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Silicon spin chains at finite temperature: Dynamics of Si(553)-Au
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When gold is deposited on Si(553), the surface self-assembles to form a periodic array of steps with nearly
perfect structural order. In scanning tunneling microscopy these steps resemble quasi-one-dimensional atomic
chains. At temperatures below ∼50 K the chains develop a tripled periodicity. We recently predicted, on the
basis of density-functional theory calculations at T = 0, that this tripled periodicity arises from the complete
polarization of the electron spin on every third silicon atom along the step; in the ground state these linear
chains of silicon spins are antiferromagnetically ordered. Here we explore, using ab initio molecular dynamics
and kinetic Monte Carlo simulations, the behavior of silicon spin chains on Si(553)-Au at finite temperature.
Thermodynamic phase transitions at T > 0 in one-dimensional systems are prohibited by the Mermin-Wagner
theorem. Nevertheless we find that a surprisingly sharp onset occurs upon cooling—at about 30 K for perfect
surfaces and at higher temperature for surfaces with defects—to a well-ordered phase with tripled periodicity, in
good agreement with experiment.
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I. INTRODUCTION

Linear atomic chains of metal atoms on semiconductor
surfaces offer, in principle, the physical realization of phe-
nomena predicted theoretically for one-dimensional model
systems. In practice, however, unanticipated interactions can
often complicate the picture and lead to behavior not easily
explained by simple models. In this paper we demonstrate
theoretically how the complex interactions among polarized
electron spins in silicon surface states determine the observed
behavior of a well-studied atomic chain system, Si(553)-Au,
over a wide range of temperatures. The methods developed
here and the resulting predictions—which are qualitatively and
quantitatively consistent with experimental observations—are
also likely to apply more broadly to other vicinal Si/Au chain
systems, such as Si(557)-Au.

The Si(553)-Au surface was first investigated in Ref. 1,
an experimental study which established that the electronic
band dispersion and Fermi surface were indeed those of a
nearly one-dimensional metal. Since then, numerous lines
of research have emerged. Efforts to determine the basic
atomic structure of the surface have been based on data from
diffraction experiments2–4 and on the results of theoretical
total-energy calculations.5–8 These were greatly aided by the
first definitive determination of the coverage of Au atoms on
Si(553)-Au.9 Other investigations have explored the properties
of finite-length chains10,11 as well as various native defects12

and foreign adsorbates13–19 on the nominally clean Si(553)-Au
surface.

One particularly interesting line of research has focused
on the collective behavior in Si(553)-Au that emerges at low
temperature. Ideal one-dimensional metals with partially filled
bands exhibit a broken symmetry at low temperature, namely
a charge-density wave arising from the Peierls instability.
Indeed, broken symmetries in Si(553)-Au were observed using
scanning tunneling microscopy (STM) in Refs. 20 and 21.
Images acquired at room temperature showed alternating

bright and dim rows with unit periodicity a0 along the rows.
Below ∼50 K these rows separately developed higher-order
periodicity: a tripled period (3a0) along the bright rows and
a doubled period (2a0) along the dim rows. Subsequent
review articles have discussed possible explanations for these
observations.22,23

Notwithstanding the fact that Peierls instabilities lead to
higher-order periodicity, a completely different theoretical
explanation for the coexisting triple and double periodicities
in Si(553)-Au was proposed in Ref. 24. The key idea, which
was based on the results of density-functional theory (DFT)
calculations, was that the ground state of Si(553)-Au is spin
polarized. In the DFT ground state, the silicon atoms that
comprise the steps on this vicinal surface have dangling
bonds, every third of which is occupied by a single fully
polarized electron while the other two are doubly occupied.
The bright rows seen in empty-state STM images arise from
these step-edge silicon atoms. At low temperature the 3a0

peaks that appear in this row are from the spin-polarized
atoms, which have precisely this periodicity. The DFT ground
state also reveals a period doubling within the row of Au
atoms. Both of these higher-order periodicities disappear if
spin polarization is suppressed in the calculation, providing
compelling evidence that spin polarization is the primary
mechanism underlying the observed symmetry breaking in
Si(553)-Au.

Experiments were subsequently carried out to look for
a spectroscopic signature of this predicted spin-polarized
ground state. The DFT calculations showed that an unoccupied
state should exist 0.5 eV above the Fermi level and be
localized at the polarized silicon atoms.24 The existence and
spectral and spatial location of this state was indeed confirmed
by two-photon photoemission25 and by scanning tunneling
spectroscopy.26

The predictions of Ref. 24 only addressed the zero-
temperature ground state of Si(553)-Au. Left unanswered
in that work was the question of how the broken-symmetry
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ground state evolves to have normal a0 periodicity above
∼50 K. This article addresses that question from a theoretical
and computational perspective. Although it may seem obvious
that thermal fluctuations are important, the nature of these
fluctuations turns out to be unexpectedly subtle. Nevertheless,
we derive here a number of detailed qualitative as well as
quantitative predictions that can easily be tested experimen-
tally. The results of these tests will furnish additional evidence
for evaluating the validity of the basic mechanism proposed in
Ref. 24.

II. GROUND STATE CONFIGURATION

The physical and magnetic structure of Si(553)-Au in its
ground state were first proposed and discussed in Ref. 24
and for reference are reproduced in Fig. 1. This is a stepped
surface consisting of (111) terraces and bilayer steps, and it
is stabilized by Au atoms that substitute for Si atoms in the
surface layer of the terrace. The steps themselves consist of
Si atoms organized into a thin graphitic strip of honeycomb
hexagons (the green atoms in Fig. 1).

Si(553)

FIG. 1. (Color online) (a,b) Perspective and top views of Si(553)-
Au in its electronic ground state. Yellow atoms are Au, all others are
Si. The Au atoms are embedded in flat terraces, which are separated
by steps consisting of Si atoms arranged as a honeycomb chain
(green). Every third Si atom (red, blue) at the step has a spin magnetic
moment of one Bohr magneton (S = 1/2, arrows) from the complete
polarization of the electron occupying the dangling-bond orbital. The
sign of the polarization (red vs blue) alternates along the step. The
six atoms in the outlined box are the focus of the ab initio molecular
dynamics discussed in Sec. III.

The surface electronic structure of Si(553)-Au has two
main contributions. The first consists of two intense quasi-1D
parabolic electron bands centered at the boundary of the sur-
face Brillouin zone. These “Au bands” arise from the bonding
and antibonding combinations of Au 6s and subsurface Si
orbitals (purple atoms). The bonding Au band is approximately
half filled and the antibonding band approximately one-fourth
filled.

The second contribution arises from the very edge of the
Si honeycomb chain, which consists of threefold-coordinated
Si atoms. The unpassivated sp3 orbitals of these atoms can
in principle be occupied by zero, one, or two electrons. The
Si atoms themselves supply, on average, one electron per
orbital. The step edge does not necessarily maintain this
average occupancy, because electronic charge can also be
transferred to or from the Au bands. Indeed, DFT calculations
predict that the lowest energy configuration has one electron
in every third orbital (red and blue atoms in Fig. 1) and
double occupancy everywhere else (green atoms). The singly
occupied orbitals are completely spin polarized and hence
have local spin moments of 1 bohr magneton each. Physically,
these atoms relax slightly downward, by 0.3 Å, compared to
their nonpolarized neighbors. The sign of the spins alternates
along the step edge, with antiferromagnetic order favored by
15 meV per spin relative to ferromagnetic order. Therefore the
magnetic periodicity is 6a0, where a0 is the Si surface lattice
constant. This is also the smallest period that allows for the
coexistence of 3a0 spacing of the spins and 2a0 spacing (period
doubling) within the Au chain. This coexistence was first
observed in STM experiments20,21 and emerges naturally in
DFT calculations—but only when the spin degree of freedom
is unconstrained.24

III. FINITE TEMPERATURE DYNAMICS

The remainder of this article explores excitations of
Si(553)-Au from its ground state due to finite temperature.
Two main theoretical tools were used: ab initio molecular
dynamics (MD) and kinetic Monte Carlo (kMC) simulations.
The first was used to identify the most important low-energy
activated processes and to determine their activation barriers.
Because of the complexity of the system only small time
scales (tens of ps) and a small (1 × 6) simulation cell could
be addressed using ab initio MD. To reach much longer time
scales (tens of ns) and larger system sizes (up to 128 spins),
we constructed a one-dimensional kMC model based on the
processes and barriers determined from ab initio MD. In
particular, the kMC model allowed us to investigate finite-
temperature behavior in the presence of pinning defects—
providing useful insight into temperature-dependent results
from scanning probe experiments, where defects often play a
critical role.

Two simplifying assumptions were used throughout this
work. (i) Electronic excitations were not considered, and
consequently the system stays on the Born-Oppenheimer
surface. This assumption is reasonable in view of the mod-
est temperatures—room temperature and lower—considered
here. (ii) Spin flips were not allowed. Although, as we will
see below, the spins can diffuse among the Si step-edge
atoms, their signs and ordering remained that of the original
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antiferromagnetic ordering. Although a different initial spin
ordering might affect some details of the simulation, the overall
qualitative findings would be very similar.

A. Ab initio molecular dynamics

The MD simulations were performed using the same basic
geometry and computational parameters described in Ref. 24.
The Si(553)-Au surface was represented by six layers of
Si plus the reconstructed top surface layer and a vacuum
region of 10 Å. All atoms were free to move during the
simulation except the bottom Si layer and its passivating
hydrogen layer. Total energies and forces were calculated
within the generalized-gradient approximation of Perdew,
Burke, and Ernzerhof to DFT using projector-augmented wave
potentials, as implemented in VASP.27–30 The plane-wave cutoff
was 200 eV and only the � point was used. The dynamics
simulations were performed in the canonical ensemble using
a Nosé thermostat and a time step of 3 fs. Five temperatures,
equally spaced in 1/T , were used (57, 67, 80, 100, and 133 K).
For each temperature a thermalization run of 10 ps was first
performed, followed by a dynamics run of 20 ps.

Figure 2 shows the resulting atomic trajectories during the
entire run of 104 MD time steps for the lowest temperature
studied, 57 K. The six curves are for the six Si step-edge
atoms in the outlined box of Fig. 1(b). The upper and lower
panels show the relative heights of the atoms and their local
spin moments, respectively. After thermalization was achieved
the system settled into its ground state configuration with two
spin-polarized atoms (red and blue) sitting ∼0.3 Å lower than
their four nonpolarized neighbors.

The expanded view in Fig. 2(b) focuses on two events that
occurred between 15 and 16 ps. At 15.44 ps the magnitude of
the moment on the spin-up red atom went rapidly to zero while,
concurrently, a spin-up moment rapidly developed on the
neighboring cyan atom. At essentially the same time the height
of the red atom increased by 0.3 Å to that of a nonpolarized
atom, while the cyan atom moved down by the same amount.
In summary, the spin-up moment that was localized on the red
atom hopped to one of its neighbors.

Very soon after, a second hop occurred at 15.71 ps. This
hop was made by the other spin (with the opposite sign) which
moved from the blue atom to the magenta atom. It is not a
coincidence that this hop occurred so soon after the first. The
first hop changed the minimum spacing between spins from
3a0 to 2a0, incurring an energy penalty (discussed in detail
below). This increase in energy in turn reduced the barrier for
any hop that restores the spacing to its optimal value. The cyan
and magenta atoms are indeed separated by 3a0, and thus after
two rapid spin hops the system was restored to an equivalent
ground state configuration, in which it remained for the rest of
the simulation.

The very small number of hops observed at 57 K makes
it clear that ab initio MD simulations of Si(553)-Au at still
lower temperatures, where many of the relevant experiments
are conducted, are not feasible. Instead we turn to higher
temperatures and ask how the frequency of hopping events
depends on temperature. This information will be useful in
Sec. III B for calibrating and validating our kMC model in a
temperature range accessible to both methods.

FIG. 2. (Color online) (a) Ab initio molecular dynamics trajecto-
ries of the six Si step-edge atoms outlined in Fig. 1, at 57 K. Red
and blue curves denote the red and blue atoms, which are initially
spin polarized. Other colors (magenta, cyan, dark green, light green)
denote initially nonpolarized atoms. Thermalization is completed by
about 10 ps. Upper panel: height of each atom, relative to the average
height of nonpolarized atoms. Lower panel: local spin moment of
each atom. (b) Expanded view of two spin hops occurring at 15.44 ps
(from the red atom to the cyan atom) and at 15.71 ps (from the blue
atom to the magenta atom).

Figure 3 shows the resulting time-averaged hopping rate
for a single spin, versus inverse temperature. The rates for low
temperatures have large statistical uncertainties (not shown),
and hence it is reasonable to describe these results by a simple
linear Arrhenius fit, as shown. The attempt frequency, 2.0 ×
1013 s−1, is on the order of a surface vibrational frequency,
as expected. The activation energy, 12 meV, represents a
characteristic average of the individual barriers for spin hops
weighted by their relative probability of occurrence.

B. Kinetic Monte Carlo model

To construct the kMC model one first needs to enumerate all
the relevant spin hops and their individual rates. We used DFT
results obtained from the full Si(553)-Au system for this task.
In the spirit of simplicity we constructed the kMC model itself
to be strictly one-dimensional, with an arbitrarily large unit cell
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FIG. 3. Temperature dependence of the hopping rate for Si
spins along the Si(553)-Au step edge. The rates are time averages
extracted from ab initio molecular dynamics (MD) trajectories, and
are compared to rates from kinetic Monte Carlo (kMC) simulations.
The linear fits describe Arrhenius behavior. The fit to ab initio MD
rates (thick line) gives a pre-exponential factor 2.0 × 1013 s−1 and
activation barrier 12 meV. For kMC rates (thin line) the values are
2.2 × 1013 s−1 and 13 meV.

and periodic boundary conditions. Thus the kMC simulations
inherit much of the accuracy of the DFT calculations but make
the additional approximation that spin hops along different
step edges are independent.

Figure 4 shows the DFT potential energy surface for the spin
hop observed in Fig. 2(b) at 15.44 ps into the MD simulation.
Because the spins and the heights of the atoms are tightly
linked, the reaction coordinate x is approximately given by

FIG. 4. (Color online) DFT potential energy surface for a single
spin hopping from the red atom to the neighboring cyan atom. The
initial state (0) is the ground state depicted in Fig. 1. The final state
(1) is the metastable state, fully relaxed, that exists between 15.44
and 15.71 ps in the MD simulation of Fig. 2. The activation barrier is
30 meV for the forward reaction and 5 meV for the reverse reaction.
Atom colors correspond to the trajectories in Fig. 2.

the relative heights h of the red and cyan atoms,

x ≈ [1 − (hcyan − hred)/�h]/2, (1)

where �h = 0.3 Å is the equilibrium height difference be-
tween spin-polarized and nonpolarized atoms. To definitively
determine the detailed reaction pathway and potential energy
surface we used the nudged elastic-band method.

This potential energy surface confirms the assertion, made
in Sec. III A, that the red-to-cyan (forward) spin hop incurs
an energy penalty that leads to a smaller barrier for the cyan-
to-red (reverse) hop. Specifically, the activation barrier for the
forward hop is 30 meV, the resulting energy penalty is 25 meV,
and the barrier for the reverse hop is 5 meV. These two types
of hops, and their calculated barriers, are two of the three
fundamental processes included in our kMC model.

For convenience we define here a more compact notation
for enumerating the different types of spin hops. Careful
examination of the ab initio MD trajectories reveals that all
spin hops were to an adjacent site; there were no double
hops. Hence we can label every hop as either leftward (←)
or rightward (→). We assume that the barrier for a spin hop
depends only on the spin’s immediate environment, that is, on
the distances ma0 and na0 to the left and right neighboring
spins, respectively, measured before making the hop. Using
this notation we can express the barriers for the two hops
shown in Fig. 4 as b(3,3, ←) = 30 meV and b(2,4, →) =
5 meV, where the two numerical arguments denote m and n,
respectively.

The third important hop we considered occurs when m +
n = 5, rather than 6 as depicted in Fig. 4. From DFT nudged
elastic-band calculations we find b(3,2, ←) = b(2,3, →) =
14 meV (the barriers are equal by symmetry). As expected
from the distances to the neighboring spins, this barrier is in
between the previous two.

The MD trajectories also show that two spins never occupy
adjacent sites. Because of this, our enumeration of the possible
spin hops is already complete for all cases with m + n � 6.
(It is worth noting that the configuration in which a spin has
both neighbors at 2a0 is allowed, but because its adjacent
sites cannot be occupied this spin cannot hop until one of
its neighbors does.) The cases with m + n � 7 are difficult
to treat within DFT but occur more rarely and thus are less
important. For this reason we treated the effect of neighbors
beyond 3a0 as negligible, used the barrier of 30 meV for any
hop that brings a spin within 2a0 of its neighbor, and assigned
a single (arbitrary) barrier of 10 meV to hops that maintain
larger separations than this. This completes our enumeration.

To finish the construction of the kMC model, we assumed
that the rates for all allowed spin hops are given by r =
a exp(−b/kT ), where a is a common prefactor and b =
b(m,n, ←) and b(m,n, →) are the DFT barriers. To determine
the optimal value of a and compare the predictions of the kMC
model to the ab initio MD results, we applied the model to
the system discussed in Sec. III A—two spin-polarized atoms
in a six-atom unit cell with periodic boundary conditions.
The resulting kMC spin hopping rates obtained using a =
6 × 1012 s−1 are plotted in Fig. 3 for direct comparison with
the rates from ab initio MD. The kMC rates have negligible
statistical errors, and it is clear that a simple Arrhenius
fit describes them very well. Moreover, the fitted attempt
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frequency, 2.2 × 1013 s−1, and activation energy, 12 meV, are
within 10% of the MD values. This confirms that the kMC
model accurately reproduces the ab initio results within the
temperature range considered.

C. Spins at finite temperature near a defect

In real systems, the behavior of collective phenomena is
often controlled by defects that pin the phase of a low-
temperature state having broken symmetry. On the Si(553)-Au
surface, a variety of defects—missing atoms, absorbates,
etc.—have been observed to act as pinning sites that locally
stabilize the 1 × 3 ground state.17,21,23,31 The important role
played by such pinning defects motivates our first application
of the kMC model.

We prepared a system consisting of 128 independent spins,
with periodic boundary conditions, initially arranged in the
antiferromagnetic ground state with uniform 3a0 spacing. One
of the spins (at position 0) was pinned in place throughout
the simulation, thus representing a generic immobile defect.
The spins were allowed to hop stochastically among the
3 × 128 lattice sites according to probabilities defined by the
hopping rates r .

Figure 5 displays the resulting trajectories at 300 K of all
the spins over the first 10 ns of the simulation. For clarity
every tenth trajectory trace is colored. As the system evolved,
each spin explored a region of the lattice around its initial
position. These explorations were relatively small for spins
near the pinning defect and became progressively larger for
spins farther away.

The right panel in Fig. 5 examines this thermally induced
wandering in greater detail. For each of the 128 spins a
histogram was made representing the position of that spin
at 300 K. At this temperature a simulation time of 1 μs was
sufficient to obtain the steady-state distribution. It is readily
apparent from examining the colored histograms that each
is well described by a Gaussian function centered on the

FIG. 5. (Color online) Kinetic Monte Carlo trajectories of 128
spins at 300 K in the presence of a pinning defect at the origin.
Every tenth trace is colored for clarity. Right panel: histogram of the
positions occupied by each spin, weighted by the time spent there,
obtained over a simulation time of 1 μs. The heavy curve is the
envelope function d−2/3 describing the decay of histogram heights
with distance d from the pinning defect.

spin’s initial position. Thus each of these Gaussians is entirely
specified by its variance σ 2, whose value depends on the
distance d to the pinning defect. To deduce this dependence we
first note that the area under each Gaussian is by construction
the same. Hence the height of each Gaussian is proportional
to 1/σ . We find empirically that the dependence of these
heights on distance is given with excellent accuracy as d−2/3.
An envelope function with this dependence is shown on the
histogram plot as a heavy black curve. From this dependence
we thus deduce that the thermally induced widths w, defined
here as 2σ , increase with distance from a pinning defect as
w ∼ d2/3.

Now we move on to explore how temperature affects the
thermal wandering of spins near a pinning defect. We repeated
the kMC simulation and analysis in Fig. 5 for a series of
temperatures between 10 and 300 K. We focus on the variation
of the thermal widths w as a function of temperature T .

Figure 6 summarizes the resulting temperature dependence.
The six data sets show w(T ) for every tenth spin of the 128-spin
simulation cell. For reference, the six values at T = 300 K
correspond to the six Gaussian widths in the upper half
of the histogram panel in Fig. 5. We find empirically that
the dependence of each data set on temperature is close to
logarithmic, as shown by the light gray shaded area. This
implies that the dependence of the thermal widths on distance
and temperature can be separated and written as

w(d,T ) = w0(d) ln(T/T0), (2)

where w0(d) ∼ d2/3 and the characteristic temperature T0 has
the fitted value 21 K. All thermal wandering is, by definition,
completely eliminated at T0. But two less restrictive criteria
may be more relevant for interpreting the experimentally
observed transition to the period-tripled ground state. At
T1 = 27 K the thermal widths for all 128 spins become smaller
than the width of a single lattice site. Hence, below this
temperature the spins will in effect be frozen into place on
every third lattice site. At still higher temperature, T3 = 42 K,

FIG. 6. (Color online) Temperature dependence of the thermal
widths w(T ) of every tenth spin, in the presence of a pinning defect.
Labels indicate the spin’s distance from the defect, in units of 3a0.
Colors correspond to the trajectories in Fig. 5. The light gray shaded
area is bounded by logarithmic fits to the lower (red) and upper
(orange) data points. The characteristic temperatures T0, T1, and T3

describe different criteria by which thermal wandering of spins is
expected to be either eliminated or suppressed, see discussion in text.
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all thermal widths are less than or equal to the average spacing
(three lattice sites) between spins. Hence the spins will first
become distinguishable as the system is cooled below this
temperature.

To generalize this result and make predictions that can
be tested by experiment, we first assume that real systems
can be characterized by a known average concentration c of
pinning defects. Because the defects are distributed in 1D,
the characteristic distance d from a spin to the nearest defect
scales as 1/c. By inverting Eq. (2) we then immediately obtain
a simple result: The temperatures T1,3 at which all spins in
the system become either frozen into place or distinguishable
will scale as T1,3 ∼ exp(c2/3). Thus we predict this scaling to
describe the temperature at which the period-tripled ground
state of Si(553)-Au is first observed.

By inserting into this qualitative relationship the appropriate
constants obtained from the kMC simulations, we derive a
quantitative prediction for the freezing temperature,

T1 = T0 exp(k c2/3), (3)

where k = 11.8 is a dimensionless constant and c is expressed
in the dimensionless units of defects per lattice site. The
corresponding equation for T3 can be obtained from Eq. (3)
by multiplying the argument of the exponential by three.
A useful guide to understanding the importance of defects
in Si(553)-Au is provided by linearizing Eq. (3) around a
physically plausible value (10−2) for the defect concentration.
This leads to the result that a change in the defect concentration
will raise the freezing temperature by �T1 = γ�c, with
proportionality constant γ = 1330 K. Thus, for samples with
approximately one defect every 100 lattice sites, a doubling
of this concentration will increase the freezing temperature by
13 K.

D. Spins at finite temperature in the absence of defects

Although a system completely free of defects is obviously
unrealistic, the behavior of such an idealized system neverthe-
less offers complementary insight into the thermal wandering
of spins when the concentration of defects is very low. As
we show below, despite the absence of defects, the statistical
behavior of the spins still exhibits a sudden and qualitative
change at about 30 K.

We constructed a periodic system of 64 spins similar to that
described in Sec. III C, but now without a pinning defect. Thus
each spin executed a random walk in 1D. Figure 7 shows a
typical trajectory at 100 K for one of the 64 spins. Despite
the stochastic nature of this single trajectory, it is already
plausible that the average displacement 〈d〉 depends on the
time t according to 〈d〉 ∝ √

t , which is the well-known result
for a single unbiased random walker in one dimension.

To analyze this behavior more systematically, we performed
many independent kMC simulations and computed the average
displacements as a function of time. Figure 8 shows these
averages on a log-log scale for a range of temperatures. At
high temperatures we indeed obtain the behavior 〈d〉 ∝ t1/2,
which is indicated by the dotted line. This behavior persists
until the temperature reaches the range 30–35 K, where it still
exhibits power-law behavior 〈d〉 ∝ tH but with a progressively
larger exponent H > 1/2.
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FIG. 7. Trajectory of a single spin at 100 K in the absence of
pinning defects. Gray curve shows the theoretical average displace-
ment versus time for an isolated random walker in one dimension,
〈d〉 ∝ √

t .

In general, a system for which the long-time displacements
are characterized by a Hurst exponent H = 1/2 is said to
be uncorrelated, while H > 1/2 indicates that long-time
correlations are present.32 Figure 9 shows the Hurst exponent
H , obtained by fitting the time-averaged displacements, as a
function of temperature. Above ∼40 K the system displays
uncorrelated behavior. Below this temperature we observe the
rapid onset of correlated behavior. To quantify the temperature
of this transition we fit the Hurst exponents to a generalized
susceptibility of the form H = (1/2)/[1 − (Tc/T )ν] and ob-
tain a characteristic temperature Tc = 28 K. Hence as the clean
system is cooled toward Tc the random walks described by
individual spins rapidly lose their independent character. This
transition occurs with a characteristic temperature comparable
to that obtained, T0 = 21 K, by extrapolating from the behavior
in the presence of defects. Thus these two complementary
approaches lead to qualitatively as well as quantitatively
similar conclusions.
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FIG. 8. Average displacement versus time of a single spin in the
absence of defects, at the indicated temperatures. Circles are statistical
averages over 2000 kMC simulations. Straight lines are fits to tH ,
where H is the Hurst exponent. The dotted line indicates H = 1/2.
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FIG. 9. Hurst exponent versus temperature for spins in the
absence of a defect. The solid curve is a fit to a generalized
susceptibility with a characteristic temperature Tc = 28 K.

IV. DISCUSSION AND CONCLUSIONS

A guiding principle in one-dimensional physics is provided
by the Mermin-Wagner theorem, which states that phase
transitions cannot occur above T = 0 if the interactions are
short-ranged.33 Exploring the different manifestations of this
theorem in real systems can yield unanticipated insights. For
example, a previous publication by one of us demonstrated
theoretically that when the interactions are not short-ranged,
as for 1/r Coulomb interactions, then a well-defined thermo-
dynamic phase transition can indeed occur—and likely does
occur for a system of ionized Ba adsorbates on Si(111).34,35

In the present work we have shown that while the interactions
in Si(553)-Au are short-ranged, a well-ordered 1D phase with
the clear signature of a broken symmetry can form well above
T = 0. We note that this result was obtained by analyzing
nonequilibrium time-dependent behavior and thus may be
regarded as a phase transition in (1 + 1) dimensions (one space
and one time dimension).

For Si(553)-Au the precise nature of the interacting entities
is unexpected and somewhat subtle: Our MD simulations
showed that they are neither simple vibrations of atoms, nor
spins on a simple fixed lattice, but rather a tightly coupled
combination of both. In this sense a description of Si(553)-Au

based on spin polarons is appropriate. Our kMC simulations
showed that as the temperature of the system is raised, the
ground state 3a0 crystal formed by these polarons melts at
a temperature we estimate to be ∼30 K for perfectly clean
systems, and higher for systems with pinning defects. A direct
experimental test of this description is afforded by Eq. (3),
which predicts how the transition temperature varies with the
concentration of defects.

It is important to acknowledge some limitations of this
work. Because our focus has been on the behavior of
Si(553)-Au at low temperature, we have assumed that the
spin-polarized silicon states remain polarized at higher temper-
atures. Our preliminary calculations indicate that this assump-
tion is completely justified at the temperatures of interest here.
However, at much higher temperatures the thermally induced
vibrations of the step edge atoms increasingly render the
system nonpolarized for part of the time. For example, at room
temperature the average spin moment is reduced to roughly
2/3 of its low-temperature value of 1 bohr magneton. Future
theoretical investigations into the behavior of Si(553)-Au
near room temperature will have to account for this thermal
suppression of the spin polarization.

Finally, as mentioned in Sec. III, we have throughout
assumed for simplicity that the ordering of the spins re-
mains antiferromagnetic, as in the ground state. Preliminary
calculations show that the barriers for spin hopping depend
quantitatively, although not qualitatively, on the signs of the
neighboring spins. A generalization of our kMC model that
includes spin flips would be a very interesting direction to
pursue, but we anticipate that the qualitative conclusions
drawn here—as well as the overall consistency between our
findings and those of existing experiments—would be largely
unchanged.
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