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Effect of Dresselhaus spin-orbit coupling on spin dephasing in asymmetric and macroscopically
symmetric (110)-grown quantum wells
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We develop a microscopic theory of electron spin dephasing in (110)-grown quantum wells where the electron
scattering time is comparable to or exceeds the period of spin precession in the effective magnetic field caused by
spin-orbit coupling. Structures with a homogeneous and fluctuating Rashba field, which triggers the dephasing
of electron spins aligned along the growth direction, are analyzed. We show that the Dresselhaus field, which
is always present in zinc-blende-type quantum wells, suppresses the spin dephasing enabling a very long spin
lifetime of conduction electrons. The dependence of the spin lifetime on the electron mobility is found to be
nonmonotonic reaching the minimum in structures where the scattering time is comparable to the period of spin
precession in the effective magnetic field.
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I. INTRODUCTION

The spin dynamics of free electrons in zinc-blende-type
quantum wells (QWs) is largely determined by the electron
subband spin-orbit splitting which can be fruitfully treated as
a wave-vector-dependent effective magnetic field acting upon
the spins of individual electrons.1–4 The field occurs due to the
lack of space inversion symmetry in a particular QW and can
originate from bulk, structure, or interface inversion asymme-
try, or their joint action. The field direction and magnitude de-
pend on the QW crystallographic orientation and design as well
as external gate voltage,5–12 which opens a way towards the
spin manipulation and spin-based semiconductor devices. The
interplay of different contributions to the effective field in mod-
ulation doped QWs leads also to an anisotropy in spin-flip Ra-
man scattering,13 and modifies the weak antilocalization14,15

and Shubnikov–de Haas effects.16 Of special interest are QWs
grown on the (110) substrate. The effective magnetic field
caused by bulk inversion asymmetry (Dresselhaus field) in
such structures points along the growth direction and, there-
fore, does not cause the precession of electron spins oriented
along the QW normal.1 This enables the observation of very
long electron spin lifetimes up to hundreds of nanoseconds
at low temperatures which are unfeasible for two-dimensional
structures of other crystallographic orientations.17–21

The electron spin lifetime in (110)-grown QWs at low
temperature is likely to be limited by the spin precession in
the homogeneous Rashba field present in asymmetric QWs or
the unavoidable fluctuating Rashba field that emerges due to
domain structure formation or inhomogeneous distribution of
charged impurities in doped structures.22 The Rashba field lies
in the QW plane and starts up the spin dephasing. The previous
theoretical studies of electron spin dephasing in (110)-grown
QWs with the homogeneous23,24 or fluctuating25–27 Rashba
field were limited to the collision-dominated regime of spin
dynamics, where the scattering time is much smaller than
the spin precession period in the effective magnetic field.
Such a consideration is inapplicable for QWs with high
electron mobility and/or strong spin-orbit coupling, which are
now technologically available. In this paper, we develop the
microscopic theory of electron spin dephasing for arbitrary
ratio between the scattering time and the spin precession

period. We show that the interplay of Rashba and Dresselhaus
fields leads to dynamic coupling of the in-plane and out-of-
plane spin components. The dependence of the spin lifetime
on the electron mobility is nonmonotonic and reaches the
minimum in QW structures where the scattering time is
comparable to the period of spin precession in the effective
magnetic field. In high-mobility QWs, the Dresselhaus field
efficiently suppresses the spin dephasing allowing one to reach
very long spin lifetimes.

II. UNIFORM RASHBA FIELD

First, we consider asymmetric (110)-grown QWs with a
spatially homogeneous Rashba field. The spin-orbit splitting
of the electron subband, linear in the wave vector, in such
QWs (Cs point group) is generally described by three linearly
independent parameters α1, α2, and β (Ref. 28; see also Refs.
29 and 30). The corresponding Hamiltonian has the form

Hso = α1σxky − α2σykx + βσzkx, (1)

where σj (j = x,y,z) are the Pauli matrices, kj are the
components of the electron wave vector, x ‖ [11̄0] and y ‖
[001̄] are the in-plane axes, and z ‖ [110] is the QW normal.
The parameters α1 and α2 are nonzero in QWs with structure
inversion asymmetry only, while β requires bulk inversion
asymmetry and describes the Dresselhaus splitting in (110)-
oriented QWs. The difference between α1 and α2 is usually
small because it is caused by an interference effect between
the cubic structure of the crystal lattice and the QW structure
inversion asymmetry.28 Therefore, we assume in what follows
that α1 = α2 = α. The Hamiltonian (1) is similar to the
Zeeman term with the effective Larmor frequency

�k =
(

�R

ky

kF

,−�R

kx

kF

,�D

kx

kF

)
, (2)

where �R = 2αkF /h̄ and �D = 2βkF /h̄ are the frequencies
corresponding to Rashba and maximal Dresselhaus splitting
at the Fermi level, and kF is the Fermi wave vector. Following
the experiments7,8,19,21 we consider the degenerate electron gas
and study the spin dynamics at the Fermi level. The frequency
�D can be estimated as (γc/h̄)〈k2

z 〉,1 where γc is the bulk

235301-11098-0121/2013/87(23)/235301(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.235301


A. V. POSHAKINSKIY AND S. A. TARASENKO PHYSICAL REVIEW B 87, 235301 (2013)

FIG. 1. (Color online) (a) Dependence of the Larmor frequency
�k corresponding to the effective magnetic field on the wave vector
k at the Fermi circle. (b) The (xz̃) plane containing �k for all the
wave vectors k. Precession of electron spins initially aligned along
the QW normal z with the frequency �k leads to the emergence of
an average spin component along y.

Dresselhaus constant and 〈k2
z 〉 ≈ (π/d)2 with d being the QW

width. The estimation gives �D ∼ 1011 s−1, 2 × 1011 s−1, and
7 × 1011 s−1 for QWs based on GaAs (γc = 24 eV Å3), InAs
(γc = 42 eV Å3), and GaSb (γc = 170 eV Å3), respectively
(see Ref. 31), for d = 200 Å and the electron density
2 × 1011 cm−2 corresponding to kF = 1.1 × 106 cm−1. The
frequency �R can be tuned in a wide range depending on
the structure design and is about 2 × 1011 s−1 for GaAs QWs
with the same width and electron density in the perpendicular
electric field 105 V/cm.28

Figure 1(a) shows the distribution of the frequency �k on
the wave vector at the Fermi level. The distribution is strongly
anisotropic; the frequency �k contains both the in-plane and
out-of-plane components. However, one can notice that the
frequencies �k corresponding to various wave vectors all lie
in a certain plane (xz̃) [see Fig 1(b)]. The (xz̃) plane is obtained
from (xz) by the frame rotation around the x axis with the angle
θ = arctan(�R/�D).

A. Time dependence

The fact that the plane of the �k vectors does not contain
the growth direction z nor is perpendicular to z is a feature
of low-symmetry QWs and leads to the coupling of the in-
plane and out-of-plane spin components. This is illustrated in
Fig. 1(b) which shows the precession of electron spins initially
oriented along the QW normal. In the ballistic regime, i.e., the
absence of scattering, the time dependence of electron spin at
each point k on the Fermi circle is given by

sk(t) = �k · s(0)

�2
k

�k +
[

s(0) − �k · s(0)

�2
k

�k

]
cos(�kt)

+ �k × s(0)

�k
sin(�kt), (3)

where s(0) is the initial spin. The time evolution of the
components of the total electron spin

S(t) =
∑

k

sk(t) (4)

is obtained by summation sk(t) over the wave vectors at the
Fermi level, which yields

Sj (t) =
∑
j ′

〈
�k,j�k,j ′

�2
k

〉
Sj ′ (0)

+
∑
j ′

〈
�2

kδjj ′ − �k,j�k,j ′

�2
k

cos(�kt)

〉
Sj ′ (0), (5)

where the angle brackets denote averaging over the direction
of k. The first term on the right-hand side of Eq. (5) presents
the averaged projection of individual electron spins onto the
effective field direction and is time independent. In (110)
QWs, this contribution is present even for the spin polarized
along the QW normal, which is in contrast to (001)-grown
structures where the effective field lies in the QW plane
and the time-independent term vanishes for S(0) ‖ z. The
second term on the right-hand side of Eq. (5) describes spin
oscillations.

Time dependence of the out-of-plane and in-plane compo-
nents of the total spin oriented along the QW normal at t = 0 is
shown by dotted curves in Figs. 2(a) and 2(b). One can see that,
in asymmetrical (110)-grown QWs, the Sz and Sy projections
are dynamically coupled: The dephasing of spins polarized
along the QW normal leads to the emergence of the in-plane
spin component. Both Sz(t) and Sy(t) contain oscillations
which slowly decay in time. Analytical expressions for Sz(t)
and Sy(t) at t > 1/�k can be derived by the stationary phase

FIG. 2. (Color online) Time dependence of the components of
the total electron spin S(t) oriented along the QW normal z at
t = 0. Curves are plotted for �R = �D and different parameters
�Dτ characterizing the electron mobility. Dotted curves correspond
to ballistic transport, τ = ∞, and are plotted after Eq. (5). Dashed
curves present the results of the collision-dominated approximation,
�Dτ 	 1, and are calculated after Eq. (10).
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method, which gives

Sz(t)

Sz(0)
≈

(
1 − �R

��

)
+

√
2�R

π�2
Dt

cos

(
�Rt + π

4

)

+
√

2�4
R

π�2
D�3

�t
cos

(
��t − π

4

)
, (6)

Sy(t)

Sz(0)
≈ −

(
1 − �R

��

)
�R

�D

+
√

2�2
R

π�3
�t

cos

(
��t − π

4

)
,

where �� =
√
�2

R + �2
D . The oscillation frequencies are deter-

mined by the smallest (�R) and the largest (��) magnitudes of
the effective Larmor frequency at the Fermi circle. At t → ∞,
the oscillations vanish and the spin polarization reaches a
stationary value.

The scattering of electrons by static defects or phonons in
real structures leads to the isotropization of spin distribution
in k space which drastically suppresses the spin oscillations. In
the presence of scattering, the spin dynamics can be described
by the kinetic equation

∂sk

∂t
+ sk × �k = g − sk − 〈sk〉

τ
, (7)

where g is the spin generation rate at the Fermi level, e.g., due
to resonant optical pumping with circularly polarized light,
and τ is the scattering time. We assume that g is independent
of the wave-vector direction. The last term on the right-hand
side of Eq. (7) presents a simple form of the collision integral.
Effects of scattering anisotropy on spin dephasing were studied
in Ref. 32.

Solid curves in Figs. 2(a) and 2(b) show the time evolution
of the out-of-plane and in-plane projections of the total electron
spin S(t) oriented at t = 0 along the QW normal. The curves
are calculated numerically after Eq. (7) for different scattering
times τ . As expected, the decrease in the scattering time results
in a suppression of spin oscillations. Surprisingly, the effect
of electron scattering on spin lifetime is more complicated.
A comparison of the different curves in Figs. 2(a) and 2(b)
shows that the shortest spin lifetime T ∼ τ is achieved at
τ ∼ 1/�k. For the frequency �k ∼ 1011 s−1, this condition is
fulfilled at the relaxation time τ ∼ 10 ps, which corresponds
to the mobility limited by electron scattering from impurities
or static defects 3 × 105 cm2/(V s) for GaAs QWs. At both
higher, τ > 1/�k, and lower, τ < 1/�k, mobility the spin
lifetime increases as T ∝ τ and T ∝ 1/(�2

kτ ), respectively.
In the collision-dominated regime �Rτ,�Dτ 	 1, one can

analytically solve Eq. (7) and obtain the master equation for
the total electron spin1

dS
dt

= G − �cd S, (8)

where G = ∑
k g and �cd is the D’yakonov-Perel’ spin-

relaxation-rate tensor, (cd)jj ′ = τ 〈�2
kδjj ′ − �k,j�k,j ′ 〉. For

(110)-grown QWs, the tensor �cd has the form24

�cd = τ

2

⎡
⎢⎣

�2
R + �2

D 0 0

0 �2
R + �2

D �R�D

0 �R�D 2�2
R

⎤
⎥⎦ . (9)

Solution of Eq. (8) with G = 0 and the initial condition S(0) ‖ z

has the biexponential form

Sz(t) = �2
R exp(−γỹt) + �2

D exp(−γz̃t)

�2
R + �2

D

Sz(0),

(10)

Sy(t) = �R�D[exp(−γỹt) − exp(−γz̃t)]

�2
R + �2

D

Sz(0),

where γỹ = (2�2
R + �2

D)τ/2 and γz̃ = �2
Rτ/2 are eigenvalues

of the � tensor. The functions (10) are plotted in Figs. 2(a) and
2(b) by dashed curves and demonstrate the perfect agreement
with the results of numerical calculation for the collision-
dominated regime.

B. Continuous-wave excitation

Besides experiments with time resolution, spin dephasing
is also widely studied at continuous-wave (cw) pumping. In
the regime linear in the pump intensity, the general relation
between the steady-state spin S and the spin generation rate G
has the form

S = T G, (11)

where T can be referred to as the spin lifetime tensor. To
calculate T we solve Eq. (7) for the stationary case following
the procedure described in Ref. 33. We express the spin
distribution function sk via its average value

sk = ζ k + τ�k × ζ k + τ 2�k(�k · ζ k)

1 + �k
2τ 2

, (12)

where ζ k = 〈sk〉 + gτ , sum up Eq. (12) over the wave vector,
and obtain the linear equation set

∑
j ′

〈
�2

kτδjj ′ − �k,j �k,j ′τ

1 + �2
kτ

2

〉
(Sj ′ + Gj ′τ ) = Gj . (13)

Solution of the equation set (13) for the effective Larmor
frequency (2) yields

T = τ√
1 + �2

Rτ 2
√

1 + �2
�τ 2 − 1

×

⎡
⎢⎢⎢⎣

1 + �2
R(1+�2

�τ 2)
�2

�

0 0

0 2 + �2
Rτ 2 −�D (1+�2

Rτ 2)
�R

0 −�D (1+�2
Rτ 2)

�R
�2

Dτ 2 + �2
�

�2
R

⎤
⎥⎥⎥⎦ .

(14)

Equation (14) is one of the principal results of the paper. It
enables one to calculate the steady-state spin polarization for
arbitrary ratio between the scattering time τ and the precession
periods 1/�R and 1/�D and shows that the Dresselhaus
field considerably affects the electron spin dephasing in
(110)-grown QWs.

Figures 3(a) and 3(b) show the dependence of the Sz and
Sy projections of the steady-state spin, caused by excitation
along the QW normal z, on the Dresselhaus field. The
curves are calculated after Eqs. (11) and (14) for different
�Rτ . Despite the fact that the Dresselhaus field points
along the QW normal, it efficiently suppresses the spin
dephasing increasing Sz as well as leads to the emergence
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FIG. 3. (Color online) Dependence of the steady-state spin
components Sz and Sy on the Dresselhaus field for cw spin pumping
along the QW normal z. Solid curves are plotted for different �Rτ and
normalized by Gz/(�2

Rτ ) which determines Sz at �D = 0. Dashed
curves correspond to the collision-dominated regime �R,�D 	 1/τ .

of Sy . The Sz projection [Fig. 3(a)] is determined by the Tzz

component of the spin lifetime tensor. The latter is equal
to 1/(�2

Rτ ) at �D = 0 and increases with the Dresselhaus
field as (�D/�R)

√
1 + �2

Rτ 2 at �Dτ � 1. Such an increase
in the spin lifetime is caused by the stabilizing action of
the Dresselhaus field on the normal spin component. The
in-plane spin projection [Fig. 3(b)] is determined by the off-
diagonal component Tyz which nonmonotonously depends on
the Dresselhaus field. This component linearly increases with
the Dresselhaus field as −�D(1 + �2

Rτ 2)/(�3
Rτ ) at small �D ,

reaches a peak value of −τ (1 + �2
Rτ 2)3/2/[�2

Rτ 2
√

2 + �2
Rτ 2]

at �∗
D = �R

√
(1 + �2

Rτ 2)(2 + �2
Rτ 2), and then saturates to

−(1 + �2
Rτ 2)/�R at �Dτ � 1.

The dependence of the steady-state projections Sz and Sy

on the scattering time τ is shown Fig. 4. In low-mobility
structures, the spin polarization decreases with the increase
in τ , in accordance with the theory of D’yakonov-Perel’ spin
relaxation in the collision-dominated regime. In particular, the
spin lifetime tensor components determining Sz and Sy in this
regime are given by Tzz ≈ (�2

R + �2
D)/[�2

R(�2
R + �2

D/2)τ ]
and Tyz ≈ −�D/[�R(�2

R + �2
D/2)τ ]. At further increase in

the scattering time, the spin polarization reaches a minimum
and then rises linearly with τ (see Fig. 4). Such a behavior
is caused by the transition from the collision-dominated to
the oscillatory regime of spin dynamics (see Fig. 2). In the
oscillatory regime, the Tzz and Tyz components are given by
�2

Dτ/(�R

√
�2

R + �2
D ) and −�Dτ/

√
�2

R + �2
D , respectively.

We note that the nonmonotonic dependence Sz(τ ) is a feature
of low-symmetry QWs and absent, e.g., in (001) QWs

FIG. 4. (Color online) Dependence of the steady-state spin
components Sz and Sy on the scattering time τ for cw spin pumping
along the QW normal z. Curves correspond to different ratio �R/�D .

where Sz ∝ 1/τ in both collision-dominated and oscillatory
regimes.

III. FLUCTUATING RASHBA FIELD

Now, we analyze the spin dephasing in macroscopically
symmetric QWs where the Rashba field arises due to QW
domain structure or inhomogeneous distribution of charged
impurities in the doping layers22,34,35 and fluctuates in the
QW plane around its zero average value. In such systems, the
Larmor frequency �k corresponding to the total effective field
is given by the sum of �D,k = �D(0,0,kx/kF ) and position-
dependent �R,k(ρ) = �R(ρ)(ky/kF , − kx/kF ,0) with ρ be-
ing the in-plane coordinate. The fluctuating Rashba field is
usually weak, therefore, we assume that |�R(ρ)| 	 |�D|,1/τ .

During the spin dephasing, electrons travel in the QW
plane and their spins are affected by the Rashba field of
different strength and sign. The characteristic time of the
Rashba field change for an individual electron τc (correlation
time) is determined by the domain size and electron mobility.
Depending on the ratio between τc and other relevant times,
different scenarios of spin dephasing are realized. Below, we
consider them for the initial condition of spin polarization
along the QW normal.

(i) Large domains, τc � 1/(�2
Rτ ) � 1/(�2

Dτ ), τ . Spin
dephasing occurs in all domains independently. To calculate
the time evolution of electron spin in each domain, we solve
kinetic equation (7) with g = 0 and the initial condition
sk(0) ‖ z. At �R/�D 	 1, the z̃ axis is nearly parallel to the
z axis [see Fig. 1(b)]. As the result, the in-plane component of
the total electron spin in the domain is small. The out-of-plane
component exhibits exponential decay

Sz(t) = Sz(0) exp(−γz̃t), (15)
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with the dephasing time

γz̃ = �2
R(ρ)τ

1 +
√

1 + �2
Dτ 2

. (16)

The net electron spin averaged over all domains is given by

Sz(t) =
∫ ∞

−∞
Sz(t)w(�R)d�R, (17)

where w(�R) is the distribution function of the Rashba field
in the QW plane. Different dephasing rates γz̃ in domains lead
to a nonexponential decay of the net electron spin. The time
dependence Sz(t) is determined by the Rashba field distribution
function. In the particular case of the Gaussian distribution,

w(�R) = 1/

√
2π�2

R exp(�2
R/2�2

R), the dependence has the
form

Sz(t) =
(

1 + 2�2
Rτ t

1 +
√

1 + �2
Dτ 2

)−1/2

Sz(0). (18)

At large times (t � 1/γz̃ but still t 	 τc), the net spin
polarization is determined by domains with weak Rashba field.
The time behavior is independent of the particular form of the
distribution w(�R) and is given by

Sz(t) = w(0)

⎡
⎣π

(
1 +

√
1 + �2

Dτ 2
)

τ t

⎤
⎦

1/2

Sz(0). (19)

The presence of the Dresselhaus spin-orbit coupling leads to a
slowdown of spin dephasing in all domains and, hence, to an
increase in the net spin polarization.

(ii) 1/(�2
Rτ ) � τc � 1/(�2

Dτ ), τ . The process of spin
dephasing occurs in different domains at different rates γz̃,
however, electrons frequently move from one domain to
another. Therefore, the time decay of the net electron spin
is monoexponential

Sz(t) = Sz(0) exp(−γz̃t) (20)

and described by the domain-averaged rate

γz̃ = �2
R(ρ)τ

1 +
√

1 + �2
Dτ 2

. (21)

(iii) Small domains, 1/(�2
Rτ ),1/(�2

Dτ ) � τc � τ . In this
regime of spin dephasing, electrons move from one domain to
another more frequently than the γz̃ and γỹ rates. The in-plane
component of the net electron spin does not emerge due to
the frequent change in the Rashba field sign. The out-of-plane
component exponentially decays at the rate

zz = �2
R(ρ) τ, (22)

which is independent of the Dresselhaus field strength. The
dephasing rate (22) is twice as high as the rate (21) even at
�Dτ < 1.

(iv) 1/(�2
Rτ ) � τ � τc. The correlation time of the Rashba

field is shorter than the scattering time, and spin dephasing
occurs at ballistic electron transport. Such regime is realized
in high-mobility QW structures where the fluctuating Rashba
field stems from the electric field of charged impurities in

remote doping layers.22,27 The spin dynamics of an electron
with a certain wave vector k is described by

dsk

dt
+ sk × [�D,k + �R,k(ρ0 + vt)] = 0, (23)

where ρ0 in the initial electron coordinate, v = vF (k/k), and
vF is the Fermi velocity. Equation (23) can be solved by
changing the spin coordinate frame to the one rotating along
the z axis with the angular frequency �D,k. The procedure is
equivalent to the substitution sk = Rks̃k and �R,k = Rk�̃R,k

with Rk being the rotation matrix,

Rk =

⎡
⎢⎣

cos[�Dt(kx/kF )] − sin[�Dt(kx/kF )] 0

sin[�Dt(kx/kF )] cos[�Dt(kx/kF )] 0

0 0 1

⎤
⎥⎦ .

This yields d s̃k/dt + s̃k × �̃R,k(ρ0 + vt) = 0. Taking into
account that the Rashba field lies in the QW plane and
�R(ρ)τc 	 1 we obtain the dephasing rate of the z spin
component for electrons with the wave vector k,

zz(k) =
∫ ∞

0
�̃R,k(ρ0 + vt) · �̃R,k(ρ0) dt

=
∫ ∞

0
�R(ρ0 + vt)�R(ρ0) cos[�Dt(kx/kF )]dt,

(24)

where the overbar denotes averaging over the initial electron
coordinate.

The spatial correlation function of the Rashba field caused
by Coulomb impurities randomly distributed in the δ-doping
layers positioned at the distance zd below and above the QW
has the form (see Ref. 22)

�R(ρ)�R(ρ ′) = �2
R(ρ)(2zd )3

[(ρ − ρ ′)2 + (2zd )2]3/2
. (25)

Combining Eqs. (24) and (25) one obtains

zz(k) = �2
R(ρ) �Dτ 2

c (kx/kF )K1[�Dτc(kx/kF )], (26)

where τc is the correlation time of the Rashba field,

τc =
∫ ∞

0 �R(ρ0 + vt) �R(ρ0) dt

�2
R(ρ0)

= 2zd

vF

(27)

and K1 is the modified Bessel function of the second kind. The
correlation time τc can be estimated as 0.5 ps for GaAs-based
structures with the electron density 2 × 1011 cm−2 and the
distance between the QW and doping layers zd = 500 Å. At
�Dτc 	 1, the rate zz(k) is given by �2

R(ρ)τc.
The dephasing rate of the net electron spin in the structure

can be obtained by averaging zz(k) over the wave-vector
direction, which yields

〈zz(k)〉 = �2
R(ρ)τcξ [I0(ξ )K1(ξ ) − I1(ξ )K0(ξ )], (28)

where Iν is the modified Bessel function of the first kind and
ξ = �Dτc/2. The dephasing rate is given by �2

R(ρ)τc (see

Ref. 22) and �2
R(ρ)/�D in the cases of moderate, �Dτc 	 1,

and strong, �Dτc � 1, Dresselhaus field, respectively.
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FIG. 5. (Color online) Dephasing rate of the out-of-plane spin
component in QWs with the fluctuating Rashba field in various
regimes. The dephasing rate in the (ii), (iii), and (iv) regimes is given
by Eqs. (21), (22), and (28), respectively. In the (i) regime, the spin
relaxation is nonexponential and described by Eqs. (17) and (18).

The theoretical results on the spin dephasing rate in quan-
tum wells with the fluctuating Rashba field are summarized in
Fig. 5. The strong Dresselhaus field increases the electron spin
lifetime in all regimes of spin dynamics.

IV. SUMMARY

We have developed a microscopic theory of electron spin
dephasing for asymmetric and macroscopically symmetric
(110)-grown quantum wells where the Rashba field is homo-
geneous or fluctuates in the quantum well plane, respectively.
Both low-mobility and high-mobility structures are analyzed.

It is shown that the regime and rate of spin dephasing are
determined by the strength of the Rashba and Dresselhaus
fields, the latter being always present in zinc-blende-type
structures, as well as the electron mobility. The Dresselhaus
field points along the growth direction in (110) quantum wells
and increases the lifetime of the out-of-plane spin component.

In asymmetric structures, the interplay of the homogeneous
Rashba and Dresselhaus fields leads to a coupling of the in-
plane and out-of-plane spin components. The spin lifetime
of the out-of-plane component nonmonotonically depends on
the electron mobility. It linearly decreases with the scattering
time τ in low-mobility structures, reaches the minimum at τ

comparable to the period of spin precession in the effective
magnetic field, and then linearly increases with τ in high-
mobility structures.

In quantum wells with the fluctuating Rashba field, the
scenario of spin dephasing is determined by the scale of the
field fluctuations compared to other relevant scales. We show
that, for all regimes of spin dynamics, the strong Dresselhaus
field slows down the dephasing rate of the out-of-plane spin
component.
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