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The α phase of tin is a zero-gap semiconductor with an inverted band structure with respect to other group-IV
elements like Ge. The �6c states lie energetically below the �8v levels. How these unique electronic properties
transform in nanostructures with spatial confinement has not been studied. We apply density-functional theory
within the local density approximation to investigate the energetic, structural, and electronic properties of bulk
α-Sn and its nanocrystals (NCs) up to a size of 363 Sn atoms. For NCs with larger diameters up to 14 nm
the tight-binding method is applied for the electronic states. Spin-orbit coupling is taken into account. The
clusters are modeled in such a way that the Td symmetry of the bulk system is conserved. Their surfaces are
passivated with hydrogen. We show that the spatial confinement causes not only a decrease of the fundamental
gap for increased NC size but also a topological transition where the ordering of s- and p-like highest-occupied
molecular orbital and lowest-unoccupied molecular orbital states is interchanged. The influence of quasiparticle
and excitonic effects on the lowest pair excitation energies is investigated within approximations based on the
hybrid exchange-correlation functional by J. Heyd, G. E. Scuseria, and M. Ernzerhof [J. Chem. Phys. 118, 8207
(2003)] (HSE) and the �SCF method.
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I. INTRODUCTION

Nanostructuring significantly changes the behavior of a
crystalline material.1,2 This is caused mainly by two effects:
the quantum confinement and the surface. When the size of
a nanostructure becomes smaller than characteristic lengths
of the bulk material such as the exciton radius, the Fermi
wavelength, or the Thomas-Fermi screening length the phys-
ical and chemical properties are drastically modified. Then
manipulation of electronic and optical properties are possible
by controlling their size. In addition, due to the increasing sur-
face/volume ratio with decreasing size, surface geometry and
chemistry play an important role. For instance, the tendency
to minimize the surface energy causes structural relaxations
inside a nanostructure.3,4 Moreover, different surface passiva-
tions and matrix materials influence the resulting properties.5

Interesting systems to study the influence of nanostructur-
ing are zero-gap semiconductors such as α-Sn and HgTe6 with
an inverted band structure where the fourfold degenerated �8v

states are energetically equivalent to the Fermi level. Because
of the relativistic mass-Darwin effect, the s-like �6c levels are
energetically lower than the p-like �8v levels and hence form
an inverted band structure with a “negative gap” compared to
other group-IV semiconductors like germanium or compound
semiconductors such as CdTe.6,7

For nanostructures, in particular in form of nanocrystals
(NCs), however, widely tunable narrow band gap energies
and tunable strong infrared emissions have been predicted or
observed.8–10 Nevertheless, in general, less is known about the
properties of nanocrystals made by zero-gap semiconductors,
in particular α-Sn, from theoretical as well as experimental
studies. This is astonishing when the situation is compared
with that for other group-IV-based NCs. Many theoretical,
especially ab initio studies exist for Si and Ge NCs (see
Refs. 11–13 and references therein) but not for α-Sn particles.
One challenge for all theoretical studies is the inclusion of
the strong spin-orbit coupling (SOC). From an experimental

point of view, some difficulties occur when preparing Sn
nanocrystals with tedrahedrally coordinated bonding geome-
tries. Bulk elemental tin possesses two allotropes. Besides
the semimetallic tetragonal β-Sn structure under ambient
conditions, there exists a cubic semiconducting α-Sn for
temperatures below 13.2 ◦C.6,14–16 It has the same tedrahedral
diamond lattice as Si and Ge. In amorphous materials, e.g.,
SiO2 or Si3N4, usually Sn NCs are prepared with the β

structure.17,18 However, crystalline matrices such as Si and
Ge prevent the collapse to the denser β form and particles of
α-Sn can be stabilized.19–22

For zero-dimensional nanostructures in general but for α-Sn
NCs above all there are several unsolved problems which are
basically related to the scalar-relativistic and spin-orbit effects.
For NCs with small diameters a gap opening is expected due
to carrier confinement. With rising NC size, however, the
s-like �6c bulk level should dip below the p-like �8v level
leading to the band inversion known for bulk α-Sn. It has
been pointed out23,24 that when such band inversion occurs
at time-reversal invariant wave vectors, it produces peculiar
electronic properties such as Dirac cones in the fundamental
energy gap. Despite the fact that no translational invariance
appears for NCs, band (or level) inversion should happen for a
finite diameter. The value of this diameter is unknown. In any
case, the change from normal band ordering to band inversion
may be called “topological” transition in agreement with the
identification of α-Sn as a topological semimetal.25 The second
open problem is the influence of the nanocrystal, especially its
surface and its surface passivation on the spin-orbit splitting
of the �7 and �8 states. In typical tight-binding calculations
of α-Sn and also HgTe NCs one only considers a constant,
size-independent intra-atomic term of the spin-orbit coupling
of the atomlike p orbitals.8,26,27

In the present work we apply ab initio calculational methods
to investigate the geometry and electronic structure of α-Sn
nanocrystals. For purpose of comparison and the possibility to
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extend the electronic-structure studies towards NC diameters
of about 14 nm we also apply the tight-binding method.28 In
order to test the first-principles method for both properties,
structure and electronic states, as well as the tight-binding
method for the electronic structure and to demonstrate their
reliability, the first part of the paper deals with α-Sn bulk. In
a second step the methods are applied to α-Sn NCs. In Sec. II
the theoretical and computational methods are described. In the
subsequent Sec. III we apply several computational approaches
to bulk α-Sn, especially for the electronic structure. The band
ordering as well as the SOC of valence p-derived states is
studied. The results of the different methods for hydrogenated
α-Sn nanocrystals are presented in Sec. IV. We investigate the
energetics, the geometry, and the electronic structure including
SOC. The size dependence of the fundamental gap and its
inversion for larger diameters are discussed in particular.
Finally, in Sec. V a summary and conclusions are given.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. First-principles methods

We apply the density functional theory (DFT)29 within
the local density approximation (LDA)30 implemented in the
Vienna ab initio simulation package (VASP).31,32 Exchange
and correlation are treated using the quantum Monte Carlo
results of Ceperly and Alder33 as parametrized by Perdew
and Zunger.34 In order to study the influence of exchange and
correlation (XC) on the band structure in the bulk case, we
further apply gradient corrections using the generalized gra-
dient approximation (GGA)35–37 and the LDA + U method38

that takes an additional intra-atomic Coulomb interaction U

into account.3 Band-structure calculations are also performed
using hybrid XC functional HSE06 containing a fraction
of short-range nonlocal Fock exchange.39 In this way the
well-known problem of a significant underestimation of funda-
mental energy gaps in DFT-LDA and DFT-GGA40 is removed.
Nevertheless, the resulting quasiparticle gaps do not correctly
describe the lowest electron-hole pair energies measured
in optical spectroscopies due to the exclusion of excitonic
effects. In zero-dimensional nanostructures with electronic
confinement in all spatial directions optical gaps including
quasiparticle and excitonic effects are computed using the δ

self-consistent field (�SCF) method,41 its reliability has been
demonstrated for colloidal and embedded nanocrystals.5,42–44

It is based on an excited-state calculation within the DFT
using an occupation constraint. One electron is taken from
the highest occupied molecular orbital (HOMO) and placed
into the lowest unoccupied molecular orbital (LUMO). The
HOMO is assumed to remain unoccupied minimizing the total
energy. In the case of orbital degeneracy an average over the
HOMO and LUMO states is considered.

The electron-ion interaction is described by pseudopoten-
tials that are generated within the projector-augmented wave
(PAW)45,46 method. All calculations, including structural opti-
mizations, are performed including scalar-relativistic effects
and spin-orbit coupling.47 The Sn 4d, Sn 5s, and Sn 5p

electrons are treated as valence electrons in bulk calculations.
However, we show that the Sn 4d electrons have no major
impact on the electronic structure of the NCs and, hence, in

order to keep the computational effort on a sustainable level,
we neglect the d electrons for the structural optimization and
the electronic structure of the largest NCs studied within the de-
scribed ab initio framework. The electronic states in-between
the PAW spheres are expanded into a plane-wave basis set with
an energy cutoff of 500 eV for bulk calculations and 200 to
300 eV for the nanocrystals, depending on the NC size. In case
of α-Sn bulk, Brillouin zone (BZ) integrations are replaced by
a sum over 12×12×12 Monkhorst-Pack48 k points. However,
as no k dispersion is expected for NCs because of the huge
unit cells in real space, we only consider the � point in
NC studies. Structural relaxation is performed applying a
conjugated-gradient algorithm minimizing the forces acting
on the atoms. The optimized lattice constant of α-tin and the
atomic positions in the nanocrystals are determined, ensuring
that the Hellmann-Feynman forces acting on the atoms are
well below 5 and 20 meV/Å, respectively. Within each atomic
relaxation step, the electronic structure is converged such that
the total energy difference is smaller than 10−5 eV.

B. Tight-binding description

The ab initio treatment of nanostructures is restricted to
numbers of Sn atoms below 600. In order to also treat the
electronic structure of much larger nanocrystals up to 20 000
Sn atoms we use a tight-binding (TB) model of α-Sn which
gives excellent agreement with the approximate quasiparticle
band structure computed within the HSE + SOC framework
and displayed in Fig. 2. Existing TB parametrizations are
not sufficiently accurate compared with an HSE + SOC band
structure. Usually SOC is ignored.28,49,50 The model of
Pedersen et al.51 takes nonorthogonality of the TB orbitals and
third-nearest-neighbor interaction into account and, hence, its
handling for big nanocrystals is difficult. We develop our own
TB parametrization for the electronic structure calculations.
Details are described in the Appendix. The TB Hamiltonian
matrix is written in a basis of atomic orbitals. We widely
follow the idea of Vogl et al.28 We apply an sp3s∗ basis
set and restrict the intersections to nearest-neighbor atoms.
However, two extensions are taken into account, the spin-orbit
interaction and three-center integral A = 1.995 eV modeling
pp interactions in addition to two-center integrals. Thereby
we follow an idea of Li and Lin-Chung.52 The inclusion of
SOC requires a doubling of the basis set. As usual in TB
approaches53 we only consider the intra-atomic terms of the
spin-orbit coupling on the p orbitals leading to a �8v − �7v

splitting of �0 = 0.68 eV. Inter-atomic terms which give rise
to a Rashba or Dresselhaus splitting of the p-derived bands
away from �54 are neglected. The two-center integrals and the
diagonal intra-atomic terms are obtained by a fitting procedure
to the HSE + SOC eigenvalues at the high-symmetry points �,
X, and L shown in Fig. 2. A simple procedure is applied
to minimize the average deviation of the HSE + SOC and
TB + SOC eigenvalues. The resulting TB parameters are listed
in Table III in the Appendix. For the hydrogen passivation of
the NCs, we use a basis of one hydrogen s orbital yielding
four Sn-H matrix elements between the H s and the Sn sp3s∗
basis orbitals and one matrix element for the hydrogen s

self-interaction. We neglect the ss∗ interaction in accordance
to Vogl et al.28
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FIG. 1. (Color online) Primitive unit cell and atomic positions of
bulk α-Sn.

III. BULK α-Tin

A. Structure and energetics

The α phase of tin crystallizes in the diamond structure
[space group O7

h(Fd3m)] with a face-centered-cubic Bravais
lattice and two atoms in the unit cell located at (0,0,0)
and (0.25,0.25,0.25) in units of the crystal axes.16 Each
atom is tedrahedrally coordinated by four neighboring atoms
giving a local Td symmetry. The unit cell and the atomic
positions are displayed in Fig. 1. Computed parameters that
characterize structural, energetic, and elastic properties are
listed and compared to experimental values in Table I. We
calculate the lattice constant to be a0 = 6.4746 Å, which is
in excellent agreement with the values measured by Farrow55

and Davey56 using x-ray diffraction. A slight underestimation
of 5 mÅ (Ref. 55) and 15 mÅ (Ref. 56), respectively, within
DFT-LDA can be explained by the well-known tendency of
the LDA to underestimate bond lengths.35 The calculated bulk
modulus B0 = 44.8 GPa is in rather good agreement with the
measured values.57,58 Other DFT-LDA values a0 = 6.479 or
6.406 Å17,51 deviate much more from experimental values,
while the computed bulk modulus B0 = 45 GPa51 is very
similar to our value. Using the DFT-GGA description with the
PBE exchange-correlation functional,37 larger lattice constants
a0 = 6.656, 6.654, and 6.663 Å59,60 have been found. The
corresponding bulk modulus B0 = 36.0, 36.3, or 35.9 GPa59,60

is pretty much underestimated.
The cohesive energy Ecoh is calculated as the difference

between the total energy per tin atom in the bulk Eα-Sn
bulk =

−4.482 eV and the total energy of the free tin atom in its spin-
polarized ground state. The modification of the total energy of
the free atom due to the spin-orbit interaction was calculated
to be ESn = −0.375 eV using orthorhombic supercells with
edge lengths of 15 × 16 × 17 Å. The resulting cohesive energy
is Ecoh = 4.11 eV. This value is somewhat larger than the
experimental value E

expt
coh = 3.12 eV.58

TABLE I. The lattice constant a0, the bulk modulus B0 (in GPa),
its pressure derivative B ′

0, the total energy Eα-Sn
bulk , and the cohesive

energy Ecoh (in eV) per formula unit (f.u.).

a0 (Å) B0 (GPa) B ′
0 Eα-Sn

bulk (eV) Ecoh (eV)

This work 6.4746 44.8 4.85 −4.482 4.11
(LDA)
Expt. 6.4798,a 6.4892b 53.1c 3.12d

aReference 55.
bValue cited in Ref. 56.
cReference 16.
dReference 58.

FIG. 2. (Color online) Band structure of α-Sn calculated using
SOC and the hybrid functional HSE06.46 Additionally, the angular-
momentum resolved DOS is given to describe the symmetry of
the electronic states in a certain energy interval. The irreducible
representations and their degeneracy are indicated. The �8v level
is used as energy zero.

B. Electronic structure

The quasiparticle band structure and the density of states
(DOS) resulting from the generalized Kohn-Sham eigenvalues
obtained with the HSE hybrid exchange-correlation functional
and spin-orbit interaction are presented in Fig. 2. We observe
the well-known result: α-Sn is a zero-gap semiconductor6

or topological semimetal25 with an inverted band structure
with respect to other group-IV semiconductors like silicon and
germanium.16,25,57,61–64 For germanium, the lowest conduction
band at � is s derived and has �6c symmetry, while the highest
valence bands are p derived and therefore transform like �7v

and �8v . In the case of α-Sn, this energetic ordering of the
bands is inverted leading to a “negative gap” −Eg .16,25,57,61–64

As can be seen in Fig. 2, the s-like �6c states are energetically
lower than the p-like �8v levels but still above the spin-orbit
splitted �7v level. However, the energetic ordering of �7v and
�6c is under debate in the literature and seems to depend
on the calculational method. Test calculations within LDA,
GGA, and LDA + U result in a �7v level to be above �6c

(see Table II) which is in accordance with k · p calculations
by Cardona et al.62,63 However, using the HSE06 functional
which takes partially into account the nonlocal Fock exchange,
we determine �6c to be 100 meV higher in energy than �7v .
The band ordering �7v < �6c < �8v and the level distances
are almost in agreement with recent quasiparticle calculations
within Hedin’s GW approximation.65,66 This result also agrees
with the tight-binding calculations by Chadi,53 while empirical

TABLE II. The calculated spin-orbit splittings �0 and �1,
negative gaps −Eg , and binding energies of the d-states Ed within
different approximations for exchange and correlation. All values
in eV.

Method �0 (eV) �1 (eV) −Eg Ed (eV)

LDA 0.691 0.439 1.053 21.13
GGA 0.666 0.424 0.831 21.02
LDA + U 0.661 0.439 0.852 24.00
HSE 0.681 0.437 0.519 23.30
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pseudopotential calculations yield the same band ordering
�8v > �6c > �7v but an increased �6c − �7v distance up to
0.38 eV.7 Interestingly the different treatments of exchange
and correlation mainly affect the negative fundamental gap
Eg = �6c − �8v , while the spin-orbit splitting constants �0 =
�8v − �7v and �1 = L4,5v − L6v are rather independent of
the used LDA, GGA, LDA + U , and HSE functionals. As
a consequence the band ordering �6c > �7v is interchanged
to �7v > �6c in all local or semilocal treatments of XC (see
Table II).

The XC functional also influences the binding energy Ed

of the Sn 4d electrons (see Table II). According to the pd

repulsion in diamond and zinc-blende structure crystals67

smaller binding energies are usually related to a stronger
repulsion of the p-type valence band maximum and, hence,
to a reduction of the fundamental sp gap Eg .68 Here, in the
case of α-Sn with a negative gap, the situation is less clear for
the absolute gap value. Nevertheless, going from LDA with a
smaller binding energy of the d electrons to LDA + U or HSE
with larger binding energies the absolute gap value decreases
in agreement with the position of the �6c level below the �8v

one.

IV. α-TIN NANOCRYSTALS

A. Geometry

In order to simulate the structural, energetic, and electronic
properties of isolated α-Sn NCs, we use simple cubic su-
percells with the central NC atom placed in the center of
the supercell. The Sn NCs are constructed assuming fourfold
coordination of each atom as in bulk α-Sn. The construction
starts with a central atom and adds tin atoms shell by
shell, thereby keeping the local tedrahedral symmetry.69 The
geometry of the NCs conserves the point-group symmetry
Td of the bulk system. The edge length of the supercells is
determined in such a way that the resulting electron bands
can be described by dispersionless levels. The resulting NC
shape corresponds to a cubo-octahedron as illustrated in Fig. 3.
The NCs represent cubes with (001) surfaces whose corners
are cut perpendicular to 〈111〉 directions, and, hence, form
triangular faces that connect the midpoints of the rectangulars
at the respective corners. The resulting NC surfaces exhibit six
rectangular {001} and eight equilateral triangular {111} facets
and contain NSn = 1, 5, 17, 41, 83, 147, 239, 363, and 525
tin atoms that are treated from first principles. The shape of
the facets shows an alternating behavior with respect to the
number of shells. The dots with 17, 83, 239, and 525 atoms
exhibit square {001} facets. In this case, all {111} facets have
the same size. On the other hand, in case of 41, 147, and 363
tin atoms, the {001} facets are rectangular and the two sides
of a rectangle differ by one atom. Hence, in this case, there
are two different {111} facets with edge lengths equal to the
two different edges of such a rectangular {001} facet. The
average distance of the outermost Sn atoms to the NC center
is considered as the nominal NC radius. The atoms on {001}
facets possess two dangling bonds, whereas {111} ones only
show one dangling bond per atom. However, in some cases
atoms on the edges between two differently orientated facets
exhibit three dangling bonds. Dangling bonds at the NC surface

FIG. 3. (Color online) Atomic geometries of the studied
nanocrystals. Tin atoms are marked by large red spheres, while the
passivating hydrogen atoms are represented by small white dots. The
resulting {001} and {111} facets are clearly visible.

are passivated with NH = 4, 12, 36, 60, 108, 148, 220, 276,
and 372 hydrogen atoms in such a way that a hydrogen atom
is positioned in the direction of a dangling bond at a distance
of 1.73 Å, the sum of the two covalent radii.70 The passivation
shifts surface dangling bond states out of the energetic range
of the fundamental energy gap as shown by Luo et al.71

In order to study the electronic structure of larger NCs
in the framework of the TB approximation, the described
construction principle is applied to larger NCs until 25 Sn
shells, i.e., until a NC with 19 335 Sn atoms and 4092 H atoms
resulting in a maximum NC diameter of 13.2 nm. However, for
the larger NCs the Sn-Sn bond length is fixed to its bulk value
d = 2.804 Å. Figure 3 shows some of the resulting structures.

The geometries of nanocrystals up to Sn525H372 with nine
Sn shells and a nominal diameter of 4 nm are fully optimized
by means of the ab initio methods described in Sec. II. In
the case of the smaller NCs Sn1H4, Sn5H12, Sn17H36, Sn41H60,
Sn83H108, and Sn147H148 the Sn 4d electrons and the spin-orbit
interaction have been taken into account. However, we realized
that their influence is negligibly small in agreement with the
large Sn 4d binding energy (Table II) and earlier observations
of a negligible influence of SOC on the structural properties
up to elements of the sixth row of the Periodic Table.60 In
the case of NCs with intermediate sizes, Sn239H220, Sn363H276,
and Sn525H372, only Sn 5s and Sn 5p electrons are considered
as valence electrons in the first-principles calculations.

The atomic relaxation changes the bond lengths of the NCs
compared to the bulk value with the constraint of conservation
of the Td symmetry. As a result the radially averaged Sn-Sn
bond lengths are plotted versus the distance of the middle
of the bond from the NC center in Fig. 4(a). The values in
the NC cores are larger than the bulk value d = 2.804 Å
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FIG. 4. (Color online) (a) Radially averaged bond length versus
the bond distance to the NC center and (b) globally averaged bond
length depending on the NC diameter. The horizontal solid lines
indicate the bulk bond length.

approaching a maximum value for the center bonds. They
decrease toward the NC surface. For distances above the half
nominal NC radius the local bond lengths are even smaller
than the bulk value. As a consequence we state tensile strain
near the NC center but compressive strain near the surface of
the NCs. These findings are very similar to those found for
other group-IV nanocrystals.5,44,69,72 The contraction of the
bonds can be traced back to surface stress effects known for
spherical drops,73 while the expansion may be a consequence
of the additional degrees of freedom compared to the bulk
situation.

The net result for all Sn-Sn bonds is displayed in Fig. 4(b). It
shows the average bond length for each NC versus its nominal
diameter. There is an increase of the averaged bond lengths
with increasing NC diameter. For the NCs until diameters of
4 nm the average bond length remains however smaller than the
corresponding bulk value. For a Sn83H108 NC with a nominal
diameter of 2.1 nm the average bond length is still 0.6% shorter
than the bulk one. This deviation should be reduced with rising
NC size. The slight decrease for the largest dots in Fig. 4(b)
is probably a result of the larger Hellmann-Feynman forces
that are allowed as breaking-out criterion of the relaxation for
computational reasons. The lower average bond lengths of the
NCs with respect to the bulk is caused by the tendency to lower
the surface energy and the resulting inward relaxation of the
outermost atoms. However, for a further increase of the NC
diameter the averaged bond length should converge toward the
bulk value.

The average bond length between an outermost Sn atom
and a passivating hydrogen atom increases from 1.707 Å
for the SnH4 NC to 1.736 Å for Sn363H276. The shortest
Sn-H bonds differ by approximately 20 mÅ from the average
value in case of Sn363H276. However, this difference increases
approximately linearly with the NC size.

B. Enthalpy of formation

To study the energetic stability of the NCs with NSn tin
atoms and NH passivating hydrogen atoms, we calculate their
formation energy or enthalpy of formation �Hf as difference

�Hf = ENC(NSn,NH) − NSn · μSn − NH · μH, (1)

where ENC(NSn,NH) is the total DFT ground-state energy
(including ion-ion repulsion) of the NC and the chemical
potentials μSn and μH of the particle reservoirs per atom. The
preparation conditions of the NCs can be nearly modeled by the
choice of the chemical potentials. In the case of the Sn reservoir
we allow for a significant variation of μSn. The upper bound
μbulk

Sn = Eα-Sn
bulk simulates Sn-rich preparation conditions where

solid α-tin acts as reservoir. Deviations �μSn = μSn − μbulk
Sn

from the bulk value with

− ∞ < �μSn � 0 (2)

allow us to also model Sn-poor conditions. For the hydrogen
reservoir in the preparation process we study two special
situations. One possibility is the use of molecular hydrogen
for passivation, i.e., μH = 1

2μH2 = − 1
2E

H2
mol with the binding

energy of a H2 molecule, E
H2
mol = 6.7 eV, as calculated in

DFT-LDA. Another possibility is that a gas of SnH4 (tin
hydride = stannane) molecules acts as reservoir. In this case,
it holds μH = 1

4 [ENC(1,4) − μSn] with the binding energy
−ENC(1,4) = 16.53 eV of a SnH4 molecule.

Results are illustrated in Fig. 5. For NC passivation by
means of H2 molecules the enthalpies of formation per Sn
atom in Fig. 5(a) increase for Sn-poor preparation conditions
but take the smallest values for Sn-rich conditions μSn =
μbulk

Sn . The dependence on the chemical potential is linear
in accordance with Eq. (1). The largest formation energy
is observed for the smallest NC SnH4, while it vanishes
toward bulk α-Sn. The effect of the NC size on the enthalpy
of formation is better represented in Fig. 5(b). The upper
bound of Sn-rich preparation conditions μSn = μbulk

Sn is applied
for the simulation. The formation energy vanishes for large
NC diameters, thereby indicating some Ostwald ripening if
diffusion of Sn atoms is possible. For small NC diameters the
situation is totally different. For the smallest nanocrystal SnH4

one derives �Hf = ENC(1,4) − Eα-Sn
bulk − 2E

H2
mol = 1.35 eV,

the formation energy of SnH4 from solid tin and molecular
hydrogen, which is energetically unfavorable. The opposite
reaction, the decay of SnH4 into bulk Sn and molecular
hydrogen, is possible. For μH = 1

4 [ENC(1,4) − Eα-Sn
bulk ] and

μSn = Eα-Sn
bulk it holds �Hf = 0. The different behavior of

the NC formation energy for different chemical potentials
of hydrogen indicates a strong influence of the preparation
conditions on the energetic stability and the formation of small
hydrogenated Sn nanocrystals. The preparation with a gas of
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FIG. 5. (Color online) Enthalpy of formation (a) depending on the
chemical potential of the tin reservoir for a H2 gas as the hydrogen
reservoir or (b) on the NC diameter for Sn-rich preparation conditions
for the two choices of the hydrogen reservoir.

tin hydride molecules seems to be more favorable than the use
of a gas of hydrogen molecules as a hydrogen reservoir.

C. Electronic structure

An overview over the allowed energy levels in nanocrystals
up to Sn525H372, i.e., a nominal diameter of 4 nm, is given in
Fig. 6, where the Kohn-Sham eigenvalues of the DFT-LDA
have been used. The zeros of the energy scales have been
aligned by the energy of the vacuum level of the electrostatic
potential (consisting of local electron-ion attraction and
Hartree potential) averaged over all space directions outside
the NC. The quantum confinement effects on the energy levels
are clearly visible. The fundamental gaps between HOMO
and LUMO decrease with rising NC size, while the density
of energy levels in the regions of empty and occupied states
increases toward the high density of states in α-Sn bulk.

Most interesting is the comparison of the level ordering
in the NCs with that of the bulk crystal. For illustration we
study the density of states of the Sn17H36 NC and the position
of its energy levels around the fundamental gap in Fig. 7.
Results for other NCs are not displayed because they exhibit a
similar angular-momentum resolved DOS of the HOMO and
LUMO states. In Fig. 7 it is remarkable that the LUMO is
mainly formed by Sn 5s states while Sn 4p states give the
main contributions to the HOMO states. The contributions of
states formed by the passivating hydrogen atoms in the range
of the fundamental gap are significantly smaller than those of
Sn s (LUMO) and Sn p (HOMO) states. The d contribution
to all states around the gap remains small in agreement with

-8
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-6

-5

-4

-3

-2

-1

FIG. 6. (Color online) Energy-level schemes of Kohn-Sham
eigenvalues of α-Sn nanocrystals passivated with hydrogen. The
fundamental energy gaps are indicated by the corresponding energy
eigenvalues. The energy scales of the different NCs have been aligned
by the vacuum levels derived from the spatially averaged electrostatic
potentials.

the discussion in Sec. III B. The strongest influence of Sn 4d

states has been found for Sn41H60 where both HOMO and
LUMO levels are shifted by 50 meV toward higher energies.
As a result we state an inversion of the orbital symmetry of the
electronic states around the gap with respect to the �6c and �8v

states of bulk α-tin. However, the projections of the NC wave
functions on angular-momentum eigenstates are not sufficient
for the identification of the corresponding bulk states.71,74 In
order to identify the �8v , �6c, or �7v character of the bulk
states near the Fermi level in the NC orbitals, we apply a more
appropriate projection technique.71,75 The probability to find a
bulk symmetry in a NC state is determined by evaluating the
overlap

P (n,m,k) =
n+dNC∑
i=n

m+dB∑
j=m

∣∣∣∣
∫

d3rψi(r)
[
φk

j (r)
]∗

∣∣∣∣
2

(3)

FIG. 7. (Color online) Energy levels and angular-momentum
resolved density of states of the Sn17H36 NC around the fundamental
gap. The bulk states that form the HOMO, LUMO, and the
first occupied spin-orbit split-off NC state are labeled. The level
degeneracy is indicated by numbers 2 and 4.
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of the nanocrystal wave functions ψn(r) and the bulk Bloch
states φk

m(r). Here n and m indicate the eigenvalue, k is the
respective k point in the bulk BZ, and r denotes the position
vector. Energetically degenerated states are summed up over
the degree of degeneracy dNC (dB) of the NC (bulk) once the
overlap integral has been evaluated. The results for a Sn17H36

NC in Fig. 7 show clearly that there is indeed an inversion
of the level ordering around the gap. The overlap between
the HOMO (LUMO) state of the NC with the �8v (�6c) bulk
state at k = 0 is of the order of magnitude of one, whereas all
other combinations of HOMO, HOMO-1, LUMO with �8v ,
�6c, �7v , �7c bulk states are zero. Hence, the NC states are
formed by defined bulk states, whereas the effect of coupling of
multiple bulk bands is negligible. We obtained the same result
applying this projection technique within the tight-binding
method. Using a similar projection technique similar results
concerning the dominating �6c bulk states have been found for
the HOMOS of colloidal InAs, InP, CdSe, and Si NCs.71

Another interesting point is the level degeneracy. Around
the HOMO-LUMO gap only fourfold and twofold states
appear in Fig. 7. This is a consequence of the presence of
spin-orbit interaction and has been already observed for bulk
α-Sn. The five ordinary representations of the Td group,
�1, �2, �12, �15, and �25, multiplied with the representation
D1/2 of the full rotation group to account for the spinor
character split into twofold degenerate �6 and �7 states or
fourfold degenerate �8 states.76 The splitting of the uppermost
occupied levels in Fig. 7 into fourfold and twofold degenerate
levels is due to SOC as has been demonstrated by comparison
with electronic-structure results omitting SOC (not shown
here) as well as by the identification of the contributing
bulk states �8v and �7v calculating the overlap integrals (3)
between NC and bulk states.

Besides the atomic orbital symmetry of the HOMO and
LUMO state the general distribution of the wave functions
over the NCs is of special interest. Corresponding wave
function squares are displayed in Fig. 8 using two different
representations only for a small NC, Sn5H12, in order to
visualize the relation to the atomic geometry. Figure 8 shows
isosurfaces (left panels) of the wave function squares and the
radial dependence of the wave function squares averaged over
all space directions, i.e., the envelope function12 (right panels)
for the HOMO and the LUMO. The isosurface of the HOMO
[Fig. 8(a)] exhibits the shape of a distorted tedrahedron accord-
ing to the tedrahedral structure of the Sn NCs. It is only slightly
modified by the probability to find a hole in the region of the
passivating hydrogen atoms. Consequently, a dominant peak
occurs in the radial probability distribution closer to the NC
core. The second peak near the surface of the NC is localized at
the passivating hydrogen atoms. The radial distribution of the
LUMO shows quite similar behavior [see Fig. 8(b)]. However,
two nodes appear. The wave function square shows that the
first peak originates from a spherical isosurface around the
central Sn atom. The second, more broadened peak with lower
intensity results from probabilities that are located at the Sn-Sn
bonds. As for the HOMO, there is also some probability to find
an electron in the region of the passivating hydrogen atoms.
The envelope wave functions for HOMO and LUMO of the
small Sn5H12 NC are similar to the radial parts of the lowest
s- and p-like states of hydrogenlike ions.

FIG. 8. (Color online) Isosurfaces of probabilities to find holes
or electrons (left panels) and radially averaged wave function squares
(right panels) of the (a) HOMO and for the (b) LUMO for the Sn5H12

cluster. The arrow indicates the nominal radius of the NC.

The question arises how the fundamental HOMO-LUMO
gaps that are depicted in Fig. 6 relate to measurable ones, for
example, measured by means of optical absorption, lumines-
cence, or scanning tunneling spectroscopy. It is well known
that the Kohn-Sham (KS) energy gaps computed in the DFT-
LDA framework significantly underestimate the quasiparticle
gaps by 25% –100%.40 In order to understand the influence of
the excitation of electrons and holes on the fundamental gap,
we study the lowest electron-hole pair excitation energies in
α-Sn NCs within three different approximations for exchange
and correlation using the local LDA or nonlocal hybrid HSE
functional and the �SCF method including spin-orbit inter-
action. The results are summarized in Fig. 9. The lowest pair
excitation energies are derived as KS eigenvalue differences
between HOMO and LUMO. There is a continuous decrease
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FIG. 9. (Color online) Lowest pair excitation energies of the
hydrogenated Sn nanocrystals from three different ab initio approxi-
mations. The insert displays the HOMO-LUMO gaps taken from the
TB calculations. The agreement with the DFT-LDA values is shown
for small NC diameters.
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from SnH4 with about 7 eV to Sn525H372 with a gap below
0.6 eV. Both excitonic effects as well as quasiparticle effects
are neglected within DFT-LDA. The use of the hybrid HSE06
functional allows us to model a substantial part of the quasipar-
ticle corrections.77,78 The nonlocality of the XC self-energy is
taken into account. Also some of the screening reaction to the
excited electron and hole is described by the HSE functional.
One obtains the so-called quasiparticle gap. The quasiparticle
effects lead to a gap increase of approximately 1 eV with
respect to the DFT-LDA gap. Unfortunately, the hybrid-
functional computations are limited to Sn41H60 nanocrystals,
i.e., to about 100 atoms in a supercell. Larger nanocrystals,
e.g., Sn525H372, cannot be treated together with spin-orbit
interaction despite the freezing of Sn 4d electrons into the
core. Using the �SCF method as described in Sec. II, both
excitonic effects as well as quasiparticle effects are included.
One obtains the so-called optical gaps. However, Fig. 9 shows
that the differences between the �SCF excitation energies
and the KS gaps from DFT-LDA calculations are smaller than
30 meV for all NCs with more than one tin atom. Hence, there
seems to be a cancellation of excitonic and quasiparticle effects
in the hydrogenated Sn NCs. This fact seems to be a general
observation for nanostructures.44,79 Similar results were re-
ported for Si, Ge, SnTe, PbSe, and PbTe nanodots.5,44,72,80 In
case of SnTe, PbSe, and PbTe nanodots, the underestimation
of the excitation energy identified with the KS gaps compared
to the results of the �SCF method amounts up to 50 meV,72,80

which is in the same order of magnitude as our findings.

D. Topological transition

The monotonous decrease of the fundamental gaps with
increasing NC diameter as shown in Figs. 6 and 9 suggests
that the gap shrinks in such a way that the band inversion
between the LUMO levels transforming as atomlike s levels
and the HOMO levels transforming like atomlike p levels may
happen in agreement with the findings for bulk α-tin (see Sec.
III B). In Sec. III B it was shown that in the bulk case the s-like
�6c level lies below the p-like �8v state. Since the ordering
in case of the nanocrystals is inverted with respect to the bulk
as discussed above in this section, and the gap decreases with
increasing NC size, there must be a topological transition for
increasing NC diameter where the energetic level ordering of
the �6c and �8v states is interchanged.

As it is computationally too expensive to investigate this
topological transition by ab initio calculations, we fit the
energetic HOMO and LUMO positions to an inverse diameter
dependence such that for infinite diameter the negative bulk
band gap is reproduced [cf. Fig. 10(a)]. As shown in Fig. 7
for Sn17H36 the HOMO (LUMO) levels possess �8v (�6c)
character. The spin-orbit split-off HOMO state with bulk �7v

symmetry is displayed for comparison. We found the crossing
of HOMO and LUMO states to occur around 11.46 nm.
For comparison the corresponding TB results are plotted in
Fig. 10(b). NCs up to 19 335 Sn atoms and 4092 H atoms
are investigated. The TB results for the diameter for level
crossing is 12.7 nm as displayed in Fig. 10(b) which is in
very good agreement to the ab initio value. However, the
identification of the transition within TB is difficult due to
the problem of identification of the symmetry character of

FIG. 10. (Color online) Diameter dependence of the HOMO
and LUMO level positions are plotted. The respective bulk orbital
symmetries �6c and �8v are indicated. In addition, the energy position
of the first occupied state below the HOMO with �7v symmetry is
also given. (a) The KS eigenvalues from the DFT-LDA calculation
with SOC. The vacuum level of the electrostatic potentials is used as
energy zero. (b) Eigenvalues derived from the diagonalization of the
TB Hamiltonian using the parameters listed in Table III.

the HOMO and LUMO states. Therefore, we have fitted the
diameter dependence similar as for the ab initio values and
identified the critical diameter as the crossing value of the fit
curves for the two levels. The slightly larger diameter found
within the TB approximation is a consequence of a fit of the
TB parameters to the HSE06 band structure of α-tin. As shown
in Fig. 9 the HSE values for the pair excitation energies are
slightly larger than the LDA ones and, hence, result in a level
crossing at somewhat larger diameters.

V. SUMMARY AND CONCLUSIONS

We have presented results of ab initio calculations for
structural, energetic, and electronic properties of α-tin and its
hydrogenated nanocrystals up to Sn525H372. The spin-orbit in-
teraction is taken into account. The influence of many-body ef-
fects on the band ordering and energy gaps have been studied in
detail. The bulk quasiparticle band structure of α-tin has been
used to derive a first-nearest-neighbor tight-binding model
Hamiltonian with a sp3s∗ basis set and SOC. It has been ap-
plied to compute the electronic energy levels also for big NCs
up to a diameter of about 13 nm, i.e., Sn19335H4092. Structural
relaxation of tedrahedrally bonded NCs with a hydrogen passi-
vation of the dangling bonds showed that the spatial rearrange-
ment is more significant for smaller dots while the geometry
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of the biggest NCs is less influenced with respect to the bulk.
The starting Td symmetry is conserved. The Sn-Sn bonds in the
core of the NCs tend to elongation while the bonds closer to the
NC surface are shrinked. The formation and energetic stability
of hydrogenated Sn NCs depends on the NC diameter and the
preparation conditions. There is a general tendency for an ener-
getic favorization of larger NCs under equilibrium conditions.

Comparing the electronic structure of the bulk zero-gap
semiconductor to those of the NCs we observe an inversion
in the ordering of states transforming similar to s and p

states above and below the Fermi level. Calculating the size
dependence of the HOMO-LUMO gaps, we found a decreas-
ing spatial confinement causing a decrease of the gaps with
rising diameter. Consequently, a topological transition where
the level ordering changes for a certain NC size is predicted.
Fitting the diameter dependence of the energetic position of
HOMO and LUMO states in DFT-LDA, we determine the NC
diameter for the topological transition to be approximately
11.5 nm, which fits quite well to the result 12.7 nm obtained
from the calculations in tight-binding approximation.

The lowest two-particle excitation energies have been stud-
ied within different approximations for the electron-electron
interaction, in order to distinguish between quasiparticle and
optical gap. We found that there is an almost cancellation
of quasiparticle and excitonic effects which is in agreement
to previous calculations for NCs made for other materials.
Consequently, the differences of Kohn-Sham eigenvalues for
HOMO and LUMO already give a reasonable description of
the optical gaps.
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TABLE III. First-nearest-neighbor TB parameters for α-Sn in
an orthogonal sp3s∗ model including spin-orbit interaction with a
coupling constant of �0 = 0.68 eV. The values are given in the
notation of Slater and Koster81 and compared to those of Vogl et al.28

All values are in eV.

Parameter This work Ref. 28

Es −7.2029 −5.8700
Ep 0.0032 1.3300
Es∗ 14.1081 5.9000
Vssσ −1.4802 −1.4175
Vs∗s∗σ 0.4795 –
Vspσ 1.9034 1.9536
Vs∗pσ 2.7564 2.5522
Vppσ 3.3555 2.3725
Vppπ −1.6848 −0.6870

APPENDIX: TIGHT-BINDING PARAMETERS FOR α-SN

The HSE + SOC band structure in Fig. 2, more precisely,
14 of their eigenvalues at the high-symmetry points, five at �,
three at X, and six at L are used to fit the first-nearest-neighbor
TB parameters. A basis set of eight (with spin) sp3s∗ orbitals
is applied. The three diagonal intra-atomic matrix elements
Es , Ep, and Es∗ as well as seven interatomic two-center
integrals are taken into account. The interaction between s and
s∗ orbitals is neglected. Three-center integrals of p orbitals
are approximated by a constant A = 1.995 eV. Spin-orbit
interaction is described by one intra-atomic parameter chosen
as �0 = 0.68 eV. The resulting TB parameters are listed in
Table III. The on-site matrix elements Es , Ep, and Es∗ are
chosen in such a way that the zero of energy is at the �8

valence band. Despite the neglect of SOC and ss∗ interaction
in Ref. 28 the obtained matrix elements are similar as that
predicted by Vogl et al. Only the s∗ energy value is much
larger in our fit. However, such large s∗ energies have been
also found for HgTe.27
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