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Weyl fermions are two-component chiral fermions in (3 + 1) dimensions. When coupled to a gauge field,
the Weyl fermion is known to have an axial anomaly, which means the current conservation of the left-handed
and right-handed Weyl fermions cannot be preserved separately. Recently, Weyl fermions have been proposed
in condensed-matter systems named “Weyl semimetals.” In this paper we propose a Weyl semimetal phase in
magnetically doped topological insulators, and study the axial anomaly in this system. We propose that the
magnetic fluctuation in this system plays the role of a “chiral gauge field” which minimally couples to the Weyl
fermions with opposite charges for two chiralities. We study the anomaly equation of this system and discuss
its physical consequences, including one-dimensional chiral modes in a ferromagnetic vortex line, and a novel
plasmon-magnon coupling.

DOI: 10.1103/PhysRevB.87.235306 PACS number(s): 71.90.+q, 03.65.Vf, 73.43.−f, 75.50.Pp

I. INTRODUCTION

In the quantum field theory, a (3 + 1)-dimensional mass-
less Dirac fermion is decomposed to two independent two-
component fermions known as the Weyl fermions. The Weyl
fermion has a definite chirality, lefthanded or righthanded,
determined by the sign of its spin polarization along
the momentum direction.1 Classically, the lefthanded and
righthanded Weyl fermions are decoupled and can be coupled
independently to two gauge fields, leading to a separate charge
conservation. The gauge field that couples differently to Weyl
fermions with two chiralities is called a chiral gauge field.
For example the SU(2) gauge field in the Standard Model is
a chiral gauge field. It is well known that the chiral charge
conservation is violated in a quantum theory of Weyl fermions
in a background gauge field, which is known as the axial
anomaly.2–4

Recently, Weyl fermions have also been introduced into
condensed-matter physics. The Weyl fermions are shown
to be the topologically robust boundary states of (4 + 1)-d
time-reversal (TR) invariant topological insulators (TIs),5 and
the axial anomaly corresponds to a topological response of
the (4 + 1)-d TI. This approach is related to the domain-wall
fermion approach6 and Callan-Harvey effect7 in high-energy
physics. By dimensional reduction, the (4 + 1)-d topological
insulator is reduced to the (3 + 1)-d TI,8–10 and the Weyl
fermion is reduced to (2 + 1)-d surface states of the TI. Weyl
fermions also appear directly in (3 + 1)-d gapless electron
systems, which are named “Weyl semimetals.”4,11–21 Since a
system with both TR and parity (P ) symmetries have all energy
bands doubly degenerate, the Weyl semimetal state can only
be realized in a system breaking TR and/or P symmetry.

A natural question is whether the chiral gauge field can
be realized in the Weyl semimetals, and if yes, what is the
physical consequence. In this paper, we address these questions
in TR breaking Weyl semimetals. We show that generically a
ferromagnetic moment couples to the Weyl fermions as a chiral
gauge field. As an explicit example system, we study a model
of a magnetically doped topological insulator, which can be

driven into the Weyl semimetal phase with strong enough
magnetic moments. The presence of the chiral gauge field
leads to an anomaly equation satisfied by the charge current,
which results in new topological phenomena such as chiral
one-dimensional states in a magnetic vortex, and a topological
coupling between spin fluctuation and plasmons.

II. CHIRAL GAUGE FIELD AND ANOMALY EQUATION

We start with a general discussion of Weyl fermions in
condensed-matter physics. In a weakly interacting crystalline
material, Weyl fermion states generically appear when two
energy bands cross at a generic point �K0 in the Brillouin zone.
The low-energy physics around �K0 is described by a two-
component Hamiltonian h(k) = h̄

∑
i,j=x,y,z vij kiσj , with ki

the momentum away from �K0, and σj the Pauli matrices.
The matrix vij describes the generic linear coupling between
momentum and spin degree of freedom described by σj . By
rotating the basis one can always diagonalize vij , and the
three diagonal components are anisotropic velocities. Without
losing generality, we restrict our discussion on isotropic Weyl
fermions with the simple Hamiltonian h(k) = h̄vf �σ · �k. Our
results on anomaly and chiral gauge field is insensitive to the
anisotropy in the velocity. The sign of the Fermi velocity vf

determines the chirality of Weyl fermion.
According to the Nielsen-Ninomiya theorem,22,23 in a

lattice model the number of Weyl fermions with opposite
chiralities must be equal. Consequently, the minimum number
of Weyl fermions in a Brillioun zone is 2. Moreover, because
TR symmetry preserves the chirality of Weyl fermion, in TR
invariant system the minimum number of Weyl fermions is 4.15

In the following, we focus on the “minimal Weyl semimetal”
which break TR but preserves P , with two Weyl fermions of
opposite chiralities at wave vectors �K0 and − �K0, related to
each other by spatial inversion.

We consider an arbitrary perturbation to the system of two
Weyl fermions. As long as the perturbation is so smooth
that the momentum transfer is much smaller than 2| �K0|,
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the two Weyl fermions remain decoupled. The perturbed
Hamiltonian can be generally written in the second quantized
form as HL = ∫

d3rψ
†
L(r)[h̄vf �σ · (−i �∇)]ψL(r) + δHL, with

the two-component spinor field operator ψL(r) annihilating the
lefthanded Weyl fermions. The perturbation Hamiltonian δHL

has a gradient expansion δHL = ∫
d3rψ

†
L(r)[h̄vf �σ · �aL(r) +

a0L(r) + O(−i∇)]ψL(r), where the higher-order terms con-
taining one or more space-time derivatives has been omitted,
which are marginal or irrelevant in the long-wavelength limit
and does not affect our discussion below.

The field aμL = (a0L,�aL) behaves as a gauge field
with smooth spatial and temporal dependence. Sim-
ilarly one can define the gauge field aμR mini-
mally coupled to the righthanded Weyl fermions with
the Hamiltonian HR = ∫

d3rψ
†
R(r){−h̄vf [−i �∇ + �aR(r)] ·

�σ + a0R(r)}ψR(r). (We would like to note that a similar idea
has been successfully applied to graphene where a strain field
acts as a gauge field.)24,25 Writing the two Weyl fermions into
a four-component Dirac fermion, and including the minimal
coupling to electromagnetic field Aμ, we obtain

H =
∫

d3rψ†(r)[h̄vf ([−i �∇ + �̃A(r)] · �στz + �a(r) · �σ )

+ a0(r)τz + Ã0(r)]ψ(r) (1)

with ψ†(r) = (ψ†
L(r),ψ†

R(r)), Ãμ = Aμ + (aμL + aμR)/2, and
aμ = (aμL − aμR)/2. We see that aμL + aμR contributes a
correction to the electromagnetic field, while aμL − aμR has
different P and TR properties as Aμ, and acts as a chiral
gauge field. In the following, we will consider the perturbation
induced by a ferromagnetic moment fluctuation, which only
contributes to �a since it is TR odd and P even. Therefore we
will take Ãμ = Aμ in the rest of the paper.

As is known from quantum field theory, a Weyl fermion
coupled to a gauge field has an axial anomaly, which means
the classical charge conservation symmetry is broken in the
full quantum theory.1,26,27 The anomaly is described by the
anomaly equation ∂μjμL(R) = (−) 1

32π2 ε
λρμνf

L(R)
λρ f L(R)

μν where
f L(R)

μν = ∂μaνL(R) − ∂νaμL(R). Using the field strength Fμν =
∂μAν − ∂νAμ and fμν = ∂μaν − ∂νaμ, and the charge current
jμ = jμL + jμR and the axial current jμ5 = jμL − jμR , the
anomaly equations can be written as

∂μjμ5 = − 1

16π2
ελρμν(FαβFμν + fλρfμν), (2)

∂μjμ = 1

8π2
ελρμνfλρFμν. (3)

While Eq. (2) is the axial current anomaly that has been
discussed in the literature,4,21 Eq. (3) indicates that the net
charge current also has an anomaly when both chiral gauge
field and electromagnetic field are nonzero, which is the main
focus of this paper.

Different from the axial current jμ5, we know that micro-
scopically the net charge current must be conserved without
anomaly. However, as we will explain in the following, the
anomaly equation (3) is still physically meaningful. As terms
in the perturbative expansion of the Hamiltonian, aμ are
always single valued, so that the right side of Eq. (3) can
be written in a total derivative 1

8π2 ε
λρμνfλρFμν = −∂μj

μ

H with

j
μ

H = − 1
2π2 ε

μνλρaν∂λAρ . Therefore the charge conservation
is restored if we view j

μ

H + jμ as the net charge current.
Physically, jμ is the current contributed by the low-energy
Weyl fermions, while j

μ

H is the “ground-state current” carried
by the occupied states far away from the Fermi surface.
This interpretation can be understood more intuitively by a
comparison with a two-dimensional (2D) quantum Hall state,
which has 1D chiral edge states. The charge conservation of
the edge is broken when an electric field is applied along
the edge. From the edge point of view, this is interpreted
as the 1D chiral anomaly. From the bulk point of view,
this is simply a consequence of the bulk Hall current in the
direction perpendicular to the edge. The bulk Hall current is
a ground-state current, which is contributed by all occupied
electrons and cannot be obtained from low-energy edge state
excitations. The ground-state current j

μ

H in our system is an
analog of the Hall current in two dimensions. The correct
physical interpretation of the anomaly equation (3) is that the
ground state of the Weyl semimetal has a topological response
j

μ

H to the external fields aμ,Aμ, in addition to the current jμ

contributed by low-energy excitations near the Weyl points.
It should be clarified that although jμ + j

μ

H is conserved,
it is generically nonvanished, so that the anomaly equation
describes a nontrivial response of the system, as will be seen
in the latter part of the paper.

III. MICROSCOPIC MODEL

To gain a more concrete understanding of the anomaly equa-
tions, especially to describe the behavior of the high-energy
contribution to the current, we would like to go beyond the low-
energy effective theory approach and consider a microscopic
model. In the following we study a microscopic four-band
model which describes Weyl fermions and chiral gauge field
in magnetically doped topological insulators. By explicit
numerical calculation in a magnetic vortex configuration, we
demonstrate that the net current in the full microscopic model
is consistent with the prediction of the anomaly equation.

It has been suggested that Weyl fermions can be realized
in pyrochlore iridates,12 HgCr2Se4,13 and magnetically doped
topological insulators.14,28 Pyrochlore iridates and HgCr2Se4

have multiple Weyl fermions with the number larger than 2.
A minimal number of Weyl fermions can be achieved in the
magnetically doped Bi2Se3 and TlBiSe2 family of materials,
in which ferromagnetism has also been realized.29–31 Here we
adopt the four-band model32,33 with general mass terms, to
describe these materials,

H = H0 + H1,

H0 = ε(�k) + M(�k)�5 + L1kz�4 + L2(ky�1 − kx�2),

H1 =
∑
ij

mij�ij , (4)

where εk = C0 + C1k
2
z + C2k

2
‖ , M(k) = M0 + M1k

2
z +

M2k
2
‖ . The � matrices are defined as �1,2,3 = σx,y,zτx ,

�4 = τy , �5 = τz, and �ab = [�a,�b]/2i (a,b = 1, . . . ,5).
Ferromagnetism breaks T but preserves P , therefore by
inspecting the symmetry property of � matrices (e.g., Table
III in Ref. 33), we immediately find that only two sets of
� matrices are allowed in H1: �ij = εijkσk and �i4 = σiτz
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(i,j,k = x,y,z). Generally �12 and �34 can be induced by
z-direction magnetization, while (�14,�24) and (�23,�31)
originate from in-plane magnetization. It is shown that �14,
�24, and �12 induce two Weyl fermions while �23, �31, and
�34 yield a nodal ring.15 In order to consider the coupling
between Weyl fermion and the ferromagnetic fluctuation,
we focus on the simple case with H1 = U0�12 with two gap
closing points when |U0| > |M0|, which can be described by
Weyl fermions. Then we project the perturbed Hamiltonian
H ′ = L1δkzτy + L2(δkyσxτx − δkxσyτx) + ∑

i=x,y,z(μiσi +
νiσiτz) into the subspace of two Weyl fermions (gap closing
points), where �μ and �ν denote the magnetic fluctuation and
δ�k is the momentum expanded around gap closing points.
Up to the first order for momentum and the second order for
magnetic fluctuation, we recover the effective Hamiltonian
(1) for the Weyl fermions coupled to a chiral gauge field. The
details of microscopic derivation are shown in Appendix A.

IV. PHYSICAL CONSEQUENCES OF THE ANOMALY
EQUATION

Defining the chiral magnetic field �b = ∇ × �a and the chiral
electric field �e = ∂ �a

∂t
, Eq. (3) can be rewritten as

∂ρ

∂t
+ �∇ · �j = 1

2π2
(�b · �E + �e · �B), (5)

with ρ and �j the charge density and current, respectively. In
the following we will study the physical consequences of the
two terms on the righthand side of this equation.

A. The effect of chiral magnetic field

The first term �b · �E describes the effect of a chiral magnetic
field parallel to the electric field. To gain some intuition we first
consider the Weyl fermion Hamiltonian (1) in a uniform chiral
magnetic field �b = b0êz. The energy spectrum of this system
consists of Landau levels E±,α(n) = ±h̄vf

√
k2
z + 2b0n with

n = 1,2, . . . and α = ± denoting two Dirac cones, similar to
the Landau levels by a magnetic field. In addition, there are
two zeroth Landau levels, both with the dispersion Eα(0) =
−h̄vf kz (α = ±), as shown in Fig. 1(b). It should be noticed
that the two zeroth Landau levels are one-dimensional modes
with the same velocity [Fig. 1(b)], in contrast to the opposite
velocities for the case of an ordinary magnetic field �B = B0êz

shown in Fig. 1(a). There are two 1D chiral fermion modes
per flux quanta of �b field. In this case, the anomaly equation
(5) reduces to the chiral anomaly of 1D chiral fermions.34,35

With the understanding of the consequence of a uniform
chiral magnetic field, we now consider a more realistic
finite-size system described by the four-band model (4) with
a magnetic vortex configuration shown in Fig. 1(c). A key
difference of the chiral gauge field from the electromagnetic
gauge field is that the gauge vector potential �a is physical
and thus has to be single valued. Therefore the net flux of
�b = ∇ × �a must vanish in a finite system (since �a = 0 outside
the system). To see the consequence of this effect we con-
sider the magnetic vortex configuration m14 = −W (r) sin θ ,
m24 = W (r) cos θ , with r the radial coordinate and θ the
angular coordinate. m12 = U0 and all the other mij = 0. The
magnetization amplitude W (r) is a constant W0 for r < R1

(a)

kz kz

E E

(c) (d)

(b)

b�

R1

R2

j
hhhh

Wo

FIG. 1. (Color online) The Landau level spectrum of a massless
Dirac fermion is plotted (a) for a uniform magnetic field �B and
(b) for a uniform “chiral magentic field” �b. (c) A chiral magnetic
field can be generated by the magnetic vortex configuration in
a topological insulator cylinder. Here the vector �b indicates the
direction of the chiral magentic field. (d) Top view of the magnetic
vortex configuration with the magnetization W (r) = W0 in the regime
r < R1 and drop to zero when r = R2.

and drops to zero for r > R2, as shown in Figs. 1(d) and 2(a).
The corresponding “chiral” magnetic-field strength is shown
by the red line in Fig. 2(a), which is positive for r < R1 and
negative for R1 < r < R2. The total flux is zero since there
is no magnetization for r > R2. Therefore, the number of
chiral modes in region r < R1 is the same as that of antichiral
modes in region R1 < r < R2, which is confirmed by our
numerical calculation shown in Figs. 2(b)–2(d). The detail of
the numerical method is given in Appendix B. The energy
spectrum can be obtained as a function of the momentum
kz and the angular momentum Jz. The kz dispersion for states
with angular momentum Jz = 1/2 is shown in Fig. 2(b), which
contains chiral and antichiral modes with spatially localized
wave functions shown in Fig. 2(d). Indeed we see that the
chiral and antichiral modes are spatially separated. For higher
angular momentum Jz, one pair of such chiral and antichiral
modes exist for each angular momentum but the inner chiral
mode moves outwards, as shown in Fig. 2(e). This is similar
to the behavior of Landau-level orbits in a uniform magnetic
field. For large enough Jz the chiral modes start to overlap with
the antichiral mode at the boundary region R1 < r < R2, as
shown in Fig. 2(c). As is expected, the number of chiral modes
is determined by the total flux of �a in region r < R1.

B. The effect of the chiral electric field

In an electric field �E = Eẑ parallel to �b, the 1D anomaly
of the chiral modes describes a charge generation around the
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FIG. 2. (Color online) (a) The radial dependence of chiral vector potential (blue line), and the chiral magnetic field bz (red line) for a
ferromagnetic vortex. (b) The energy dispersion as a function of kz along a ferromagnetic vortex line with the total angular momentum Jz = 1

2 .
The red and black lines indicate the dispersions of two zero modes. (c) The energy dispersion of two zero modes for different Jz = n + 1

2 . The
gap observed for large Jz, due to the finite-size effect, gives a cutoff of the total number of chiral modes. The radial wave functions for two
chiral modes at kz = 0 with total angular momentum (d) Jz = 1

2 and (e) Jz = 7
2 . Here the black line is for the wave function of the inner chiral

mode around r = 0 and the red line for the one at the outer boundary r ∼ R1,2. The parameters of the four-band model are taken to be M0 = 0,
M1 = 0.342 eV Å2, M2 = 18.25 eV Å2, B0 = 1.33 eV Å, A0 = 2.82 eV Å, U0 = 0.1 eV, and W0 = 0.06 eV.

center of the system, while the charge on the boundary is
annihilated. This is a consequence of the ground-state current
�jH flowing along the radial direction towards the center,
as shown in Fig. 1(d), which can be measured in transport
experiments. In other words, the consequence of the anomaly
equation (5) in this configuration is equivalent to a quantum
Hall effect with Hall current �jH .20

The second term on the righthand side of the anomaly equa-
tion (5) describes the combination effect of a magnetic field
and a “chiral” electric field. Let us consider a uniform magnetic
field �B = B0ẑ and a uniform vector potential �a = az(t)ẑ
changing adiabatically in time. The anomaly equation leads
to δρ = G

2π
δaz, with G = eB0

h
the Landau-level degeneracy.

Therefore the change of az leads to a charge density modulation
proportional to it. The Landau-level spectrum for the four-band
model (4) in Fig. 3(a) possesses two zeroth Landau levels
with the opposite velocities but the same spin polarization.
Consequently, the exchange coupling of �a = azẑ with the
zeroth Landau-level states is equivalent to a scalar potential,
which shifts the chemical potential and leads to the change of
charge density.

Since this term couples charge density and magnetization, it
leads to an interesting physical consequence of the hybridiza-
tion between the plasmon and magnon modes. Let us consider

that the Fermi energy is at the two zeroth modes of the Landau
levels. Correspondingly, the effective action of this system is
given by

S0 =
∫

d2q

(2π )2

{
[A0(q) + az(q)]�RPA[A0(−q) + az(−q)]

+A0(q)G−1
A A0(−q) + az(q)G−1

a az(−q)
}
, (6)

(b)

kz (1/A)

E
 (

eV
)

vck

ωω ωω
// // ωω ωω

p

(a)

FIG. 3. (Color online) (a) The Landau levels for the four-band
model (5) in a uniform magnetic field. (b) The imaginary part of
the correlation function 〈az(q)az(−q)〉. Here we take ω0/ωp = 0.1,
vs = 0.
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where q = (ω,k), �RPA is the RPA correction due to electron-

electron interaction and given by �RPA ∼ −ω2
p

ω2 k2 in the small
k limit k 	 ω, GA ∼ k−2 is the free photon propagator, and
Ga ∼ 1

q2−ω2
0

is the magnon with the gap ω0. We can integrate

out the A0 field, leading to

Sa
eff =

∫
d2q

(2π )2
az(q)

(
G−1

a + �RPAG−1
A

�RPA + G−1
A

)
az(−q). (7)

Now the second term is given by − ω2
pk2

ω2−ω2
p
, leading to G−1

a +
�RPAG−1

A

�RPA+G−1
A

∼ ω2 − k2 − ω2
0 − ω2

pk2

ω2−ω2
p
. We note that when ω ∼

ωp, the coefficient before the k2 term will diverge, which
indicates that a quasiparticle excitation appears at the plasmon
frequency for the spin-correlation function. In the above
expression, we have neglected the velocities, which should be
different for light and for spin waves. After recovering the cor-
rect velocities, we obtain the spin-correlation function given

by 〈az(ω,k)az(−ω, − k)〉 ∼ (ω2 − v2
s k

2 − ω2
0 − ω2

pv2
c k

2

ω2−ω2
p+i0+ +

i0+)−1, with magnon velocity vs , Fermi velocity vc, plasmon
frequency ωp, and magnon excitation gap ω0. As plotted in
Fig. 3(c), the correlation function has two poles, of which
one corresponds to the intrinsic magnon excitation with the
frequency around ω0, while the other only appears for finite
k with the intensity proportional to k2 and is induced by the
plasmons with frequency around ωp. The plasmon frequency
can be estimated as ∼35 meV for Weyl fermions36 with
dielectric constant ∼100, Fermi velocity ∼6.85 × 105 m/s,
and electron density ∼1019 cm−3. Such an additional mode in
the magnon spectrum can be observed in neutron-scattering
experiments and compared with the plasmon frequency ωp

determined by reflection spectroscopy or electron energy-loss
spectroscopy.

V. CONCLUSION AND DISCUSSIONS

In conclusion, in this paper we have proposed the realization
of chiral gauge field in Weyl semimetals, and its physical
consequences due to axial anomaly. We discussed the general
anomaly equations induced by chiral gauge field and elec-
tromagnetic gauge field. Based on both low-energy effective
theory approach and numerical results in a microscopic model
of doped topological insulators, we propose two physical
consequences of the anomaly, the chiral modes in magnetic
vortices, and the magnon-plasmon coupling. An open question
is whether it is possible to write down a topological effective-
field theory to characterize the transport properties of the Weyl
semimetals, as in the topological insulators.5,16,37 Since there
are gapless fermions in Weyl semimetals, it is not clear whether
a local bosonic effective-field theory can be obtained.

In the end of this paper, we would like to discuss the
feasibility of experimental observation of the predicted effects.
The main condition for the realization of the Weyl semimetal
phase is that the exchange coupling due to magnetization
is larger than the band gap in the paramagnetic phase.
By substituting the atoms, it is possible to tune the band
gap of topological insulators, and even induce the phase
transition between trivial and nontrivial phases, which has
been realized in TlBi(S1−δSeδ)2,38–40 and Cr-doped Bi2Se3,41

recently. Near the transition point, the bulk gap is minimized
and can be easily overcome by the exchange coupling from
magnetic doping. The ferromagnetism in Cr- or Fe-doped
Bi2Te3 and Sb2Te3 has been observed in experiment,29–31,41–44

therefore the magnetically doped Bi2Se3 and TlBiSe2 family
of materials is the suitable platform for the realization of a
minimal number of Weyl fermions. Different materials are
suitable for the two experimental proposals we made. The
Cr-doped Bi2Te3 or Sb2Te3

30,42,43 exhibits ferromagnetism
along the z direction, so the topological plasmon-magnon
coupling is expected in this system, which can be confirmed
by comparing the neutron-scattering experiment with reflec-
tion spectroscopy or electron energy-loss spectroscopy. In
another material, Mn-doped Bi2Se3,44 it is shown that the
magnetization mainly lies in the plane of the film in the
ferromagnetic phase. Since the underlying lattice has threefold
rotation symmetry, the ferromagnetic vortex configuration
can be realized as the intersection of three 120◦ magnetic
domain walls. In general, magnetic vortex configuration can
be realized as long as a discrete rotation symmetry C3,C4,
or C6 is spontaneously broken. In generic Weyl semimetals,
the property of magnetic excitations depends on the material
details, such as magnetic structures, material parameters, and it
is an interesting direction to understand the interplay between
the chiral Weyl fermions and different types of magnetic
excitations in realistic materials. Here the disorder effect, such
as the scattering between two Weyl fermions, has not been
considered. Since the Weyl fermion is always gapless, there
are always low-energy fermionic excitations accompanying
the topological contribution to the transport. The interplay
between the topological and nontopological contributions to
the transport is an interesting question for future study.
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APPENDIX A: MICROSCOPIC DERIVATION OF THE
EFFECTIVE MODEL FOR WEYL FERMIONS

In this Appendix, we will give a microscopic derivation of
the effective model for the coupling between Weyl fermions
and magnetic fluctuations. Let us start from the four-band
Hamiltonian with general mass terms [Eq. (4) in the main
text]. For simplicity, we only consider the case with m12 = U0

and other mij = 0. The effective Hamiltonian for this case is
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given by

H0 +H1 =M(�k)�5 + L1kz�4 + L2(ky�1 − kx�2) + m12�12,

(A1)

where M(k) = M0 + M1k
2
z + M2k

2
‖ and the εk term is ne-

glected for simplicity. The energy dispersion of the above
Hamiltonian is given by

Est = s

√
L2

2

(
k2
x + k2

y

) + (√
M2 + L2

1k
2
z + t |U0|

)2
(A2)

with s,t = ±. It is clear that for t = +, there is always a gap
between the branches |+,+〉 and |−,+〉. Here we use |s,t〉 to
denote the eigenstate with the eigenenergy Est . However when
t = −, the gap between |+,−〉 and |−,−〉 can be closed when
the condition M2 + B2

0k2
z = U 2

0 and kx = ky = 0 is satisfied.
For simplicity, let us neglect the quadratic term in M first,
then it is clear that when |U0| > |M0|, the above condition
is satisfied for some momentum kz. Therefore, the bulk gap
is closed when |U0| > |M0| with two closing points given by
kz = ±K0 and K0 = 1

L1

√
U 2

0 − M2
0 . Next we need to solve

the eigenwave functions at two gap closing points. At �k =
(0,0,K0), the eigenequation is written as

(M0τ3 + L1K0τ2 + U0σ3)� = E�, (A3)

where the quadratic term is neglected. Let us denote the wave
function ξ to satisfy (M0

U0
τ3 + L1k0

U0
τ2)ξα = αξα , and σ3χβ =

βχβ , α,β = ±, then the corresponding eigenstates are given
by

|+,+〉 = χ+ ⊗ ξ+, |+,−〉 = χ− ⊗ ξ+,
(A4)

|−,+〉 = χ− ⊗ ξ−, |−,−〉 = χ+ ⊗ ξ−

with ξ and χ given by

ξ+ = 1√
N+

(
iL1K0

M0 − U0

)
, ξ− = 1√

N−

(
iL1K0

M0 + U0

)
,

χ+ =
(

1

0

)
, χ− =

(
0

1

)
, (A5)

where N± are the normalization factors and we assume U0 > 0
for simplicity. Now we consider the effective Hamiltonian
expanded around (0,0,K0),

H ′ = L1δkzτy + L2(δkyσxτx − δkxσyτx)

+
∑

i=x,y,z

(μiσi + νiσiτz) , (A6)

and project it into the subspace spanned by the basis |−,−〉
and |+,−〉 with the second-order perturbation

Hmn = 〈m|H1|n〉 +
∑

l =m,n

1

2
〈m|H1|l〉〈l|H1|n〉

×
[

1

Em − El

+ 1

En − El

]
, (A7)

which leads to the following Hamiltonian:

H
(1)
eff = −M0

U0
vz −

(
L2

1K0

U0
δkz − uz

)
σz

+
(

− L2δkx + L1K0

U0
vx

)
σx

+
(

− L2δky + L1K0

U0
vy

)
σy (A8)

for the first-order perturbation and

H
(2)
eff = −M0

U 2
0

(uxvx + vyuy)

− 1

2U0

(
v2

z − u2
x − u2

y − M2
0

U 2
0

∑
i

v2
i

)
σz

− L1K0

U 2
0

vzuxσx − L1K0

U 2
0

vzuyσy (A9)

for the second-order perturbation. Here we only keep the
momentum term up to the first order and �u, �v terms up to
the second order. If we only look at the momentum term, then
clearly this just provides the Weyl fermion in three dimensions.
For the expansion near the (0,0, − K0) point, we can perform
a similar calculation and obtain

H
(1)
eff = −M0

U0
vz −

(
− L2

1K0

U0
δkz − uz

)
σz

+
(

L2δkx + L1K0

U0
vx

)
σx +

(
L2δky + L1K0

U0
vy

)
σy

(A10)

for the first-order perturbation and

H
(2)
eff = −M0

U 2
0

(uxvx + vyuy)

− 1

2U0

(
v2

z − u2
x − u2

y − M2
0

U 2
0

∑
i

v2
i

)
σz

− L1K0

U 2
0

vzuxσx − L1K0

U 2
0

vzuyσy (A11)

for the second-order perturbation. Therefore eventually our
effective low-energy Hamiltonian for the system takes the form

Heff = h̄vf z(δkzσzτz + azσz) + h̄vf ‖
∑
i=x,y

(δkiσiτz + aiσi),

(A12)

where σ denotes spin, τ represents two Dirac cones at (0,0, ±
K0), the Fermi velocity h̄vf z = −L2

1K0

U0
, h̄vf ‖ = −L2, and the

chiral gauge potential �a is given by

h̄vf zaz = μz − 1

U0

(
ν2

z − μ2
x − μ2

y − M2
0

U 2
0

∑
i

ν2
i

)
, (A13)

h̄vf ‖ax = L1K0

U0
νx − L1K0

U 2
0

νzμx, (A14)

h̄vf ‖ay = L1K0

U0
νy − L1K0

U 2
0

νzμy. (A15)
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Therefore, the perturbation from ferromagnetic fluctu-
ation can only shift the position of the touching point
of a single Weyl fermion, behaving like a gauge field.
Furthermore, the ferromagnetic type of coupling breaks
time reversal but preserves parity, therefore it cannot
be a conventional gauge field like the electromagnetic
field. So finally the only choice is the chiral gauge
field.

APPENDIX B: NUMERICAL METHOD FOR THE
CALCULATION OF THE CHIRAL MODE IN THE

FERROMAGNETIC VORTEX CORE

In this Appendix, we describe our numerical method for the
calculation of energy dispersion and eigenwave function for
the ferromagnetic vortex configuration. We start from the four-
band model (4) in the main text and in the cylinder coordinate
(r,θ,z), the Hamiltonian takes the form

H = H0 + H1,

H0 = M(�k)τz + L1kzτy + L2(kyσxτx − kxσyτx) =

⎛
⎜⎜⎜⎜⎝

M(�k) 0 −iL1kz iL2k−
0 M(�k) −iL2k+ −iL1kz

iL1kz iL2k− −M(�k) 0

−iL2k+ iL1kz 0 −M(�k)

⎞
⎟⎟⎟⎟⎠ , (B1)

H1 = −W0 sin θσxτz + W0 cos θσyτz + U0σz =

⎛
⎜⎜⎜⎝

U0 −iW0e
−iθ 0 0

iW0e
iθ −U0 0 0

0 0 U0 iW0e
−iθ

0 0 −iW0e
iθ −U0

⎞
⎟⎟⎟⎠

where we have ∂x = cos θ∂r − sin θ
r

∂θ and ∂y = sin θ∂r + cos θ
r

∂θ , therefore k− = kx − iky = −i∂x − ∂y = −i(cos θ∂r −
sin θ

r
∂θ ) − (sin θ∂r + cos θ

r
∂θ ) = −ie−iθ ∂r − e−iθ

r
∂θ , k+ = −i∂x + ∂y = −i(cos θ∂r − sin θ

r
∂θ ) + (sin θ∂r + cos θ

r
∂θ ) = −ieiθ ∂r +

eiθ

r
∂θ , and k2

x + k2
y = −( ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂
∂θ2 ). The above Hamiltonian has in-plane rotation symmetry along the z axis and

the corresponding total angular momentum can be defined as Jz = Lz + 1
2σz where Lz = −i ∂

∂θ
and the Pauli matrix

σz denotes the spin part. With the in-plane rotation symmetry, the wave-function ansatz can be taken as ψ̃(r,θ ) =
[einθf1(r),ei(n+1)θf2(r),einθf3(r),ei(n+1)θf4(r)]T where the total angular momentum Jz = n + 1

2 . The Hamiltonian is changed to

H̃ =

⎛
⎜⎜⎜⎜⎝

M̃(n) + U0 −iW0 −iL1kz L2
(
∂r + n+1

r

)
iW0 M̃(n + 1) − U0 L2

( − ∂r + n
r

) −iL1kz

iL1kz L2
(
∂r + n+1

r

) −M̃(n) + U0 iW0

L2
( − ∂r + n

r

)
iL1kz −iW0 −M̃(n + 1) − U0

⎞
⎟⎟⎟⎟⎠ , (B2)

whereM̃(n) = M0 + M1k
2
z − M2( ∂2

∂r2 + 1
r

∂
∂r

− n2

r2 ) and the wave function is now given by ψ̃ = [f1(r),f2(r),f3(r),f4(r)]T . Let us
introduce the new wave function ψ as ψ̃ = 1√

r
ψ , then the normalization relation

∫
rdrdθ |ψ̃ |2 = 1 is changed to

∫
drdθ |ψ |2 = 1,

and the effective Hamiltonian is rewritten as

H =

⎛
⎜⎜⎜⎜⎝

M(n) + U0 −iW0 −iL1kz L2
(
∂r + n+1/2

r

)
iW0 M(n + 1) − U0 L2

( − ∂r + n+1/2
r

) −iL1kz

iL1kz L2
(
∂r + n+1/2

r

) −M(n) + U0 iW0

L2
( − ∂r + n+1/2

r

)
iL1kz −iW0 −M(n + 1) − U0

⎞
⎟⎟⎟⎟⎠ , (B3)

where M(n) = M0 + M1k
2
z − M2( ∂2

∂r2 − n2−1/4
r2 ). This Hamiltonian can be written in a compact form,

H =
[
M0 + M1k

2
z − M2

(
∂2

∂r2
− (n + 1/2)2

r2

)]
τz − M2

n + 1/2

r2
σzτz

+L1kzτy + iL2
∂

∂r
σyτx + L2

n + 1/2

r
σxτx + W0σyτz + U0σz. (B4)

We can discretize the Hamiltonian (B3) and solve the
eigenstate problem for the radial equation numerically. The
corresponding result is shown in Fig. 2 of the main text. For

n = 0, we indeed find two gapless modes with the opposite
velocities along the z direction, and these two gapless modes
are spatially separated with one wave function mainly staying
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at r = 0 and the other one at r = R, as shown by the red
and black lines in Figs. 2(b) and 2(d) of the main text.
However, with increasing n, a gap is opened between the two
low-energy modes, as shown in Fig. 2(c) in the main text.
To get more analytical understanding of the radial equation,
we consider the r → ∞ limit with U0 = 0, kz = 0, where the
radial Hamiltonian is simplified as H = (M0 − M2

∂2

∂r2 )τz +
W0σyτz + iL2σyτx

∂
∂r

. With the wave-function ansatz ψ ∼
eλrφ, we obtain the equation L2λφ = [(M0 − M2λ

2)σyτy +
W0τy]φ for the zero modes. Since [σyτy,τy] = 0, we can take
the common eigenstates of σyτy and τy for φ, σyτyφts = tφts

and τyφts = sφts , then the wave function can be expressed
as ψ = ∑

α,t,s cα,tse
λα (t,s)rφt,s , with λ given by λα(t,s) =

−tL2+α
√

L2
2+4M2(tsW0+M0)
2M2

. The existence of the edge mode
requires λ+(+,+)λ−(+,+) > 0 or λ+(+,−)λ−(−,−) > 0,
leading to the following different regimes: in the normal regime

M0M2 > 0, the system has no zero mode when |W0| < |M0|
and one zero mode when |W0| > |M0|, while in the inverted
regime M0M2 < 0, the system has one zero mode when
|W0| > |M0| and two zero modes when |W0| < |M0|. Taking
into account the kz dependent term, it turns out that one zero
mode case corresponds to the 1D chiral state and two zero
modes case is the 1D helical state. However, since time reversal
is broken in the present system, the helical state is not protected
and can be gapped. Therefore the only robust state is the chiral
state when |W0| > |M0|. We emphasize that the transition
at |W0| = |M0| exactly corresponds to the condition for the
appearance of the gapless Weyl fermions for the uniform
magnetization. For the finite r , the terms proportional to 1

r

and 1
r2 will push the chiral mode around r = 0 outwards, thus

with increasing the angular momentum number n, the wave
function of the chiral mode near r = 0 extends to the large r

region and mixes with the chiral mode at r = R, opening a gap.
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