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We present first-principles calculations of the nontrivial surface states and their spin textures in the topological
crystalline insulator SnTe. The surface state dispersion on the [001] surface exhibits four Dirac cones centered
along the intersection of the mirror plane and the surface plane. We propose a simple model of two interacting
coaxial Dirac cones to describe both the surface state dispersion and the associated spin texture. The out-of-plane
spin polarization is found to be zero due to the crystalline and time-reversal symmetries. The in-plane spin texture
shows helicity with some distortion due to the interaction of the two coaxial Dirac cones, indicating a nontrivial
mirror Chern number of −2, distinct from the value of −1 in a Z2 topological insulator such as Bi/Sb alloys or
Bi2Se3. The surface state dispersion and its spin texture would provide an experimentally accessible signature
for determining the nontrivial mirror Chern number.
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I. INTRODUCTION

Since the discovery of time-reversal symmetry pro-
tected topological quantum states in two-dimensional (2D)
Hg(Cd)Te-based quantum well structures, and subsequently
that of the Z2 three-dimensional (3D) topological insulators,1–7

an enormous effort has been dedicated toward finding other
novel materials which could support nontrivial topological
states. One particularly fruitful recent direction has been to
explore quantum states in condensed matter systems, which
are protected by the symmetries of the lattice, leading to the
so-called topological crystalline insulators (TCIs).8 A practical
realization of a TCI has been the prediction of SnTe with
an ideal rocksalt structure in which the mirror symmetry of
the lattice ensures the existence of robust metallic surface
states.9 This theoretical prediction was verified quickly via
angle-resolved photoemission experiments on Pb1−xSnxTe
(Refs. 10 and 11) and Pb1−xSnxSe.12 Recall that a Z2

topological insulator such as Bi2Se3/Te3, which is protected
by time-reversal symmetry, contains a single Dirac cone at
the center of the [111] surface plane, exhibiting a linear
dispersion and chiral spin texture predicted theoretically as
well as observed experimentally.7 In contrast to the 3D Z2

topological insulators, however, a TCI protected by mirror
symmetry contains an even number of Dirac cones on crystal
surfaces symmetric about the [110] mirror planes, and its
topologically nontrivial state is characterized by a nonzero
mirror Chern number.9,13 The interest in understanding the
bizarre surface states and their spin textures in SnTe, the
pristine phase of an archetype TCI, is thus obvious, both in its
own right and as a way of gaining insight into the properties
of related substitutional compounds.

In this work, we report first-principles calculations to
investigate the [001] surface states of SnTe in rocksalt
structure. By including the spin-orbit coupling, two gapless
Dirac cones centered along �̄X̄ [the other two lie along
�̄Ȳ],14 a mirror line of the crystal symmetry, are found in
the surface spectrum, a result of the nontrivial band topology

due to crystal symmetry. We examine the complicated surface
band characters as well as the nontrivial spin textures and
propose a simple model which consists of two interacting
coaxial Dirac cones centered at X̄. When the interaction
between the two coaxial Dirac cones is turned on, the two
surface bands avoid each other and a gap opens up except
on the mirror line, forming the gapless Dirac cones centered
along �̄X̄. While the out-of-plane spin polarization vanishes
due to C4v symmetry as well as the superposition of the
mirror and time-reversal symmetries, the in-plane spin textures
show helicity with some distortion due the interaction of
the two Dirac cones. The overall spin texture reveals the
nontrivial mirror Chern number with the value of −2, which
is distinct from that of −1 in Z2 topological insulators such as
Bi/Sb alloy and Bi2Se3.6,13,15 The surface state dispersion and
the associated spin texture would provide an experimentally
accessible signature to determine the nontrivial mirror Chern
number.

II. BAND-STRUCTURE CALCULATIONS

We first extract both the electronic band structure and the
spin texture of the SnTe surface states from first-principles
calculations, which were carried out within the framework
of the density functional theory (DFT) using the projector
augmented wave method16 as implemented in the VASP

package.17 The generalized gradient approximation (GGA)18

was used to model exchange-correlation effects. The spin
orbital coupling (SOC) is included in the self-consistent cycles.
The surface was modeled by periodically repeated slabs of
33 atomic layer thickness with 13-Å-wide vacuum regions
using a 12 × 12 × 1 Monkhorst-Pack k-point mesh over the
Brillouin zone (BZ) with 208-eV cutoff energy. The room
temperature crystal structure of SnTe in an ideal sodium
chloride structure was used to construct the slab without a
rhombohedral distortion. The experimental lattice constant of
SnTe with a value of 6.327 Å was used.19 The self-consistent
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FIG. 1. (Color online) Crystal structure and surface bands of
SnTe. (a) Rocksalt crystal structure of SnTe. A [001] surface plane
is shown. (b) fcc Brillouin zone (BZ) of SnTe and the [001] surface
BZ. The [1 −1 0] mirror plane crosses the 2D surface BZ along �̄X̄.
(c) Electronic structure of SnTe [001] surface around X̄. The surface
bands are indicated by thick green lines and bulk bands by the shaded
purple area. A Dirac point of the surface state appears along the �̄X̄
direction, while the surface band is gapped along X̄M̄.

Bloch wave functions associated with the surface states
were decomposed into cubic spherical harmonic orbitals and
projected onto various atomic sites. For each atomic site in
SnTe, we obtained the charge density and the three components
of the spin direction from the expectation values of the x, y, and
z Pauli matrices.

In order to clarify the relevant structural aspects, SnTe in an
ideal sodium chloride fcc crystal structure is shown in Fig. 1(a).
Figure 1(b) shows the fcc bulk BZ as well as the [001] surface
BZ. The high-symmetry points �(0,0,0), L(0.5,0.5,0.5), and
X(1,0,0) in the bulk BZ are projected on the �̄(0,0), X̄(0.5,0),
and M̄(0.5,0.5) in the surface BZ, respectively. Coordinates
are given in units of 2π/ab for points in the bulk BZ and
2π/a for those in the surface BZ where ab (a) is the bulk
(surface) lattice constant. The relation ab = √

2a generally
holds for the [001] surface of an fcc crystal. In order to make
a distinction between the two equivalent points (0.5,0) and
(0,0.5) in the surface BZ, Ȳ is defined as (0,0.5). While �,
L, and X are time-reversal invariant points in the bulk BZ,
�̄, X̄, Ȳ, and M̄ are the only four time-reversal invariant
points in the surface BZ. The surface Dirac points, if any,
which lie on these four points are protected by time-reversal
symmetry. The [1 −1 0] mirror plane is perpendicular to the
[001] surface plane and projected onto the surface BZ along the
�̄X̄ direction. The surface Dirac points, if any, which lie on the
mirror line along the �̄X̄ are protected by mirror symmetry.
The projected bulk band structure along the high-symmetry
lines �̄-X̄-M̄ is shown in Fig. 1(c) by the purple area. The
surface bands are highlighted by thick green lines, isolated
from other bulk bands. There is a gapless Dirac cone with
the Dirac point sitting along �̄-X̄ on the two sides of the X̄
point at the Fermi level, while the surface states along X̄-M̄ are
gapped.

The complicated surface states of SnTe can be understood
by a simpler picture, which consists of two Dirac cones. Figure
2(a) shows two coaxial Dirac cones centered at the X̄ point.
The X̄ and Ȳ points, i.e., (0.5, 0) and (0, 0.5), are equivalent and
we concentrate on the one at (0.5,0) hereafter. These two Dirac
cones carry different band characters and can be distinguished
through an analysis of the wave functions of the Sn and Te
atoms on the surface layers of the [001] slab. The nature of the
differences in potentials of the Sn and Te atoms separates the
two Dirac cones in energy vertically, as shown in Fig. 2(a). If
there are no interactions between the two Dirac cone states, the
two Dirac cones will intersect each other in the 2D surface BZ
in an ellipse, which only intersects the mirror line along �̄-X̄
(blue line) with two points on the two sides of the X̄ point. In
Fig. 2(b), when the interaction between the two Dirac cones is
turned on, a gap opens up along the elliptical overlap region
of the two Dirac cones, except at the two points protected by
the mirror symmetry.

In order to trace the band character of the SnTe surface
states, we decompose their charge distribution into Sn and
Te partial contributions, presented in Figs. 2(c)–2(f). For the
surface valence states [Fig. 2(c)], we find that the Sn fraction
is dominant within an elliptical region between the two Dirac
points and centered at the X̄ point, while in Fig. 2(d) the Te
fraction is larger outside this region. But for the conduction
surface states [Figs. 2(e) and 2(f)], this trend between the
partial contributions from Se and Te atoms is reversed. To
enhance visual clarity, we patch the charge fraction map
onto the energy dispersion in Fig. 2(g). These results of
first-principles calculations qualitatively agree with the picture
of two interacting Dirac cones shown in Fig. 2(b) and allow
us to attribute the origin of the two coaxial Dirac cones to
distinct atomic orbitals. One of the cones with an opening to
the high-energy side is more Sn-like with a pz orbital, while
the other cone with an opening to the low-energy side is more
Te-like with a px orbital. The Sn-like cone has the X̄-point
Dirac point lower in energy than that of the Te-like cone.

In Fig. 3 we plot surface band energies using a color scale
and the associated constant energy contours, together with
the in-plane spin texture. The spin direction of each state
was obtained here by calculating the expectation values of
the Pauli matrices from the first six atomic layers from the top
surface of the SnTe slab. For the valence surface states shown in
Fig. 3(b), the highest energy state is located at the Dirac points
lying along the �̄X̄ mirror line. The constant energy contours
close to the Dirac points are seen not to be of a perfect circular
shape, which implies an anisotropic Fermi velocity around the
Dirac points. Between the two Dirac points, an energy valley
is centered at the X̄ point.

The energy contours exhibit a Lifshitz transition.9 As we go
to energies below the Fermi energy, the constant energy surface
changes its topology. The two disconnected hole pockets next
to the X̄ point at high energy become a large hole and a small
electron pocket, both centered at the X̄ point at low energy. In
the two coaxial Dirac cones, the large hole pocket is associated
with the Te-like lower Dirac cone while the small electron
pocket is associated with the Sn-like upper Dirac cone. A
similar change in the Fermi surface topology occurs in the
conduction surface bands [Fig. 3(a)]. At high energies above
the interaction region, the large electron and small hole pocket
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FIG. 2. (Color online) Two interacting coaxial Dirac cones. Schematic diagram for a noninteracting and interacting coaxial Dirac cone
centered at the X̄ point is shown in (a) and (b), respectively. As the interaction between the two Dirac cones is turned on, gaps open up except
at the two new Dirac points on the two sides of the X̄ point. The new gapless Dirac cones are protected by the presence of the mirror plane
which intersects the surface BZ along �̄X̄ (bold blue line). Maps of the fraction of the partial charges on Sn and Te atoms for the valence
surface bands are shown in (c) and (d), respectively, while those for the conduction surface bands are shown in (e) and (f). Dashed lines are the
constant energy contours. (g) Surface band dispersion with colors indicating the fraction of partial charges on the Sn and Te atoms.

centered at the X̄ point are associated with the Sn-like upper
Dirac cone and the Te-like lower Dirac cone, respectively.

It is interesting to see how the spin textures within our
picture of two coaxial Dirac cones play out based on the
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FIG. 3. (Color online) Nontrivial spin texture of SnTe surface
states. Spin textures of the conduction and valence surface bands are
shown in (a) and (b), respectively. Energy is represented by the color
scale, and constant energy contours are shown. Green line indicates
the �̄X̄ direction and green dots denote the Dirac points. Schematic
band structures for the conduction and valence surface bands along
the �̄X̄ direction are shown in (c) and (d), respectively. Solid lines
are Te-like Dirac cones, and the dashed lines are Sn-like. Red (blue)
arrows indicate the spin along positive (negative) y direction.

spin textures derived from our first-principles computations.
Note that for the conduction bands shown in Fig. 3(a), the
spin texture shows counterclockwise rotation around the X̄
point and clockwise rotation far away from the X̄ point. As
shown in the schematic diagram of Fig. 3(c), states near the
X̄ point are associated with the Te-like lower Dirac cone,
while those far away from the X̄ point belong to the Sn-like
upper Dirac cone. The two coaxial cones therefore should
mimic similar chirality. They should both have clockwise
spin rotation in the upper cone and counterclockwise in the
lower cone. Along the �̄X̄ direction, these two opposite spin
states meet at the Dirac points. Along the X̄M̄ direction, the
spin polarization diminishes and switches direction around
the Lifshitz transition. The spin texture of the valence surface
states can be understood along similar lines. A clockwise
rotation in the inner region around X̄ is associated with the
Sn-like upper Dirac cone, while a counterclockwise rotation
in the outer region far away from the X̄ point is associated with
the Te-like lower Dirac cone. We note that the spin chirality of
the surface Dirac cone in a typical strong topological insulator
like Bi2Se3 (Ref. 7) is the same as that of the Sn-like and
Te-like Dirac cones we have found here on the surface of SnTe,
and bears a nontrivial mirror Chern number further discussed
below.

III. SIMPLIFIED k · p MODEL

In order to make our proposed two-coaxial-cone picture
more concrete, we now discuss a 2D k · p model, which
not only captures correctly the evolution in band dispersion
under a Lifshitz transition, but also describes the spin
texture reasonably.20,21 In this connection, it is natural to
consider a minimal four-band model with Hamiltonian
H (kx,ky) around the X̄ point on the [001] surface that obeys
the following three symmetries: mirror symmetry about
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the xz plane (Mxz), mirror symmetry about the yz plane
(Myz), and time-reversal symmetry (� = T K , where K

denotes a complex conjugate). We then have under these
symmetry operations, MxzH (kx,ky)M−1

xz = H (kx, − ky),
MyzH (kx,ky)M−1

yz = H (−kx,ky), and T H (kx,ky)T −1 =
H ∗(−kx, − ky).

As shown in Fig. 2(a), two distinct Dirac points occur
at X̄, associated with energies E+ > E0 and E− < E0. [E0

denotes the energy level at which the two cones intersect.]
To account for the doublet state at each Dirac point, we
choose the basis set to be the eigenvectors of Myz with
eigenvalues ±i: {|i; Sn〉, |−i; Sn〉, |−i; Te〉, |i; Te〉}, where the
main atomic portion for each cone is indicated. In particular,
when combined with the dominant orbitals for Sn (pz) and Te
(px) atoms mentioned earlier, this basis set also captures spin
information, resulting in {|pz, →; Sn〉, |pz, ←; Sn〉, |px, →;
Te〉, |px, ←; Te〉}. Note that the quantization axis for spin
is now along x, with Myz|pz, → (←)〉 = ±i|pz, → (←)〉
and Myz|px, → (←)〉 = ∓i|px, → (←)〉. Defining 4 × 4
matrices, �αβ = sα ⊗ σβ , with Pauli matrices s and σ acting
on spin and orbital spaces, respectively, the symmetry operator
Myz then takes the form i�33, and the other two symmetry
operators can be written as Mxz = −i�20 and T = −i�20.
After examining the 16 � matrices under all three symmetry
operations, up to linear coupling in kx , ky , we obtain the

following symmetry-allowed Hamiltonian:

H (	k) = m�03 + m′�22

+ kx(v1x�20 + v2x�02 + v3x�23)

+ ky(v1y�30 + v2y�11 + v3y�33). (1)

In Fig. 2(b), we plot the energy dispersions based on this
effective Hamiltonian, which is clearly seen to capture the
key features of first-principles calculations [see Fig. 2(g)].
The presence of two new Dirac points is due to the double
degeneracy given by different Mxz eigenvalues and is thus
protected by the mirror symmetry of the system about the
xz plane, in sharp contrast to the Dirac points at X̄, which
are mainly protected by the time-reversal symmetry. As to
the spin texture, note that 〈s3〉 and 〈s2〉 now represent the
in-plane spin x and y components, respectively. Furthermore,
one can prove that for any eigenstate with momentum k,
〈k|s1|k〉 = 0 (out-of-plane component), as required by the
combined TRS and the two mirror symmetries: 〈k|s1|k〉 =
〈k|MxzMyz�s1�

−1M−1
yz M−1

xz |k〉 = −〈k|s1|k〉. It turns out that
the resulting spin texture is qualitatively similar to that shown
in Fig. 3. Finally, we note that if one applies a unitary
transformation, U = ei π

4 s2 ⊗ σ0, to Eq. (1), the transformed
H (	k) becomes

H̃ (	k) =

⎛
⎜⎜⎜⎝

m −ivx+kx − vy+ky −iv2xkx + v2yky −m′

ivx+kx − vy+ky m m′ −iv2xkx − v2yky

iv2xkx + v2yky m′ −m −ivx−kx − vy−ky

−m′ iv2xkx − v2yky ivx−kx − vy−ky −m

⎞
⎟⎟⎟⎠ , (2)

where vx± = v1x ± v3x and vy± = v1y ± v3y . This is in fact a
more familiar Hamiltonian, representing two interacting Dirac
cones in the Rashba form, k × s, with an identical chirality.22,23

In Table I we list the parameter sets used in Eq. (2), obtained
by fitting experimental angle-resolved photoemission spec-
troscopy (ARPES) band dispersions in topologically nontrivial
(Pb,Sn)Te,10 SnTe,11,24 and (Pb,Sn)Se.12,25,26

TABLE I. Parameter sets for the 2D k · p model Hamiltonian of
Eq. (2) obtained by fitting the experimental ARPES band dispersions
in (Pb,Sn)Te,10 SnTe,11,24 and (Pb,Sn)Se.12,25,26 {m, m′}, are given in
units of electronvolts, and {vx±, v2x , vy±, v2y} in units of eV·Å.

Pb1−xSnxTe Pb1−xSnxSe

x = 0.4 SnTe x = 0.23 x = 0.3

m –0.30 –0.30 –0.052 –0.056
m′ –0.15 –0.15 –0.042 –0.026
vx+ –2.3 –2.3 –2.3 –2.58
vx− –2.3 –2.3 –3.5 –2.58
v2x 0.0 0.0 –0.6 –0.32
vy± –5 –6.5 –3.85 –3.28
v2y 0 0 0 0

IV. DISCUSSION AND CONCLUSION

In general, topological crystalline insulators should harbor
distinct classes with positive and negative mirror Chern
numbers. The schematic diagrams of possible spin textures
around the lower Dirac cones are given in Fig. 4. In Fig. 4(a),
a pair of Dirac cones with counterclockwise spin texture on
the horizontal mirror line gives the mirror Chern number
nm = −2. The opposite case with a clockwise spin texture in
Fig. 4(b) would give the mirror Chern number nm = 2. By
comparing the spin texture obtained from our first-principles
calculations in Fig. 3, we can conclude that the mirror Chern
number of SnTe is −2. For the Bi2Se3 system shown in
Fig. 4(c), on a mirror line, only a single Dirac cone appears
at the center of the hexagonal Brillouin zone with the mirror
Chern number nm = −1. In Fig. 4(d), if the spin texture runs
clockwise, the system has the mirror Chern number nm = 1.
Since there are two coaxial Dirac cones in SnTe, where the
Sn-like and Te-like Dirac cones exhibit the same spin chirality
as Bi2Se3, it follows that the mirror Chern number of SnTe is
twice that of Bi2Se3.

In conclusion, we have delineated the charge density
distributions and spin textures of the [001] surface states on
the topological crystalline insulator SnTe via first-principles
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FIG. 4. (Color online) Schematic diagrams for spin textures of
the lower Dirac cones in distinct topological phases associated with
various values of the mirror Chern number nm: (a) nm = −2; (b)
nm = 2; (c) nm = −1; and (d) nm = 1. Blue lines indicate the axis
of mirror symmetry.

calculations. We show that the SnTe surface states can be
pictured as two interacting coaxial Dirac cones which intersect
each other to form the Dirac points along the mirror symmetry
line �̄X̄. From an examination of the charge distribution,
we attribute the origin of the two coaxial Dirac cones to
the two distinct atomic species, Sn and Te, in the material.
The crystal and time-reversal symmetries guarantee that the
out-of-plane spin polarization is zero. The spin texture is
dictated by the nontrivial Chern number nm = −2 in SnTe,
which is different from the known Z2 topological insulators
such as Bi2Se3.
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