially
unchanged. The significant feature of current-related SdHO
appears in the differential resistivity as shown in Fig. 1(b).
With the rise of current density, the oscillation of differential
resistivity rxx not only tends to decrease its amplitude but,
more prominently, exhibits phase inversion; i.e., SdHO minima
(maxima) invert to maxima (minima) at a certain value of the
bias current density, which is roughly linearly dependent on
the magnetic field of the SdHO extrema. These features are in
good agreement with the experimental observation.7

The phase inversion of SdHO is closely related to the
rise of electron temperature with increasing bias current.
Figure 2 shows the calculated electron temperature Te as
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FIG. 2. (Color online) Electron temperature Te is shown as a
function of dc bias current density at various magnetic fields (a)
and as a function of magnetic field at various bias current densities
(b) for the same system as described in Fig. 1.

a function of the bias current density J at magnetic field
strengths B = 6, 8, and 10 T [Fig. 2(a)], as well as Te

versus B at current densities J = 5,10,15,20 A/m [Fig. 2(b)].
When current density is lower than 12 A/m, the electron
temperature almost linearly depends on the dc bias. For higher
current density, the enhanced energy dissipation arising from
electron–SO-phonon interaction restrains the linear increase
of the electron temperature. In the fixed bias current case
[Fig. 2(b)], only a small oscillation of the electron temperature
around a certain value shows up for almost the whole magnetic
field range presented.

In the balance-equation scheme, the frictional forces fi

and fp are functions of the drift velocity v (i.e., the current
density J = Nev) and the electron temperature Te, and the
latter is determined as a function of v from the energy-balance
equation. Therefore the differential resistivity derived can be
expressed as

rxx = Rxx + J
∂Rxx

∂Te

∂Te

∂J
+ J

∂Rxx

∂J

= Rxx + rTe
xx + rv

xx, (27)

where rTe
xx can be thought of as the part arising from the

electron-temperature change and rv
xx as that directly from

current-density change. We plot the calculated Rxx , rTe
xx , and

rv
xx , as well as the total rxx , as functions of the magnetic field B
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FIG. 3. (Color online) (a) Differential magnetoresistivity rxx and
its constituent parts (b) Rxx , (c) rTe

xx , and (d) rv
xx , defined in (27), are

shown vs magnetic field for various bias current densities J = 4, 8,
12, 16, 20 A/m. The rxx curves in (a) are vertically offset for clarity.

for several bias current densities J = 4, 8, 12, 16, and 20 A/m
in Fig. 3. The three constituent parts Rxx , rTe

xx , and rv
xx all

exhibit oscillations having extrema at positions ν = 4(n + 1
2 ).

However, the phase of rTe
xx is opposite those of Rxx and rv

xx .
Note that in the current range 0 < J < 12 A/m, where SO
phonons play a relatively small role in dissipating energy, the
electron temperature grows almost linearly with increasing
current density and |rv

xx | is one order of magnitude smaller
than |Rxx | or |rTe

xx |; hence, Rxx and rTe
xx constitute dominant

contributions to total rxx , and the current-induced electron
temperature rising accounts for the phase inversion of rxx in
this current density regime, as pointed out by Tan et al.7

With a further increase in the current density, Rxx decreases,
while rTe

xx first increases and then decreases in view of the
slowdown of the electron temperature increase due to the
enhanced role of SO-phonon scattering. On the other hand,
at higher current density J , the current direct-contributed part,
rv
xx , also becomes non-negligible. This could give rise to a

second phase inversion of the rxx oscillation. It can be seen in
Fig. 3(a) that the peak (valley) at low current density near 11 T
(13 T) first inverts to a valley (peak) and then changes back to
a peak (valley) with the rise in dc bias.

B. Current-induced magnetoresistance oscillation

We turn to the regime of lower magnetic fields, where the
SdHO hardly shows up.

In the case of low temperature Te � εF and large filling
factor ν = πN

2eB
 1, the major contribution to the summation

in the density correlation function (17) comes from Landau
levels near the Fermi energy, i.e., terms n � n′ ∼ ν, and then
the function Cn,n′ (x) has a sharp principal maximum near
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x ∼ 4ν. Therefore, as a function of the in-plane momentum
q, the Π2(q,ω) function given in (17) sharply peaks around
q ≈ 2kF, with kF = √

πN being the Fermi wave vector. In the
case of a finite drift velocity v, the motion of the center-of-
mass provides the relative electron with an additional energy
ω0 = q · v during its transition from one state to another state,
with a momentum change of q, as shown in expressions
(9), (10), and (11) for f i, f p, and w. The sharp peaking
of the Π2(q,ω) function around q ≈ 2kF indicates that most
effective processes contributing to the magnetoresistance come
from those electron transitions which involve an additional
energy around ωj = 2kFv. Looking at electron transitions
in the Landau representation, we can see that the transition
rate is proportional to the overlap of the DOS of the related
two Landau levels around the Fermi surface, ImGn(ε +
ωj )ImGn′(ε), and the maximum overlap occurs at εn − εn′ =
ωj . Thus, the impurity-induced longitudinal magnetoresistiv-
ity may show extrema when εν+l − εν ≈ lωB = ±ωj , with
l = 0, ± 1, ± 2, . . . and ωB = eBvF/kF being the distance of
the neighboring Landau levels in the vicinity of the Fermi
surface. Therefore, the impurity-related magnetoresistivity
would exhibit a periodic oscillation when changing drift
velocity v or changing magnetic field B. This current-induced
magnetoresistance oscillation (CIMO) is characterized by a
dimensionless parameter ωj/ωB with a period �(ωj/ωB) ≈ 1:
when ωj/ωB varies by a unity value, the magnetoresistivity
experiences a change in the oscillatory period.

As an example, Fig. 4 displays the calculated magne-
toresistivity and differential magnetoresistivity versus ωj/ωB

for fixed bias current densities J = 40,50, and 60 A/m
[Fig. 4(a)] and for fixed magnetic fields B = 0.2,0.3 and 0.4 T
[Fig. 4(b)] at lattice temperature T = 2 K in a suspended
monolayer graphene having electron density N = 3.16 ×
1012 cm−2 and linear mobility μ = 20 m2/V s, assuming
Coulombic impurity scattering potential (24) with d = 0. The
longitudinal magnetoresistivity Rxx (plotted in the insets)
shows relatively weak oscillations, while the differential
magnetoresistivity rxx exhibits marked oscillations, having
an approximate period �(ωj/ωB) ≈ 1 in both cases. Notable
magnetoresistance oscillations appear in the well-resolved
Landau-level regime when 2Γ � ωB, or B � 8α�/πμ ≈
0.25 T, and the enhanced current weakens the oscillation
amplitude due to the rising electron temperature.

Note that the parameter ωj/ωB = (2π/e2vF)(J/B) char-
acterizing the CIMO depends only on the band-dispersion-
related vF for systems of the linear energy band; thus
the periodic behavior of CIMO is universal in graphene
in terms of J/B, irrespective of carrier density N . This
situation is in contrast to the conventional 2DEG of the
parabolic band,15 where the Fermi velocity vF involved in the
characterizing parameter depends on the carrier density and
so does the periodicity of the magnetoresistance oscillation
in it.

The basic features of the oscillatory Rxx and rxx are that
oscillation amplitude decays with increasing ωj/ωB but is
enhanced with increasing current density or magnetic field
strength in the discussed range. In the fixed current density case
of Fig. 4(a), where the electron temperature has only a weak
change with changing magnetic field, the amplitude decrease
of the resistance oscillation is due to the enlarged overlap of
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FIG. 4. (Color online) Differential magnetoresistivity rxx , elec-
tron temperature Te, and magnetoresistivity Rxx (inset) are shown
as functions of ωj/ωB (a) for various fixed dc current densities
J = 40, 50, 60 A/m and (b) for various fixed magnetic fields
B = 0.2,0.3,0.4 T. The system is a suspended monolayer graphene
having electron density N = 3.16 × 1012 cm−2 and zero-magnetic-
field mobility μ = 20 m2/V s at lattice temperature T = 2 K, with
Coulombic impurity potential (24) of d = 0.

neighboring Landau levels with decreasing magnetic field. In
the fixed B-field case of Fig. 4(b), the electron temperature
grows when increasing bias current density, resulting in the
suppression of the resistance oscillation. Nevertheless, the
oscillation amplitude shown in these figures exhibits somewhat
anomalous behavior, especially around the first peak of the
J = 60 A/m curve in Fig. 4(a) and the last peak of the
B = 0.4 T curve in Fig. 4(b). These rxx anomalies come from
the contribution of phonon-related differential resistivity rph.

In contrast to the case of high-mobility 2DEG,15 the
electron temperature Te in the present monolayer graphene
may reach the range of 40 K in the case of high current
density J � 60 A/m, and the magnitude of phonon-related
resistivity may not be negligible compared with the impurity
contribution, as shown in Figs. 5(a) and 5(c), where the
constituent parts of rxx in the monolayer graphene, the
resistivity rim = −(N2e2)−1dfi/dv due to impurity scattering
and the resistivity rph = −(N2e2)−1dfp/dv due to intrinsic
acoustic phonon scattering, are plotted as functions of ωj/ωB,
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FIG. 5. (Color online) Impurity-related and phonon-related dif-
ferential resistivities rim and rph are shown vs ωj/ωB for (a)
fixed current densities J = 40,50,60 A/m and (c) fixed magnetic
fields B = 0.2,0.3,0.4 T. Phonon-related differential resistivity rph is
replotted as a function of εp − εj for (b) fixed current densities and
(d) fixed magnetic fields.

respectively, for the cases of fixed current density [Fig. 5(a)]
and for the cases of fixed magnetic field strength [Fig. 5(c)].
The oscillation behavior of rim closely follows the basic feature
of CIMO, but rph, although generally smaller in magnitude,
appears quite different. In the fixed current case the marked
drop of rph around ωj/ωB ∼ 1 [Fig. 5(a)] leads to the descent
of the first peak of rxx at the J = 60 A/m curve in Fig. 4(a). In
the fixed magnetic field case, the resonant peak of rph around
ωj/ωB ∼ 4.5 for B = 0.4 T [Fig. 5(c)] gives rise to the en-
hancement and position shift of the last peak of rxx in Fig. 4(b).

This kind of oscillatory rph is referred to as the mag-
netophonon resonance induced by acoustic phonons. As in
conventional 2DEGs,40–42 acoustic-phonon-related resistivity
rph in a dc biased graphene should feature a periodical
appearance of resonant peaks with respect to the εp-εj axis,
where εj ≡ ωj/ωB and εp ≡ ωph/ωB are the ratios of the
energy ωj provided by the drifting center of mass and the
energy ωph = 2kFvph provided by the optimum phonons to
the inter-Landau-level distance ωB of the electron near the
Fermi surface. We replot the phonon-related resistivities rph

given in Figs. 5(a) and 5(c) as a function of εp − εj in
Figs. 5(b) and 5(d). They indeed show peaks near integer
positions εp − εj ≈ l = 1, 2, 3, and 4, indicating electrons
scattered resonantly across l Landau-level spacings by ab-
sorbing or emitting an optimum acoustic phonon under the
biased dc current condition. At low magnetic fields, the
magnetophonon resonance in rph cannot be seen in the range
shown because of weakened oscillation in the DOS and
higher orders of resonant peaks required (e.g., εp − εj � 6
for 0 � εj � 5 at B = 0.2 T).

Analogous to the case of 2DEG,31,43 the amplitude of
the current-controlled magnetoresistance oscillation depends
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FIG. 6. (Color online) Normalized differential resistivity vs
ωj/ωB at fixed magnetic field B = 0.3 T for the system subject
to LR or SR impurity scattering. The inset displays normalized
impurity-related differential resistivity rim. Here r0

xx and r0
im are the

total and impurity-related differential resistivities in the absence of
magnetic field. The zero-magnetic-field mobility μ = 20 m2/V s.

strongly on the correlation length of the electron-impurity scat-
tering potential, although the oscillation periods are essentially
the same in terms of εj . To see this, we plot the normalized
total and impurity-induced differential resistivities, rxx and rim,
for Coulombic impurity scattering potential (24) with d = 0
[long-range (LR)] and short-range (SR) disorders (assuming
the same zero-magnetic-field mobility μ = 20 m2/V s and
α� = 2 for both cases) in Fig. 6 as functions of ωj/ωB at fixed
magnetic field B = 0.3 T. The lattice defects in graphene are
usually modeled by SR impurities. It is seen that both rxx

and rim display much stronger oscillations in the case of SR
potential than that of LR potential, but the maxima and minima
positions are almost identical in both cases.

IV. SUMMARY

In summary, we have presented an investigation of non-
linear magnetotransport in graphene under a finite dc bias
at low temperature employing a balance-equation scheme
appropriate for systems with linear-energy dispersion. In the
relatively strong magnetic field range where SdHO controlled
by the filling factor ν = 2πN/eB shows up we find that
the oscillatory differential magnetoresistivity exhibits phase
inversion with rising bias current density, in agreement with
recent experimental findings. Further, it is demonstrated that
electron–SO-phonon scattering is important for graphene on a
polar substrate, which suppresses the rapid increase of electron
temperature and may result in a second phase inversion of
the oscillatory resistance. In the lower magnetic field and
higher bias current density regime where SdHO becomes weak
a CIMO is appreciable in suspended graphene. It appears
markedly in the differential resistivity when Landau levels
are still well resolved and is controlled by the parameter
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εj = (2π/e2vF)(J/B) with the approximate period �εj ∼ 1.
For the graphene mobility available today (≈20 m2/V s),
the oscillatory behavior may be somewhat altered by mag-
netophonon resonance induced by intrinsic acoustic phonons
under finite bias current. We hope this current-controlled
magnetoresistance oscillation can be observed experimentally
in the near future.
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APPENDIX: DERIVATION OF THE
ENERGY-BALANCE EQUATION

Here we detail the derivation of the energy-balance equation
for graphene. In the second quantization representation of the
creation (annihilation) operators c

†
αλnkxs

(cαλnkxs), the relative-
carrier Hamiltonian has the form

Her =
∑

α,λ,n,kx ,s

ελnc
†
αλnkxs

cαλnkxs . (A1)

The rate of change of the energy of the relative-carrier system
is obtained from the Heisenberg equation of motion:

Ḣer = −i[Her,H]

= −
∑
q,a

U (q,za)eiq·(R−ra ) dρq(t)

dt

−
∑
q,ν

M(q,ν)eiq·Rϕqν(t)
dρq(t)

dt
. (A2)

Here the particle density operator

ρq(t) =
∑

α,s,λ,n,kx

α′,s ′,λ′,n′,k′
x

〈�αλ
nkxs

|eiq·r |�α′λ′
n′k′

x s
′ 〉ei(ελn−ελ′n′ )t

× c
†
αλnkxs

cα′λ′n′k′
x s

′ . (A3)

After statistical averaging of the operator equation (A2), the
energy-balance equation is given by24

dU

dt
=

〈
dHer

dt

〉
= I1 + I2, (A4)

with

I1 = i

∫ t

−∞
dt ′ni

∑
q

|U (q)|2eiq·[R(t)−R(t ′)]

×
〈[

dρq(t)

dt
,ρ−q(t ′)

]〉
0

, (A5)

I2 = i

∫ t

−∞
dt ′

∑
q,ν

|M(q,ν)|2eiq·[R(t)−R(t ′)]

×
〈[

ϕqν(t)
dρq(t)

dt
,ϕ−qν(t ′)ρ−q(t ′)

]〉
0

. (A6)

The first integral I1 can be simplified as

I1 = −
∫ ∞

−∞
dt ′ni

∑
q

|U (q)|2eiq·v(t−t ′) d

dt
Π (q,t − t ′)

− i
∑

q

|U (q)|2 〈[
ρq(t),ρ−q(t)

]〉
0 . (A7)

Here the relative-carrier density correlation function Π (q,t −
t ′) = −iθ (t − t ′)〈[ρq(t),ρ−q(t ′)]〉0. The second term of the
above equation equals zero, and the first term becomes
− f i · v after integration by parts; hence we obtain I1 =
− f i · v. Similarly, the integral I2 = − f p · v − w. Therefore,
the energy-balance equation is written as

dU

dt
=

〈
dHer

dt

〉
= −( f i + f p) · v − w. (A8)
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