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In this paper we apply an optimal control technique to derive control fields that transfer an electron between
ends of a chain of donors or quantum dots. We formulate the transfer as an optimal steering problem, and then
derive the dynamics of the optimal control. A numerical algorithm is developed to effectively generate control
pulses. We apply this technique to transfer an electron between sites of a triple quantum dot and an ionized chain
of phosphorus dopants in silicon. Using the optimal pulses for the spatial shuttling of phosphorus dopants, we
then add hyperfine interactions to the Hamiltonian and show that a 500 G magnetic field will transfer the electron
spatially as well as transferring the spin components of two of the four hyperfine states of the electron-nuclear
spin pair.
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I. INTRODUCTION

The benefits of implementing a quantum computer in
silicon,1 namely, the ability to exploit the techniques of the
semiconductor industry and long electron and nuclear spin
coherence times, have been offset with challenges including
the coupling of qubits. One mechanism for exchanging quan-
tum information between qubits is electron shuttling, in which
spin or charge qubits are physically moved between local
sites.2 For dopant spin qubits in silicon,3 electron shuttling has
been proposed using voltage gates and pulses designed analo-
gously to the stimulated Raman adiabatic passage (STIRAP)
procedure;4 this procedure is referred to as coherent tunneling
by adiabatic passage (CTAP).5–7 Similar mechanisms have
been suggested7,8 for quantum dots, which have also been
proposed as qubits9,10 in silicon11–13 as well as other materials
such as GaAs.14,15 CTAP and other adiabatic procedures avoid
populating undesired sites at any point during the transfer,
thereby eliminating issues of decoherence associated with a
specific site. However, if the source of decoherence is not
site specific or is controllable by alternative means, it may be
useful to approach the state transfer problem for silicon qubits
using optimal control theory instead. Optimal controls which
minimize transfer time or (as will be explored here) minimize
pulse fluence have been shown to minimize decoherence due to
additive and multiplicative white noise, respectively.16,17 Such
noise sources can arise from thermal fluctuations of carriers.
Another noise source can arise from variations in the devices
due to the manufacturing; this introduces 1/f noise, and it
will be seen that our fluence-minimized pulses are dominated
by high-frequency components. Additionally, for qubits such
as charge qubits in which site-specific decoherence is not the
main problem, we can use optimal controls to minimize the
energy required for gate operations.

In this paper we will investigate the shuttling of electrons
between the ends of a qubit chain using optimal control
theory. Depending on whether the chain represents dopant spin
qubits5,7 or lateral quantum dots,8 the control fields will affect
the tunnel couplings between dopants or the on-site energy
of a quantum dot, respectively. The task is to design some

appropriate control fields to transport the electron to the end
of the qubit chain. During this process, quantum information
can be passed through along the array so as to realize the
desired quantum information processing in the solid-state
quantum bits.

We have formulated this problem as an optimal steering
problem in control theory in a state space of all of the density
matrices. The system dynamics is governed by the Liouville–
von Neumann equation,

iρ̇ = [H,ρ]. (1)

We use density matrices to formulate the steering problem
in order to make the extension to open systems clear. The
Hamiltonian contains several control terms that can be altered
externally to guide the system towards a desired result, as well
as a fixed drift term that is determined by the physical nature
of the system. The objective of steering is to find control fields
that transfer the system from an initial state to a final state at
a finite terminal time. This is also known as the constructive
controllability problem.18

One way to solve the constructive controllability problem
is to impose a cost function, which may steer towards a
minimum pulse energy, a shortest transfer time, or a minimum
error sum over all time steps. We can then employ standard
optimal control techniques such as the Pontryagin maximum
principle19 to derive optimality conditions for the control
fields.

In the current paper we derive the underlying dynamics
that governs the time evolution of the optimal control pulses
that minimize the pulse fluence. We choose this cost function
partially for mathematical reasons, namely, that it provides a
numerically well-behaved set of equations for this and other
numerical algorithms including the Krotov method,20–23 but
also because this choice of cost function minimizes heating
in the devices which would lead to decoherence as well as
to effects of multiplicative white noise. We take an intuitive
approach, which yields the same results as a more formal
approach using the Lie-Poisson reduction theorem.24 For a
given initial condition, the resulting dynamics completely
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determines the time evolution trajectories of the control pulse.
Hence, to solve for control fields that achieve the desired state
transfer, we just need to find an appropriate initial condition.
Finding such initial conditions thus becomes an optimization
problem on real finite-dimensional space.

To solve the Liouville–von Neumann equation (1) numeri-
cally, we divide the total time into a number of steps and then
use piecewise-constant functions to approximate time-varying
control fields. The fidelity of the achieved state,

F = TrρT ρ(T ), (2)

with ρT representing the desired state, thus depends on all
of the piecewise-constant control values, which themselves
are dependent on the initial conditions of the dynamics as
discussed above. Using the chain rule, we can obtain the
gradient of the fidelity with respect to the initial condition
in an explicit form. With this approach we can implement
gradient algorithms to solve for the initial conditions that lead
to the optimal control fields.

To exemplify this approach, we investigate here the electron
shuttling problem for three-donor systems. Our control algo-
rithm derivation can be readily extended to systems with more
donors. We demonstrate the efficacy of our control algorithm
by applying it to two physical systems taken from Refs. 5
and 8, namely, electron shuttling across a chain of quantum
dots and across a chain of phosphorus donors implanted in
silicon.

II. MATHEMATICAL BACKGROUND
AND FORMULATION

In this section we summarize the mathematical represen-
tation of the electron shuttling problem and introduce some
necessary mathematical background for an optimal control
treatment of this. We consider here physical devices in which
the spatial location of the electron may be represented by
three qubits.5,7,8 The physical systems of interest in this work
describe the shuttling of a single electron between either three
quantum dots or three donor ions. In both cases, the electron is
moving between distinct spatial locations or “sites.” Formally,
the presence or absence of the electron on a given site is
then represented by the state of a qubit indexed by that site.
For shuttling across a chain of quantum dots, the qubit state
coding for presence of an electron corresponds to the state
of the electron in a discrete energy level of the quantum dot.
For shuttling across a chain of phosphorus donors implanted
in silicon, the qubit state coding for presence of an electron
corresponds to a neutral donor atom, i.e., the electron is bound
to the phosphorus nucleus at that site. Within these simplified
physical representations of electron shuttling over three sites,
the system Hamiltonian is defined on the Lie algebra su(3),
i.e., all 3 × 3 skew-Hermitian matrices. The dynamics of
the electron is determined by the Liouville–von Neumann
equation (1), with ρ ∈ C3×3 as the density matrix of the
three-site system. Note that the density matrix is a Hermitian
matrix with unit trace. The Hamiltonian H can be written in a
general form as (setting h̄ = 1)

iH = iH0 +
8∑

l=1

ulXl =
8∑

l=1

alXl +
8∑

l=1

ulXl, (3)

where H0 is the drift term, ul are control fields, and the matrices
Xi define a basis for su(3),

X1 =
⎡
⎣0 i 0

i 0 0
0 0 0

⎤
⎦ , X2 =

⎡
⎣0 0 0

0 0 i

0 i 0

⎤
⎦ ,

X3 =
⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , X4 =

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ ,

(4)

X5 =
⎡
⎣0 0 0

0 0 1
0 −1 0

⎤
⎦ , X6 =

⎡
⎣0 0 i

0 0 0
i 0 0

⎤
⎦ ,

X7 =
⎡
⎣i 0 0

0 −i 0
0 0 0

⎤
⎦ , X8 = 1√

3

⎡
⎣i 0 0

0 i 0
0 0 −2i

⎤
⎦ .

Note that this basis is just a rearrangement of the Gell-Mann
matrices.25 The density matrix equation of motion is then
determined by the Liouville–von Neumann equation (1) with
the Hamiltonian given in (3).

The desired high-fidelity implementation of electron shut-
tling amounts to designing control functions ul that transfer
the density matrix ρ from the initial state

ρ0 =
⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦ (5)

at time t = 0 to the final state

ρT =
⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦ (6)

at time t = T .

III. OPTIMAL CONTROL FORMULATION
AND NUMERICAL ALGORITHM

To solve the state transfer problem presented in
Eqs. (1), (3), (5), and (6), we formulate an optimal control
problem by imposing a cost function, and then use Pontryagin’s
maximum principle19 to derive the optimality conditions.
Based on these conditions, we can develop an effective
numerical algorithm to solve for the values of the control
fields.

A. Optimal control formulation

In a typical control problem, we apply external control
fields to a system with the expectation that it will evolve
towards a desired state or objective. The transfer of a system
from an initial state to a desired final state is often referred
to as the controllability problem. The criteria to determine
controllability for a general nonlinear system were studied in
Refs. 26 and 27, and the extensions to quantum mechanical
systems were reported in Refs. 28 and 29.

From the controllability analysis for control systems on Lie
groups, it can be concluded that the system is controllable
provided that the drift term H0 and control terms Xl in Eq. (3)
can generate the Lie algebra su(3).18,30 However, such an
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analysis gives us only an existence result; it does not tell us
how to generate the necessary control fields. What we are more
interested in is the constructive controllability, i.e., finding the
controls that realize the state transfer.

One method of solving this problem is to impose a cost
function to the state transfer problem and then apply an optimal
control method such as the Pontryagin maximum principle.19

This yields a set of differential equations which must be
satisfied by the control fields. In the following section, we
illustrate the construction of these equations for the electron
shuttling problem.

We seek the control fields that not only realize the desired
state transfer but also minimize the cost function, where the
latter is defined as the time integral of a running cost that
depends on the control fields u (from now on, we use u to
denote the finite set of control fields ul):∫ T

0
L(u)dt. (7)

The integrand L in Eq. (7), referred to as the running cost, can
be chosen quite generally to suit different control objectives.
For example, when L = 1, minimization of the cost function
will correspond to minimum time control. Here we choose L

as a quadratic function of u, which allows minimization of the
pulse fluence:

L(u) =
∑

l

u2
l . (8)

This choice of cost function minimizes heating in the devices,
which can cause decoherence if left unchecked and has also
been shown to minimize errors due to multiplicative white
noise.16,17 With time-variable control fields ul(t), the cost
function is thus a functional of u. The optimal control fields
are defined as those fields that minimize the cost functional,
Eq. (7). The task of finding the optimal control fields is then
expressed mathematically as the task of minimizing the cost
functional with respect to all possible variations in all ul(t),
i.e., the optimal u yields

min
u(·)

∫ T

0
L(u)dt. (9)

We note that the major motivation to add a cost function
at this point is to apply optimal control theory to solve the
constructive controllability problem presented in the previous
section. For a control Hamiltonian that depends linearly on
an unbounded control function, optimal control theory may
not be applicable to minimum time control. This is avoided
when the running cost L is chosen to be a quadratic function
of the control fields u, which provides another motivation for
the current choice of L(u).

There are several possible approaches to solving the
resulting optimal control problem. One common method for
obtaining numerical solutions to optimal control for quantum
systems is the Lagrangian formalism in which a Lagrange
multiplier is defined to allow the system dynamics, Eq. (1),
to be combined with the cost function to create a new cost
functional which is then optimized by solving the associated
Euler-Lagrange critical equations.31–33 We employ here the
alternative Hamiltonian approach based on the Pontryagin
maximum principle. While for many physical systems of

interest the two approaches arrive at equivalent formulations of
the equations to be solved for the optimal solutions, these are
generally in the form of two-point boundary-value problems.
Numerical solution of such problems often requires significant
computational power, and considerable efforts have been made
to develop effective algorithms for their solution.20–23,34–36

In the present case, however, the Hamiltonian approach of
the Pontryagin maximum principle allows for a formula-
tion of the optimization as an initial-value problem on a
finite-dimensional space defined by a number of momentum
functions.24 This allows the optimal solutions to be obtained
with a relatively straightforward numerical algorithm.

In the Pontryagin approach37 we define a costate matrix �

that plays the role of a conjugate variable to ρ in a (classical)
control Hamiltonian

H = 〈�,[−iH,ρ]〉 + L(u)

= −
〈
�,

[
8∑

l=1

alXl +
8∑

l=1

ulXl,ρ

]〉
+ L(u), (10)

where 〈X,Y 〉 denotes the matrix inner product of X and Y :

〈X,Y 〉 = Tr(XY †). (11)

The equations of motion for � and ρ are then obtained from
the Hamilton equations for H:

�̇ = −∂H
∂ρ

= −[iH,�],
(12)

ρ̇ = ∂H
∂�

= −[iH,ρ].

From this it is evident that the costate matrix � plays the
formal role of a momentum variable. We distinguish this from
the momentum functions defined as24

φl = 〈�,[Xl,ρ]〉. (13)

Dimensional analysis shows that in this case the momentum
function corresponds formally to a kinetic energy function
determined by ρ and its conjugate variable �. Substituting
these functions in Eq. (10) allows the effective control
Hamiltonian to now be written in a compact form:

H = −
8∑

l=1

alφl −
8∑

l=1

ulφl + L(u). (14)

The optimality condition

dH
du

= 0 (15)

leads to the following equivalent optimal equations:

dL

dul

= φl, (16)

with l = 1, . . . ,p. This is a set of algebraic equations that can
be solved to obtain the optimal controls ul as functions of
the momentum functions φl . The complete set of optimality
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conditions is then as follows:

ρ̇ = −[iH,ρ], �̇ = −[iH,�],

ρ0 =
⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦ , ρT =

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦ , (17)

dL

dul

= φl.

At this point we have arrived at the usual formulation
of the optimality conditions as a two-point boundary-value
problem. As noted above, in the present situation the numerical
challenges associated with solving this may be avoided by
transforming the optimization problem to an initial-value
problem for the momentum functions φl . We proceed by first
obtaining the time derivative of φl :

φ̇l = 〈�̇,[Xl,ρ]〉 + 〈�,[Xl,ρ̇]〉
= 〈[−iH,�],[Xl,ρ]〉 + 〈�,[Xl,[−iH,ρ]]〉
= 〈�,[iH,[Xl,ρ]]〉 − 〈�,[Xl,[iH,ρ]]〉
= 〈�,[[iH,Xl],ρ]〉, (18)

where the last equality follows from the Jacobi identity.18

For the Hamiltonian given by Eq. (3) we thereby obtain
the following time evolution equation for the momentum
functions:

φ̇l =
˝
�,

⎡
⎣

⎡
⎣ 8∑

j=1

ajXj +
8∑

j=1

ujXj ,Xl

⎤
⎦,ρ

⎤
⎦
˛

=
8∑

i=1

⎛
⎝ 8∑

j=1

ajC
i
jl +

8∑
j=1

ujC
i
jl

⎞
⎠ φi, (19)

where we have introduced the structure constants

[Xi,Xj ] =
8∑

k=1

Ck
ijXk. (20)

Note that the structure constants are antisymmetric in all the
indices, i.e.,

Ck
ij = −Ck

ji = −Ci
kj = −C

j

ik, (21)

for all i, j , k ∈ {1, . . . ,8}. Up to antisymmetry, the nonzero
structure constants are

C3
12 = −1, C7

14 = −2, C6
15 = 1,

C6
24 = −1, C7

25 = 1, C8
25 = −

√
3, (22)

C5
34 = 1, C7

36 = 1, C8
36 =

√
3.

Equation (19) constitutes a set of first-order differential
equations that govern the dynamical evolution of the momen-
tum functions φl . When the running cost L(u) in Eq. (7) is
chosen as a quadratic function of the control fields u [as in
Eq. (8)], these functions φl are linear combinations of the
optimal control fields ul . It is then straightforward to extract
the dynamics of the optimal controls u. The control problem
has thereby been reduced to finding an appropriate initial

condition for Eq. (19), a considerably easier task than solving
the two-point boundary-value problem of Eq. (17).

We note that the functions φl describe the reduced dynamics
from the Lie-Poisson reduction theorem,24 and Eq. (19) can
also be derived directly from that theorem. See Chap. 13 of
Ref. 24 and Ref. 38 for details.

One useful property of φ is that its norm is a conserved
quantity along the optimal trajectory. This may be shown by
recalling that the structure constants Ci

jl are antisymmetric in
all the indices, from which we obtain that

d

dt
‖φ‖2 = d

dt

(
8∑

l=1

φ2
l

)
=

8∑
l=1

2φlφ̇l

= 2
8∑

l=1

8∑
i=1

φl

⎛
⎝ 8∑

j=1

ajC
i
jl +

8∑
j=1

ujC
i
jl

⎞
⎠ φi = 0.

Hence,

‖φ‖2 = const. (23)

B. Numerical algorithm

We develop a gradient algorithm to find the initial con-
ditions that optimize the fidelity of the final state. Consider
a given time interval [0,T ]. Divide it into N equal intervals
{[tk,tk+1]}N−1

k=0 of length �t = tk+1 − tk = T/N , where t0 = 0
and tN = T . Note that we must choose N large enough that
the evolution equations for the momentum functions (19) are
satisfied. Within the interval [tk,tk+1], assume the control field
ul(t) takes a constant value ul(k) at t = tk . Define the fidelity
of the actually achieved terminal state ρ(T ) as in Eq. (2). The
state transfer problem amounts to maximizing the fidelity F

by finding the optimal control pulses ul(k).
From Eq. (16), we know that the control fields ul(k) are

determined once the momentum functions φl(k) are known.
Furthermore, the φl(k) are obtained by solving Eq. (19) with
the initial condition φ(0) [the vector with components φl(0)].
Therefore, to maximize the fidelity, we just need to find an
appropriate vector φ(0). The advantage of optimizing over
φ(0) instead of over ul is that φ(0) is a vector with dimension
8, whereas ul has dimension N , which is usually a much larger
number.

The gradient of the fidelity F with respect to φl(0),
dF/dφl(0), can be derived explicitly: details are presented in
Appendix A. With this gradient in hand we can then formulate
a gradient algorithm to determine the optimal initial condition
φ∗(0). The other components of this gradient algorithm are
solution of the coupled first-order equations Eq. (19) to obtain
φ(t) and solution of Eq. (16) to obtain the physical control
fields ul(t) from the φ(t). The full algorithm is then constructed
as follows.

Algorithm 1
(1) Choose an initial guess for φ0(0).
(2) At the j th step, solve the differential equation (19) with

the initial condition φj (0) to get φl(k).
(3) Solve the algebraic equation (16) to get the optimal

controls ul(k) as functions of φl(k).
(4) Follow the procedure in Appendix A to derive ∇φj (0)F .

235324-4



OPTIMAL CONTROL FOR ELECTRON SHUTTLING PHYSICAL REVIEW B 87, 235324 (2013)

(5) Let φj+1(0) = φj (0) + ε∇φj (0)F , where ε is a small
positive number.

(6) Repeat steps (2)–(5) until a desired fidelity is
reached.

Note that Khaneja et al.39 developed the gradient ascent
pulse engineering (GRAPE) algorithm to solve a similar
problem. The difference between GRAPE and our algorithm is
that GRAPE solves for the control pulses directly, whereas our
algorithm optimizes over the initial condition of a differential
equation.

We will apply our algorithm to two physical systems,
the triple-quantum-dot system discussed in Ref. 8 and the
ionized donor chain discussed in Ref. 5. For the ionized-donor
chain we further show that the optimized control fields can
also provide a high degree of spin state transfer when the
shuttled electron is coupled to the donor nuclei by the hyperfine
interaction.

IV. TRIPLE QUANTUM DOT

We now investigate electron shuttling for the triple-
quantum-dot system discussed in Ref. 8. In this system, an
electron beginning in the left dot of a system of three lateral
quantum dots is moved to the right dot. The relative energies of
the left and right dots are controlled by external gate voltages.
The Hamiltonian is given by

H =

⎡
⎢⎣

μL(t) J1 0

J1 0 J2

0 J2 μR(t)

⎤
⎥⎦ , (24)

where the control fields are the on-site energies μL and μR ,
and J1 and J2 are the fixed coupling constants between nearest-
neighboring dots. Using the basis in Eq. (4), we can rewrite
the Hamiltonian (24) as

iH = J1X1 + J2X2 + μL

2
X7

+ μL − 2μR

2
√

3
X8 + μL + μR

3
iI3. (25)

We consider the minimum-energy cost function (see
Sec. III A):

min
1

2

∫ T

0

[
μ2

L(τ ) + μ2
R(τ )

]
dτ.

The parameters in the Hamiltonian of Eq. (3) are

a1 = J1, a2 = J2, u7 = μL

2
, u8 = μL − 2μR

2
√

3
.

Hence

μL = 2u7, μR = u7 −
√

3u8,

and the running cost is

L(u) = μ2
L

2
+ μ2

R

2
= 2u2

7 + (u7 − √
3u8)2

2
.

The optimality condition (16) becomes

φ7 = 5u7 −
√

3u8, φ8 = 3u8 −
√

3u7,

which yields

u7 =
√

3φ7 + φ8

4
√

3
, u8 =

√
3φ7 + 5φ8

12
,

and hence

μL =
√

3φ7 + φ8

2
√

3
, μR = − φ8√

3
.

The dynamics of the momentum functions φ are obtained from
Eq. (19) as

φ̇1 = J2φ3 − φ4φ7/2 −
√

3/6φ4φ8,

φ̇2 = −J1φ3 − φ5φ8/
√

3,

φ̇3 = −J2φ1 + J1φ2 + φ6φ7/2 +
√

3/2φ6φ8,

φ̇4 = φ1φ7/2 +
√

3/6φ1φ8 − J2φ6 − 2J1φ7,
(26)

φ̇5 = φ2φ8/
√

3 + J1φ6 + J2φ7 −
√

3J2φ8,

φ̇6 = −φ3φ7/2 −
√

3/2φ3φ8 + J2φ4 − J1φ5,

φ̇7 = 2J1φ4 − J2φ5, φ̇8 =
√

3J2φ5.

For the derivation of the gradient of the fidelity and an explicit
expression for this system, see Appendixes A and B.

The optimized pulses for transfer with J1 set to −0.07 meV
and J2 set to −0.14 meV are given in Fig. 1. The transfer time
was taken to be 1 ns. The algorithm converges at N = 500
slices of the time interval. The correlation between neighboring
time steps can be seen as the optimized pulses are dominated
by a small number of frequency components.

V. IONIZED-DONOR CHAIN

In this section we apply our control algorithm to the
ionized-donor chain studied in Ref. 5. The system consists
of three singly ionized phosphorus donors in silicon, and one
electron shared in the system. The electron begins on the first
phosphorus, site 1, and the pulses are designed to move this
electron to site 3. The Hamiltonian is given by

H =

⎡
⎢⎣

0 −	12(t) 0

−	12(t) � −	23(t)

0 −	23(t) 0

⎤
⎥⎦ . (27)

Here the control terms are 	12 and 	23, which are the coherent
tunneling rates between adjacent dopants. Under the basis in
Eq. (4), this Hamiltonian can be written as

iH = −	12X1 − 	23X2 − �

2
X7 + �

2
√

3
X8 + �

3
iI3. (28)

We can drop the term �
3 I3 as it commutes with all the other

terms and thus contributes only a global phase. Consider the
following minimum-energy cost function:

min
1

2

∫ T

0

[
	2

12(τ ) + 	2
23(τ )

]
dτ

with the initial and terminal states given in Eqs. (5) and (6).
Following the procedure in Sec. III, we find that the parameters
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FIG. 1. (Color online) Time dependence of site populations for electron shuttling across a triple quantum dot when acted on by time-
dependent voltages optimized to achieve minimal heating (i.e., minimal pulse energy). (a) Quantum dot populations for sites 1, 2, and 3, as a
function of time. Blue solid line, ρ11; green dashed line, ρ22; red dotted line, ρ33. J1 and J2 were set to −0.07 and −0.14 meV, respectively.
(b) Optimal control voltages. Blue solid line, μL; green dashed line, μR . The pulses were determined here for N = 1000 segments. (c),(d) The
Fourier transforms of μL and μR , respectively, at different numbers of segments. We note that the form of the pulses converges at N = 500,
after which pulses and site populations are indistinguishable from the corresponding values obtained with N = 1000.

in the Hamiltonian of Eq. (3) are

u1 = −	12, u2 = −	23, a7 = −�

2
, a8 = �

2
√

3
,

and the running cost is

L(u) = u2
1

2
+ u2

2

2
.

The optimality condition (16) yields

φ1 = u1, φ2 = u2,

and hence the optimal controls are given by

	12 = −φ1, 	23 = −φ2. (29)

For the Hamiltonian of Eq. (28), the dynamics of φ in Eq. (19)
becomes

φ̇l =
8∑

i=1

(
φ1C

i
1l + φ2C

i
2l − �

2
Ci

7l + �

2
√

3
Ci

8l

)
φi, (30)

Substituting the values of the structure constants Ck
ij in Eq. (22)

into Eq. (30) yields the complete dynamics of φ:

φ̇1 = φ2φ3 + �φ4,

φ̇2 = −φ1φ3 − �φ5, φ̇3 = 0,

φ̇4 = −�φ1 − φ2φ6 − 2φ1φ7,
(31)

φ̇5 = �φ2 + φ1φ6 + φ2φ7 −
√

3φ2φ8,

φ̇6 = φ2φ4 − φ1φ5,

φ̇7 = 2φ1φ4 − φ2φ5,

φ̇8 =
√

3φ2φ5.

The required matrices for the gradient algorithm for this
systems are given in Appendix C.

In Fig. 2, the optimized pulses are shown for � = 2.7 meV
and a transfer time of 1 ns. This choice of parameters
is consistent with the values calculated using tight-binding
theory.7 In Fig. 2(a), the populations of each site are shown
as a function of time; the population is fully transferred from
the first to the third site. The maximum magnitude of the
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FIG. 2. (Color online) Time dependence of site populations for an
electron shuttling across a chain of three singly ionized phosphorus
ions, when acted on by time-dependent voltages optimized to achieve
minimal heating (i.e., minimal pulse energy). (a) Electron populations
on donor sites 1, 2, and 3, as a function of time. Blue solid line, ρ11;
green dashed line, ρ22; red dash-dotted line, ρ33. The value of � was
set to 2.7 meV. (b) Fourier transform of the optimal control pulse 	12.
The second control pulse 	23 has the same frequency components as
	12 with a phase difference of −1.719 rad. The time-domain pulses
oscillate with a very high frequency, corresponding to the 2.7 meV
value of �, and so are not shown here. The optimal pulses are found
converge at N = 8000 segments.

pulses is on the order of magnitude of 10−4 meV. Using the
guideline for adiabatic transfer in Ref. 5, 3.75 ≈ 	maxtmax/π ,
this pulse magnitude would require a transfer time of 2.5 ns,
or conversely the transfer time of 1 ns would require a pulse
2.5 times larger.

Since one of the main qubits of interest for solid-state
quantum logic is phosphorus-doped silicon, where quantum
information may be stored in either or both the spin of
the electrons and nuclei,1–3 we have also investigated the
performance of these optimal shuttling pulses in transmitting a
hybrid electron-nuclear hyperfine spin state together with the
spatial transfer of the electron. Here we assess the robustness
of this procedure with respect to the spin states.

The hyperfine interaction was modeled as an on-site
interaction of the electron spin (σe) with the spin of the nucleus

at each site i (σNi
). To this we add the Zeeman interaction

of each spin with the magnetic field B, to obtain the spin
Hamiltonian

Hspin = Bγeσ
z
e +

∑
i

Aσe · σNi
|i〉〈i| − BγNσ z

Ni
, (32)

where A is the hyperfine constant and γe and γN are the electron
and nuclear gyromagnetic ratios. Note that we have chosen the
sign convention in which γe is positive. The eigenstates of the
spin Hamiltonian [Eq. (32)] can be used to store quantum
information. These states consist of the electron-nuclear spin-
aligned states 〈⇑↑| and 〈⇓↓|, and linear combinations of the
antialigned states 〈⇑↓| and 〈⇓↑|, where the double arrows
represent the electron spin and the single arrows represent the
nuclear spin. As the magnetic field is increased, the eigenstates
are dominated by one of the antialigned states, and at zero
magnetic field the eigenstates are an equal superposition.
Combined with the spatial Hamiltonian of Eq. (27), the entire
Hamiltonian is then given by

H = −	12(t) (|1〉〈2| + |2〉〈1|) − 	23(t) (|2〉〈3| + |3〉〈2|)
+�|2〉〈2| + Bγeσ

z
e − BγN

(
σ z

N1
+ σ z

N2
+ σ z

N3

)
+A

(
σe|1〉〈1| · σN1 + σe|2〉〈2| · σN2 + σe|3〉〈3| · σN3

)
.

(33)

For the phosphorus donor system, a hyperfine interaction
with a splitting of A = 117.5 MHz was used.40 Results are
shown in Fig. 3 for no external magnetic field [Fig. 3(a)] and
for a field of 500 G [Fig. 3(b)]. The spins of the nuclei at
sites 2 and 3 are initialized into the ↑ state, while on site
1 the electron-nuclear system is initialized into one of four
hyperfine eigenstates (each panel of Fig. 3 represents starting
in a different hyperfine eigenstate; the coefficients of each
eigenstate are shown under the figure). The distance measure
(D) shown in Fig. 3 is a measure of the fidelity of transfer of
this hyperfine state,

D = 1 − ||ρT − ρhf ||2. (34)

Here ρhf is the density matrix for one of the hyperfine pure
states (the spin-aligned states or the antialigned linear com-
binations), and ρT is the reduced density matrix of the site 3
nuclear and electron spins at the end of the spatial transfer. The
norm used in Eq. (34) is the induced 2-norm of the difference
matrix, also known as the spectral norm, which is the maximum
singular value of the matrix.41 We have also calculated the
fidelity,42,43 the trace distance,42 and the Frobenius norm of
the difference matrix.41 While all norms show a similar picture
regarding which states are transferred, the measure D has the
pictorial advantage of following the population on the third
site when full transfer is occurring, as well as remaining zero
when the fidelity is zero, unlike the Frobenius norm.

At all magnetic fields, the |⇑↑〉 state can be transferred
completely from site 1 to site 3, because with all of the nuclear
spins up the electrons remain in the hyperfine eigenstate, no
matter which spatial site it is on. Conversely, the hyperfine
state |⇓↓〉 cannot be transferred at any magnetic field value,
because transfer of this spin state requires flipping the spins of
the nuclei on sites 2 and 3, which is not allowed energetically.
The corresponding spatial fidelities of the state transfer are
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FIG. 3. (Color online) (a) Time dependence of site populations for
an electron shuttling across a chain of three singly ionized phosphorus
atoms when the spatial shuttling Hamiltonian is supplemented by
the spin Hamiltonian (32) at zero magnetic field. We show the
transfer of all four hyperfine eigenstates accessible to the electron
on site 1, under the pulses optimized solely for spatial shuttling in
Fig. 2. The solid blue and dashed red lines show the populations on
sites 1 and 3, respectively, as before. The dashed green line shows
measure D [Eq. (34)] of the hyperfine state transfer at site 3. (b) The
same as (a), but in the presence of a finite magnetic field (500 G).
The figures show that hyperfine states which align the nuclear spin
with the magnetic field can be robustly transferred, independent of
the magnetic field value, while transfer of the spin-flipped states is
energetically forbidden. See the text for detailed explanation.

given in Table I for all possible initial spin eigenstates. It
is evident that the transfer fidelity for the spatial degrees of
freedom is only slightly affected by the spin interactions.
Additional calculations have shown that for larger hyperfine
constants the spatial transfer of the electron can be reduced
significantly in the presence of the hyperfine interaction. For
the linear combinations of spin states |⇑↓〉 and |⇓↑〉, partial
spin transfers can be accomplished corresponding to the
contribution from the component which has the nuclear spin
up. This can be understood because as the magnetic field is
turned on [Fig. 3(b)] and the relative magnitude of the two

TABLE I. The spatial fidelity for transfer starting from the left
dopant in a given hyperfine eigenstate. The first and third columns
give the eigenstate at B = 0 G and B = 500 G, respectively. The
second and fourth columns give the corresponding spatial fidelity.

B = 0 G B = 500 G

0.71⇑↓ − 0.71⇓↑ 0.9691 −0.04⇑↓ + 1.00⇓↑ 0.9970
⇓↓ 0.9740 ⇓↓ 0.9873
0.71⇑↓ + 0.71⇓↑ 0.9870 −1.00⇑↓ − 0.04⇓↑ 0.9913
⇑↑ 1.00 ⇑↑ 1.00

components in the linear combination becomes asymmetric,
the transfer of the component which becomes primarily nuclear
spin up can be achieved while transferring the component
which becomes primarily nuclear spin down cannot. It should
be noted that even in the case of a 500 G magnetic field,
two hyperfine states can nevertheless be transferred spatially
with high fidelity, suggesting their potential use as a mobile
qubit.

VI. CONCLUSION

In this paper we have formulated the general problem of
solid-state electron shuttling as a state transfer problem in
optimal control theory. We derived the underlying dynamical
equations that govern the time evolution of optimal control
fields. Use of a momentum function was shown to lead to
an effective algorithm with a small number of optimizing
variables that requires numerical solution of an initial-value
problem rather than a two-point boundary problem. We
demonstrated the efficacy of our algorithm with application
to two physical examples.

First, we determined the control pulses for state transfer
between left and right quantum dots in a triple-quantum-dot
system. Since hyperfine interactions in lateral quantum dots
can be small, such spatial transfer allows the ability to transmit
quantum information and possibly use this ability to couple
qubits. Second, we applied the optimal control approach to
the system of shuttling of an electron along an ionized-
phosphorus-donor chain in silicon. We again determined
optimal control pulses for spatial transfer, finding a significant
reduction in time and energy of the optimal pulses compared
to those required by adiabatic protocols. For the shuttling
across donor chains we also expanded the Hamiltonian to
include magnetic interactions of the electron spin with the
donor nuclear spins and of both electron and nuclear spins with
external magnetic fields, and then investigated the robustness
of transfer of the hyperfine spin state states under these optimal
pulses to variations in the magnetic field strength. For a
magnetic field strength of 500 G (0.05 T), we find that two
hyperfine states of the electron and nucleus on a given donor
can be transferred across the chain to a distant donor with high
fidelity. As the external field is decreased to zero, however,
only one of four hyperfine states can be spatially transferred
with high fidelity. Therefore, in order to transfer spin quantum
information in a donor chain within a low-field environment, it
will be necessary to design control pulses which are optimized
for both spin and spatial dynamics. This will be addressed in
a future presentation.
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APPENDIX A: DERIVATION OF d F
dφl (0)

In this Appendix, we derive the gradient of the fidelity F

with respect to φ(0). This gradient of performance with respect
to initial conditions of the momentum functions is required for
step (4) of the gradient algorithm and is the key component of
the algorithm in finding the optimal control fields ul(t). By the
chain rule, we have

dF

dφl(0)
=

N−1∑
k=0

∑
m∈M

dF

dum(k)

dum(k)

dφl(0)

=
N−1∑
k=0

p∑
m=1

8∑
s=1

dF

dum(k)

dum(k)

dφs(k)

dφs(k)

dφl(0)
, (A1)

where M is an index set of all the control fields. We thus need
to derive the three differentials in each term on the right-hand
side of Eq. (A1).

(1) We first consider the second term dum(k)
dφs (k) . From Eq. (16),

we obtain

d

dφs

(
dL

dum

)
= d

dφs

φm = δms. (A2)

Because the running cost L is defined as a function of only
the control fields u as in Eq. (7), dL

dum
is also a function of u

only. Therefore, we can obtain dum(k)
dφs (k) by solving the algebraic

equation (A2). For example, when L is taken as a quadratic
function L = 1

2 (u2
1 + u2

2), it is straightforward to show that
dum

dφs
= δms .

(2) Next we consider the third term dφs (k)
dφl (0) , i.e., the derivative

of the momentum functions with respect to their initial
conditions. These derivations may be obtained from Eq. (19).
We rewrite Eq. (19) as a vector differential equation:

φ̇ = S(φ), (A3)

with φ = [φ1 · · ·φ8] and where we have used the relation
between the control functions u and the momentum functions
φ given by Eq. (16) to write the right-hand side as a function
of φ alone, i.e., S(φ). Note that the form of S(φ) will depend
on the form of the cost function L. Differentiating both sides
of Eq. (A3) with respect to φ(0), we now obtain

d

dφ(0)
φ̇ = d

dφ(0)
S(φ) = DS(φ)

dφ

dφ(0)
, (A4)

where the Jacobian matrix DS(φ) is given by

DS(φ) =

⎡
⎢⎣

∂S1
∂φ1

· · · ∂S1
∂φ8

...
...

∂S8
∂φ1

· · · ∂S8
∂φ8

⎤
⎥⎦ , (A5)

and

dφ

dφ(0)
=

⎡
⎢⎢⎣

∂φ1

∂φ1(0) · · · ∂φ1

∂φ8(0)
...

...
∂φ8

∂φ1(0) · · · ∂φ8

∂φ8(0)

⎤
⎥⎥⎦ . (A6)

From Proposition 6.1 of Chap. 1 in Ref. 44, we have

d

dφ(0)
φ̇ = d

dt

dφ

dφ(0)
, (A7)

that is, it is legitimate to change the order of the differentials
with respect to t and φ(0). Combining Eqs. (A4) and (A7),
we then arrive at the following differential equation that is
satisfied by dφ

dφ(0) :

d

dt

dφ

dφ(0)
= DS(φ)

dφ

dφ(0)
, (A8)

with initial condition

dφ

dφ(0)

∣∣∣∣
t=0

= I. (A9)

Solving this differential equation (A8), with initial condition
Eq. (A9), yields the desired derivatives dφs (k)

dφl (0) .

(3) Lastly we derive an explicit form for dF
dum(k) , the desired

performance gradient with respect to the physical control
fields. From Eq. (3), we have

iH (k) =
8∑

l=1

alXl +
8∑

l=1

ul(k)Xl, (A10)

and Uk = e−iH (k)�t , where k = 0, . . . ,N − 1. Define

ρk = Uk−1 · · · U0ρ0U
†
0 · · · U †

k−1,

�k = U
†
k · · · U †

N−1ρT UN−1 · · ·Uk.

Then ρN = ρ(T ), �N = ρT , and

F = TrρT ρ(T ) = Tr�NρN = Tr�N−1ρN−1

= · · · = Tr�1ρ1 = Tr�0ρ0. (A11)

It follows that

dF

dum(k)
= dTr�k+1ρk+1

dum(k)
= dTr�k+1UkρkU

†
k

dum(k)

= Tr�k+1

(
dUk

dum(k)
ρkU

†
k + Ukρk

dU
†
k

dum(k)

)
.

(A12)

From the following formula:45

d

dv
e−i(Ha+vHb)t

∣∣
v=0 = −i

∫ t

0
e−iHaτHbe

iHaτ dτ e−iHat ,

(A13)
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we have

dUk

dum(k)
= −

∫ �t

0
e−iH (k)τXmeiH (k)τ dτ Uk. (A14)

Substituting Eq. (A14) into (A12), we obtain

dF

dum(k)
= Tr�k+1

(
−

∫ �t

0
e−iH (k)τXmeiH (k)τ dτρk+1

+ ρk+1

∫ �t

0
e−iH (k)τXmeiH (k)τ dτ

)

= Tr[�k+1,ρk+1]
∫ �t

0
e−iH (k)τXmeiH (k)τ dτ.

Since H (k) is a Hermitian matrix, we can diagonalize it as

H (k) = T (k)�(k)T †(k), (A15)

where T (k) is a unitary matrix and �(k) = diag{γ1,γ2,γ3}.
Therefore,∫ �t

0
e−iH (k)τXmeiH (k)τ dτ

=
∫ �t

0
T (k)e−i�(k)τ T †(k)XmT (k)ei�(k)T †(k)dτ

= T (k)
∫ �t

0
[T †(k)XmT (k)] � �dτ T †(k), (A16)

where � denotes the Hadamard product, i.e., elementwise
product, of two matrices, and �ab = ei(γb−γa )τ . For γa �= γb,
we define

�ab =
∫ �t

0
�abdτ = ei(γb−γa )�t − 1

i(γb − γa)
;

and for γa = γb, �ab = �t . Therefore,∫ �t

0
e−iH (k)τXmeiH (k)τ dτ

= T (k){[T †(k)XmT (k)] � �}T †(k),

and
dF

dum(k)
= Tr([�k+1,ρk+1]T (k)

×{[T †(k)XmT (k)] � �} T †(k)). (A17)

We now have all the three factors in each term in the sum
for the desired performance gradient with respect to initial
conditions, dF

dφl (0) , Eq. (A1).

APPENDIX B: FORM OF d F
dφl (0) FOR ELECTRON

SHUTTLING ACROSS A TRIPLE QUANTUM DOT

Now for the triple-quantum-dot system in Sec. IV, the
gradient of the fidelity F with respect to φl(0) is then
derived as

dF

dφl(0)
=

N−1∑
k=0

∑
m∈{7,8}

8∑
s=1

dF

dum(k)

dum(k)

dφs(k)

dφs(k)

dφl(0)

=
N−1∑
k=0

(
1

4

dF

du7(k)

dφ7(k)

dφl(0)
+ 1

4
√

3

dF

du7(k)

dφ8(k)

dφl(0)

+ 1

4
√

3

dF

du8(k)

dφ7(k)

dφl(0)
+ 5

12

dF

du8(k)

dφ8(k)

dφl(0)

)
.

The Jacobian matrix DS(φ) [see Eq. (A5) for the definition]
is given in this case by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 J2
−φ7

2

−
√

3φ8

6

0 0 −φ4

2 −
√

3φ4

6

0 0 −J1 0 − φ8√
3

0 0 − φ5√
3

−J2 J1 0 0 0

√
3φ8

2

+φ7

2

φ6

2

√
3φ6

2

√
3φ8

6

+φ7

2

0 0 0 0 −J2

φ1
2

−2J1

√
3φ1

6

0 φ8√
3

0 0 0 J1 J2

φ2√
3

−√
3J2

0 0
−

√
3φ8
2

− φ7
2

J2 −J1 0 −φ3

2 −
√

3φ3

2

0 0 0 2J1 −J2 0 0 0

0 0 0 0
√

3J2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

APPENDIX C: FORM OF d F
dφl (0) FOR ELECTRON SHUTTLING ACROSS AN IONIZED-DONOR CHAIN

For the ionized-donor chain of Sec. V, the gradient of the fidelity F with respect to φl(0) can then be derived as

dF

dφl(0)
=

N−1∑
k=0

(
dF

du1(k)

dφ1(k)

dφl(0)
+ dF

du2(k)

dφ2(k)

dφl(0)

)
, (C1)
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and the Jacobian matrix DS(φ) is derived from Eq. (31) as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 φ3 φ2 � 0 0 0 0

−φ3 0 −φ1 0 −� 0 0 0

0 0 0 0 0 0 0 0
−�

−2φ7
−φ6 0 0 0 −φ2 −2φ1 0

φ6
� + φ7

−√
3φ8

0 0 0 φ1 φ2 −√
3φ2

−φ5 φ4 0 φ2 −φ1 0 0 0

2φ4 −φ5 0 2φ1 −φ2 0 0 0

0
√

3φ5 0 0
√

3φ2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the particular Hamiltonian given in Eq. (28), we can derive an analytic solution for the decomposition in Eq. (A15). The
corresponding eigenvalues of H (k) are

γ1 = −�

3
, γ2 = � + 3g1

6
, γ3 = � − 3g1

6
,

and the unitary matrix T (k) is ⎡
⎢⎣

−	23/g2 	12/
√

g1(g1 + �)/2 	12/
√

g1(g1 − �)/2

0 −√
(g1 + �)/(2g1)

√
(g1 − �)/(2g1)

	12/g2 	23/
√

g1(g1 + �)/2 	23/
√

g1(g1 − �)/2)

⎤
⎥⎦ ,

where g1 =
√

�2 + 4	2
23 + 4	2

12 and g2 =
√

	2
23 + 	2

12 .
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