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The intrinsic point defects of β-Ga2O3 are investigated using density functional theory. We have chosen
two different exchange-correlation potentials: the generalized gradient approximation (GGA) and a hybrid
potential (HSE06). Defect formation energies were determined taking into account finite-size effects. Schottky,
anti-Frenkel, and Frenkel energies have been extracted for T = 0 K. We calculate formation entropies for an
oxygen and a gallium vacancy and determine the Gibbs energy of Schottky disorder. Furthermore, we investigate
the defect concentrations as a function of the oxygen partial pressure. The obtained purely intrinsic defect
concentrations for charged defects are very small and result in a pO2 dependence of the electron concentration
of [e′] ∼ pO−1/6

2 , whereas experimentally [e′] ∼ pO−1/4
2 is found. So we assume that, experimentally, a small

unintentional donor doping is unavoidable. A small extrinsic donor concentration [D·] = 1018 cm−3 (10 ppm)
changes the electron concentration to [e′] ∼ pO−1/4

2 and gives an activation energy of the conductivity σ of 1.7 eV
in good agreement to experimental values. So we propose as majority disorder 3[V′′′

Ga] = [D·] with electrons
being minority defects.

DOI: 10.1103/PhysRevB.87.235206 PACS number(s): 61.72.Bb, 61.72.J−, 63.20.−e, 72.80.Jc

I. INTRODUCTION

Monoclinic β-Ga2O3 is an n-type semiconductor with
a wide band gap of 4.9 eV.1 It has raised considerable
interest in the last years due to its possible application as
a deep UV transparent conducting oxide (TCO) material.1,2

Gallium oxide can be produced in various nanostructures,
e.g., nanowires3 and nanoribbons,4 and its nonstoichiomet-
ric amorphous phase shows memristive switching5 and an
abrupt increase of its conductivity upon heating due to local
recrystallization.6 β-Ga2O3 is already used in gas sensors with
a characteristic pO2 dependence of its electrical conductivity
of σ ∼ pO−1/4

2 .7,8 The activation energy of the conductivity
is reported to vary between 1.3 and 2.1 eV,9,10 although
there is also a measured activation energy of a single crystal
with 3.3 eV10. The influence of donor (Zr, Ti) and acceptor
(Mg) dopants on the conductivity9,11 has been investigated
experimentally and an inrease (decrease) of σ upon donor
(acceptor) doping has been found. The luminescence behavior
of β-Ga2O3 with broad emissions in UV, blue, and green12

can also be altered by dopants such as Si13 and N.14 Especially
Si has been identified as a common unintentional dopant in
nominally pure gallium oxide samples.9,15,16 There are no
reports of p-type bulk phase Ga2O3 as the solubility of acceptor
dopants is very small,17 only for N-doped nanowires p-type
behavior has been observed.18

Despite intense research in the last years, the question
of the defect structure of gallium oxide is still not settled,
although it is crucial for the understanding of the properties
of the material and tailoring them to specifications needed
for applications. Many different defect models have been
proposed, varying from dominant oxygen vacancies V·

O to
gallium interstitials Ga··

i .8,9 Both assumptions give the ex-
perimentally observed pO2 dependence of the conductivity.
However, dominating donor dopants (compensated, e.g., by
gallium vacancies) with electrons being minority defects
yields the same pO2 dependence. It is the aim of this

paper to study the defect structure by first-principles cal-
culations and to give a consistent defect model, which can
reproduce the main experimental results.

Various theoretical studies have been devoted to the bulk
material.19–25 Theoretical investigations of defects in β-Ga2O3

have for a long time been limited to empirical potentials,
where oxygen vacancies have been identified as the defects
with the lowest formation energies.26 Recently, calculations
on oxygen vacancies and donor impurities27 and gallium
vacancies28 have been reported using density functional theory
(DFT) with hybrid functionals. It was shown that the oxygen
vacancies have deep donor states and hydrogen and silicon
might easily be incorporated into the material. In addition,
it was found that defect complexes of hydrogen atoms and
gallium vacancies have low formation energies. Including
these complexes in a defect model with unintentional donor
doping results in a dependence of σ ∼ pO−1/4

2 as found
experimentally. But the pO2 dependence with slope −1/4
also holds at high temperatures (e.g., 1000 ◦C) where the
gallium vacancy-hydrogen complexes are not believed to be
stable. We will show in this paper that defect complexes
are not needed to explain the main experimental findings.
We present formation energies for all intrinsic point defects
in gallium oxide. A special focus of this study will be the
calculation of experimentally accessible quantities like the
Schottky energy and defect concentrations. We find that it
is essential to carefully correct for finite-size effects and to
incorporate entropic contributions.

The paper is organized as follows. First, we introduce
the theoretical framework in Sec. II. After describing com-
putational details in Sec. III, we present formation energies
for all simple point defects and investigate the occurring
finite-size effects in Sec. IV. We also give values for the
Frenkel, anti-Frenkel, and Schottky energies of our system (for
T = 0 K). We calculate entropic contributions and the Gibbs
energy of Schottky disorder, and the last part is concerned
with defect concentrations, which can be extracted from the
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calculated energies. Using these results, a defect model for
β-Ga2O3 will be deduced. Lastly, we provide a short summary
in Sec. V.

II. THEORY

In order to obtain full information about the defect structure
of a system under usual experimental conditions, the Gibbs
energies of defect formation �fG

p,T for constant pressure p

and temperature T have to be calculated:

�fG
p,T = �fE

p,T + p�fV
p,T − T �fS

p,T . (1)

Here, �fE
p,T denotes the formation energy, �fV

p,T the for-
mation volume, and �fS

p,T the vibrational formation entropy,
all at constant pressure p and temperature T . In ab initio
studies, energies are usually computed at constant volume
V and T = 0 K, and we have in good approximation29–32

�fH
p,T ≈ �fE

V
0 , with the formation enthalpy at constant

pressure �fH
p,T and the static formation energy at constant

volume and zero temperature �fE
V
0 . This energy does not

include the zero-point energy of the lattice vibrations.31 So we
will use the equation

�fG
p,T = �fE

V
0 − T �fS

p,T (2)

for our study. The first term �fE
V
0 , which we will simply

denote as formation energy �fE in the remainder of this paper,
can be calculated, e.g., for an oxygen vacancy V··

O, according
to the well established formula33–35

�fE = Etot(V
··
O) − Etot(bulk) + μO

+ 2(EVBM + EFermi) + Ecorr(V
··
O), (3)

where Etot(V··
O) is the total energy of the defective super cell

and Etot(bulk) is the total energy of the bulk cell. EVBM is
the energy of the valence band maximum (VBM) defined
as EVBM = Etot(q = 0) − Etot(q = +1), where Etot(q = 0 or
+1) is the total energy for the neutral bulk or a super cell
with one electron less.36 EFermi is the Fermi level, which is
set to zero at EVBM and can vary from 0 to the energy of
the optical band gap. Ecorr(V··

O) denotes the energy correction
due to finite-size effects (image charge and elastic effects). μO

is the chemical potential of oxygen in a reservoir, which is a
variable limited by the required phase stability of β-Ga2O3. We
take the O2 molecule (oxygen-rich condition) and the Ga metal
(oxygen-poor condition) as limiting phases. Combining the
expressions μO < 1/2μO2 = 1/2Etot(O2); μGa < μGa−metal

Ga =
Etot(Ga); 2μGa + 3μO = μGa2O3 = Etot(Ga2O3) and the
formation energy of the compound �fE

Ga2O3 =Etot(Ga2O3) −
2μGa−metal

Ga − 3/2μO2 one gets the range of μO, the chemical
potential of oxygen in gallium oxide:

1/2μO2 + 1/3�fE
Ga2O3 < μO < 1/2μO2 . (4)

The total energies (per formula unit) are here taken as a first
approximation for the chemical potentials (corresponds to T =
0 K). We will follow this usual approach for the presentation
of our energies, but extend our analysis to T > 0 K for the
defect concentrations.

The second term on the right-hand side of Eq. (2) can be
large for high temperatures37 and so the effect of formation
entropies �fS

p,T , which are essentially due to the change in
frequencies of the lattice vibrations upon introduction of a

defect, has to be considered as well. In our constant volume
calculations, we obtain �fS

V,T and for gallium vacancies, it
can be written as37

�fS
V,T (V′′′

Ga) = Svib(V′′′
Ga) − Svib(bulk) + SGa, (5)

where Svib(V′′′
Ga) and Svib(bulk) are the vibrational entropy

of the defective cell and bulk cell respectively and SGa is a
partial vibrational entropy. This last term is important in order
to rescale Svib(V′′′

Ga) and Svib(bulk) to the same number of
vibration modes. We can employ the well known connection
between formation entropies at constant volumes and constant
pressures (in our case p = 0 bar):37–39

�fS
p,T = �fS

V,T + αBT�V
p,T

rel . (6)

Here, α is the lattice expansion coefficient, BT is the isothermal
bulk modulus, and �V

p,T

rel is the relaxation volume of the
defect. We will approximate this last quantity by its value
at zero temperature and denote it by �Vrel, where �Vrel =
V (defect) − V (bulk) is simply obtained by performing a
relaxation of the defective super cell to zero pressure to
get V (defect) and subtracting the bulk volume V (bulk). The
calculation of the temperature dependent relaxation volume
would entail the calculation of formation entropies for different
volumes of the defective cell,32 which is computationally very
demanding and beyond the scope of this study. So we obtain
the following formula for our Gibbs free energies of formation:

�fG
p,T = �fE − T (�fS

V,T + αBT�Vrel). (7)

The obtained energies and Gibbs free energies of formation
will be used to calculate defect concentrations. For example, in
the strong dilution limit the concentration of gallium vacancies
[V′′′

Ga] can be written as

[V′′′
Ga] = cGaexp

(
−�fG

p,T

kBT

)
, (8)

where cGa denotes the concentration of available gallium lattice
sites. We compute the electron and hole concentration by
integrating over the electronic density of states of the bulk
system. The Fermi level for a fixed chemical potential of
oxygen (or, equivalently, oxygen partial pressure pO2) can
then be determined by imposing charge neutrality.34,40

III. COMPUTATIONAL DETAILS

All DFT calculations in this study have been carried out
using the Vienna ab initio simulation package VASP41 and the
projector augmented wave method PAW.42,43 The 3d, 4s, and
4p electrons of gallium and the 2s and 2p electrons of oxygen
are treated as valence electrons. For reasons outlined below,
we used two different exchange-correlation potentials Vxc. We
employ the PBE functional44 within the generalized gradient
approximnation (GGA) in order to be able to investigate the
finite size scaling of the defect formation energies. In this
context, cells of up to 360 atoms are computed. Mainly because
it is known that GGA predicts a value for the optical band
gap, which is approximately only half of the experimental
one, we also used an orbital dependent hybrid functional.
We have chosen the so-called HSE06 functional45 with a
fixed screening parameter of 0.2 Å−1. The amount of exact
exchange is set to 0.3 such that the calculated band gap is
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in good agreement with the experimental value. As the hybrid
functional is computationally very demanding we are restricted
to a cell size of 80 atoms. Combining the results for the two
different functionals, we will obtain band gap and finite-size
corrected formation energies. For both the GGA and HSE06
formation energy calculations, a Monkhorst-Pack mesh46 was
employed for the k-point sampling. In the GGA case, the
distance of the k points in the reciprocal lattice was less
than 0.3 Å−1 for all chosen supercells, in the HSE06 case
a k-point distance of 0.5 Å−1 was set during relaxation, and
in a last run, the total energy of the converged configuration
was recalculated with a finer k mesh with a maximal k-point
distance of 0.3 Å−1. Gaussian smearing with a smearing width
of 0.1 eV was applied. All local relaxations of the ions were
carried out at constant volume until the forces were less than
0.01 eV Å−1. The energy cutoff was set to 500 eV and all
calculations were spin polarized. For the calculation of the
phonon frequencies, we use the so-called supercell method47

and the GGA functional. We relax the bulk or the defective
cell (120 atoms) at constant volume with the same k-point
sampling as described above until the forces on the ions are
less than 0.0001 eV Å−1. The computation of the dynamical
matrix is performed using displacements of 0.02 Å for both
bulk and defective cell.

IV. RESULTS AND DISCUSSION

A. Bulk

The theoretically predicted lattice constants, band gap, and
formation energy of β-Ga2O3 are listed in Table I for both the
GGA and the HSE06 calculations together with literature data
and experimental results. We adjusted the amount of exact
exchange for the HSE06 calculations (0.3) in order to have
good agreement of theoretical and experimental band gap. Our
lattice parameters and energies agree well with other theoret-
ical studies,22,27 the slight differences to the HSE06 results
from Ref. 27 can be explained by the fact that the amount
of exact exchange chosen in this study (0.3) is smaller than
in the literature (0.35). Overall, the HSE06 values are closer
to experiment than the GGA data. In particular, the HSE06
formation energy of the compound is in better agreement to
experiment as the O2-binding energy (the experimental value is

TABLE I. Lattice parameters, optical band gap, and formation
energy of β-Ga2O3; listed are the GGA and HSE06 results of this
work and literature data.

GGA GGA HSE06 HSE06 Exp.

a (Å) 12.446 12.438a 12.253 12.25b 12.214c

b (Å) 3.083 3.084a 3.034 3.05b 3.037c

c (Å) 5.876 5.877a 5.789 5.84b 5.798c

β (deg) 103.70 103.71a 103.80 103.9b 103.83c

Egap (eV) 2.0 – 4.7 4.83b 4.9d

�fE
Ga2O3 (eV) −9.3 – −10.3 −10.4b −11.3e

aReference 22.
bReference 27.
cReference 51.
dReference 1.
eReference 52.

FIG. 1. (Color online) Monoclinic structure (C2/m) of β-Ga2O3.
There are two different gallium and three different oxygen positions.
The position before relaxation for O and Ga interstitials is indicated
by the black sphere.

−5.2 eV) is better described by the hybrid functional (−5.0 eV)
than the GGA functional (−6.0 eV).48 The calculation of the
vibrational frequencies yields a dispersion without imaginary
frequencies. By computing the lattice vibrations of β-Ga2O3

for five different volumes of the unit cell and fitting the data to
a Birch-Murnaghan equation of state,49,50 we obtain the lattice
expansion coefficient α and the isothermal bulk modulus BT in
quasiharmonic approximation. Comparison of these quantities
to GGA data from the literature yields excellent agreement.

B. Defect formation energies

1. Characterization of the defects

The point defects differ in type, site and charge. In Fig. 1,
we have displayed the possible defect sites in β-Ga2O3. As
can be seen, a large number of different point defects has to
be considered because of the low monoclinic symmetry of the
compound (C2/m). There are two different lattice sites for
gallium, Ga2 being octahedrally and Ga1 tetrahedrally coor-
dinated by oxygen, and three different positions for oxygen.
Therefore two different gallium vacancies and three different
oxygen vacancies have to be considered. Furthermore, the most
favorable interstitial sites have to be identified. As there is no
obvious interstitial position in the system, many configurations
have to be checked: up to seven different interstitial sites
have been calculated. We found a low-energy configuration
for gallium interstitials Gai and oxygen interstitials Oi. The
position for both in units of the lattice vectors of the primitive
cell before relaxation is the same (0.683, 0.0, 0.917), see Fig. 1.
After the relaxation, the configurations differ strongly for the
different charge states. In the case of Ga·

i, the local relaxation
is small. However, Ga··

i and Ga···
i are moving neighboring ions

from their bulk position into an interstitial position creating
a double-interstitial-vacancy complex. For Oi, the changes
in position due to the different charge of the ion are not so
pronounced.

Another important point is that the localization of the
electrons has to be checked. For the different vacancies no
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problems arise, i.e., all charge states can be prepared, but
in the case of the gallium interstitials, e.g., Ga··

i cannot be
prepared with GGA: the additional electron does not localize
at the corresponding gallium atom but it is fully delocalized.
So the actually prepared defect is Ga···

i + e′(CB), i.e., a fully
charged gallium ion and an electron in the conduction band
(CB). In contrast, the defect Ga··

i can be calculated without
problems using HSE06. For the neutral gallium interstitial
Ga×

i , the highest occupied state is delocalized for both
functionals, so the actually calculated defects in the supercell
are Ga·

i + e′(CB). This shows that it is very important to
check the localization of the electrons and to see whether the
expected charge state has been successfully prepared or not.
The localization of the defect electrons also plays an important
role in the corrections of the so called finite size effects, which
are considered next.

2. Finite-size scaling

The energy values gained from the band structure calcula-
tion cannot be used directly to describe the formation energy of
isolated defects. Instead, these values have to be extrapolated
to energy values for infinitely large supercells.

In a first step, the calculations have been performed with
the GGA functional in order to obtain defect formation
energies for different cell sizes. We have chosen supercells
with 80 (1 × 2 × 2), 120 (1 × 3 × 2), 160 (1 × 4 × 2), and 240
(1 × 4 × 3) atoms. For special defects, for which the expected
scaling has not yet been achieved, additional cells with 300
(1 × 5 × 3) and 360 (1 × 6 × 3) atoms are used. Figure 2 shows
the results of these calculations for differently charged gallium
vacancies VGa2. Because of the slowly decaying Coulomb
interactions in the solid, image charge interactions are present
in the energies even for the large cells.53–55 As the leading term
of the image charge interaction scales with 1/L (monopole
term), we have plotted the uncorrected energy values as a

FIG. 2. (Color online) GGA formation energies of the gallium
vacancies VGa2 as a function of the average distance of defects
L. In (a) electrostatic finite-size effects are included in the energy
values. The cell size dependence is only due to elastic effects and
the extrapolated values correspond to formation energies for infinite
dilution of the defects. In (b), uncorrected energies are shown. The
cell size dependence for the charged defects is mainly due to the
monopole term in the image charge interaction.

function of 1/L, where L is the average distance of the defect
to its periodic image (see the right-hand side of Fig. 2). Due
to the 1/L scaling, it is difficult to extrapolate to infinite
dilution, as the energy axis is far from the calculated data
points. Including image charge corrections, using the method
proposed by Freysoldt et al.56 and a calculated value of the
dielectric constant of εGGA = 12.7, which is determined by
means of density functional perturbation theory (DFPT) as
the trace of the dielectric tensor (static electronic plus ionic
contribution), results in the data plotted on the left-hand side
of Fig. 2. There is still a slight size dependence on L for the
following reason. Besides the electrostatic finite-size effects,
there are also elastic finite size effects originating in different
relaxations for different cell volumes. This contribution scales
with 1/NAtom or, equivalently, with 1/L3, where NAtom is the
number of atoms in the supercell.38 We see from Fig. 2 that
one gets indeed the expected 1/L3 scaling if the electrostatic
corrections are included in the energy values. As this scaling
moves the energy values for the large cells very close to the
energy axis, extrapolation to infinite dilution is much more
accurate. The procedure works well, although there is some
deviation from the 1/L3 scaling for smaller cell sizes, which
can be due to higher orders in elastic interactions. Oba et al.57

have used a slightly different procedure for the extrapolation
of GGA formation energies to infinite dilution, but we found
that both procedures give very similar results. The average
error of the linear extrapolation is smaller than 0.05 eV.
As the computational cost for HSE06 calculations is very
high, it is currently not feasible to carry out calculations of
supercells with much more than 100 atoms within acceptable
computation times. A full and explicit finite-size scaling is
thus not possible for HSE06. Therefore we added the elastic
corrections of the GGA energies to the energies of Freysoldt
corrected HSE06 calculations (for the dielectric constant, we
take the experimental value58 of 10). Oba et al.57 have used
the same strategy to take the finite-size dependence of GGA
energies and use it as an approximate correction for the
finite-size effects in HSE06 energies. They have shown that
this method yields band gap corrected and finite-size corrected
formation energies. We will use these energies to calculate
defect concentrations in Sec. IV D.

3. Comparison GGA versus HSE06

(a) Formation energies of single point defects. The extrap-
olated values of the defect formation energies are listed in
Table II for the two different potentials GGA and HSE06.
The results are given for EFermi = 0 and for oxygen-poor
conditions. We see that the GGA energies show the same
trends as the HSE06 energies but the absolute values differ
significantly. There is the general trend that positively charged
defects have lower and negatively charged defects higher
formation energies for HSE06 than for GGA. In addition,
the energy differences (GGA versus HSE06) for the neutral
defects are small compared to those of the charged defects.
Ágoston et al.59 attribute the lower �fE(HSE06) of oxygen
vacancies V··

O in TCO materials to reduced self-interaction and
larger absolute values of the relaxation energy �Erel. �Erel is
defined by separating the total formation energy �fE into two
parts, the energy to place the defect in the otherwise unchanged
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TABLE II. Formation energies �fE of the different point defects
in β-Ga2O3. All energies are corrected for image charge and elastic
effects (except the one marked with ∗, which is only image charge
corrected) and correspond to energies for infinite dilution of the
defects. O-poor conditions and EFermi = 0 are chosen.

Defect GGA HSE06 Defect GGA HSE06
type �fE (eV) �fE (eV) type �fE (eV) �fE (eV)

V×
O1 1.15 1.37 V×

Ga1 9.03 9.84
V·

O1 −0.36 −1.41 V′
Ga1 9.50 11.87

V··
O1 −2.25 −4.60 V′′

Ga1 10.43 14.14
V×

O2 1.34 1.60 V′′′
Ga1 11.97 16.91

V·
O2 −0.20 −1.25 V×

Ga2 9.31 10.91
V··

O2 −2.42 −4.76 V′
Ga2 9.60 12.18

V×
O3 0.63 0.82 V′′

Ga2 10.32 13.87
V·

O3 −0.10 −1.14 V′′′
Ga2 11.47 16.30

V··
O3 −1.63 −3.74 Ga·

i 1.59 1.25
O×

i 6.48 7.22 Ga··
i . . . −2.50∗

O′
i 7.40 9.35 Ga···

i −2.80 −6.35
O′′

i 9.10 12.41

lattice, �Elat, and the energy gain by the local relaxation of the
lattice, �Erel. We found larger |�Erel| for both, negative and
positive defects. For V··

O2, we get �Erel(GGA) = −2.7 eV ver-
sus �Erel(HSE06) = −3.7 eV and for V′′′

Ga2, �Erel(GGA) =
−2.7 eV versus �Erel(HSE06) = −3.5 eV. Therefore the
observation that positively charged defects have lower and
negatively charged defects have higher formation energies
for HSE06 than for GGA cannot be explained by relaxation
effects. As a consequence, the reduced self-interaction for
HSE06 has to play an important role.

The absolute energy values of the VBM cannot be compared
for the different functionals as the energy scale is in general dif-
ferent. Nevertheless, the formation energies can be compared,
as well as the contributions for the different functionals. There
is a decrease of EVBM of the bulk cell [EVBM(GGA) = 2.04eV

versus EVBM(HSE06) = 1.06 eV], which enters into Eq. (3)
with a minus sign for negatively and a plus sign for positively
charged defects. For example, for V′′′

Ga2 the term −3EVBM is
−6.12 eV for GGA but only −3.18 eV for HSE06, whereas for
V··

O2, +2EVBM is +4.08 eV for GGA and +2.12 eV for HSE06.
So the difference between EVBM(GGA) and EVBM(HSE06) is
the main reason for the trend discussed here and consistent
with the reduced self-interaction in HSE06 energies.

The defect formation energies have to be considered as a
function of two variables, the chemical potential of oxygen
and the Fermi energy, see Eq. (3). For oxygen-poor and
oxygen-rich conditions, the energies are plotted against the
Fermi-level in Figs. 3 and 4. The curves are always given
for the charge states of lowest energy and the kinks in the
plots denote changes in the charge state. One can see that
the oxygen vacancy shows a negative U behavior like it has
been observed for other TCO materials.59 For oxygen-poor
conditions, the oxygen vacancies are the defects with lowest
formation energy, for oxygen-rich conditions, the gallium
vacancies have low formation energies for high Fermi levels,
which corresponds to donor doping. The interstitial defects
have always high formation energies, except for Ga···

i for very
low Fermi energies. As pointed out above, the GGA and

FIG. 3. (Color online) GGA formation energies of point defects
in β-Ga2O3 plotted against the Fermi energy for (a) oxygen-poor
and (b) oxygen-rich conditions. For VGa, the two different vacancies
are denoted 1 (VGa1) and 2(VGa2). Analogous notation is used for the
three oxygen vacancies. The straight vertical line shows the calculated
position of the conduction band minimum.

HSE06 results display the same trends and the same ordering
of energies. However, a major difference is that the transitions
between two different charge states lie at higher Fermi levels
for the hybrid functional. Comparing our hybrid functional
energies with the ones obtained by Varley et al.,27,28 we see
differences for the V··

O defects, which might be attributed to the
differences in the amount of exact exchange (0.35 versus 0.30
in our study) and number of valence electrons. For the gallium
vacancies, VGa1 (tetrahedral site) is favorable for low EFermi

and VGa2 (octahedral site) for high EFermi, whereas in the study
of Varley et al., always VGa1 is energetically lower. But they
prepared a different kind of VGa1, which they derived from a
transition state of the gallium vacancy migration, where one
adjacent gallium atom changes to octahedral coordination.

FIG. 4. (Color online) HSE06 formation energies of point defects
in β-Ga2O3 plotted against the Fermi energy for (a) oxygen-poor and
(b) oxygen-rich conditions. For VGa, the two different vacancies are
denoted 1 (VGa1) and 2(VGa2). Analogous notation is used for the
three oxygen vacancies. The straight vertical line shows the calculated
position of the conduction band minimum.
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TABLE III. Schottky, Frenkel, and anti-Frenkel energies per
created defect for GGA and HSE06.

Frenkel Anti-Frenkel Schottky
Reaction Eq. (9) Eq. (10) Eq. (11)

GGA (eV) 4.33 3.34 3.14
HSE06 (eV) 4.98 3.83 3.66

(b) Schottky, Frenkel, and anti-Frenkel energies. From
the combination of the individual defect formation energies
for GGA and HSE06, we have also calculated Schottky,
Frenkel, and anti-Frenkel energies for T = 0 K (all per created
defect), see Table III. The corresponding reaction equations for
Frenkel, anti-Frenkel, and Schottky disorders are

Ga×
Ga2 ←→ V′′′

Ga2 + Ga···
i , (9)

O×
O2 ←→ V··

O2 + O′′
i , (10)

2Ga×
Ga2 + 3O×

O2 ←→ 2V′′′
Ga2 + 3V··

O2 + Ga2O3. (11)

For both functionals, the anti-Frenkel and Schottky energies
are close and distinctly lower than the Frenkel disorder energy.
Taken into account our estimated error bars mentioned in
Sec. IV B 2, we can only state that either Schottky or anti-
Frenkel disorder is dominant—within the approximation of
using zero-temperature energies calculated at constant volume,
which are reported to be close to the enthalpy at constant
pressure also for higher temperatures (see Fig. 3 in Ref. 32
for the case of anti-Frenkel disorder in In2O3). Comparing
Tables II and III, we see that the differences in the defect
reaction energies for the different functionals is smaller than
the differences of the formation energies of single defects.
This is due to the cancellation of errors for the combined
defects. We have seen above that positively charged defects
have lower formation energies and negatively charged ones
higher formation energies for HSE06 than for GGA. This is the
reason why the sum of both, e.g., �fE(V··

O2) and �fE(V′′′
Ga2)

for GGA tends to be close to the HSE06 value despite the
rather large differences in formation energies for the single
defects. This applies to all the above-mentioned defect reaction
energies as they all are sums of formation energies of positively
and negatively charged defects.

Summarizing the results of the energies of the different
defect disorders we can state that the values obtained with
HSE06 are more accurate due to the correct description of
the band gap, but our results indicate as well that for the
determination of the prevailing disorder it is sufficient to
calculate the computationally much cheaper GGA energies, as
a systematic error cancellation tends to restore the qualitative
correct ordering of the energies.

C. Entropic contributions

1. Formation entropies of single point defects

The lattice vibrations contribute to the Gibbs energy of
formation through the change in vibrational entropy, i.e., the
term −T �fS

p,T [see Eqs. (1) and (6)]. This contribution
can become important for high temperatures, which will be
outlined in this section.

TABLE IV. �Vrel and αBT�Vrel (for T = 1273 K) for chosen
defects in gallium oxide.

V··
O2 V·

O2 V×
O2 V′′′

Ga2 O′′
i Ga···

i

�Vrel (Å3) −12.64 −7.20 −1.93 31.38 32.03 −11.24
αBT�fV (kB) −3.8 −2.2 −0.6 9.5 9.7 −3.4

All defect entropies were calculated for just one cell volume
(the equilibrium volume of the perfect cell at T = 0 K), as
already mentioned in Sec. II. Before we discuss our results
concerning the phonon dispersions of the defective cells, we
first focus on the second term on the right-hand side of Eq. (6).
In Table IV, we give values for �Vrel and αBT�Vrel (for T =
1273 K) for some chosen intrinsic defects. We can see the
following trends. The negatively charged defects like V′′′

Ga2
and O′′

i have large positive relaxation volumes, whereas the
positively charged defects like V··

O2 and Ga···
i have negative

and smaller relaxation volumes. This is also found by Àgoston
et al.37 for In2O3, indicating that this might be a rather general
behavior. The entropic contributions for T = 1273 K amount
to over 9 kB for O′′

i and V′′′
Ga2 and lie around −3 kB for V··

O2 and
Ga···

i .
The formation entropy at constant volume �fS

V,T is
calculated according to Eq. (5).37 As the calculations of
the entropies of the defective cells are computationally very
demanding with up to 500 calculations for one phonon
dispersion due to the low symmetry of the system, we only
calculated the gallium vacancy V′′′

Ga2 and the oxygen vacancy
V··

O2. We chose the first one because it is the most important
charged defect for high Fermi levels (i.e., donor doping) (see
Fig. 4) and the last one as it is the dominating defect for Fermi
levels in the middle of the band gap (see also Fig. 4). As
will be shown later these defects are important to understand
donor doped (V′′′

Ga2) and pure (V··
O2) gallium oxide, and we

will use their formation entropies as reasonable estimates for
the formation entropies of the other vacancy defects for our
calculation of the defect concentrations.

Because of the low symmetry of the system, we could
not avoid for the chosen defective supercells (119 atoms),
limited by computing time, a dispersion with some imaginary
frequencies. The phonon dispersion of the gallium vacancy
V′′′

Ga2 is displayed in Fig. 5. One acoustic branch is imaginary
around the � point, which is indicated by negative frequencies
in Fig. 5. In total, 0.06% of the volume of the first Brillouin
zone is contaminated by imaginary frequencies. As has been
shown by Grabowski et al.60 for the metals Pd and Pb,
these kind of imaginary frequencies are not indications of
lattice instabilites but they are due to the finite size of the
simulation cell. By increasing the cell size, they arrive at
phonon dispersions without imaginary frequencies. As this
approach is computationally too demanding for our low-
symmetry system, we perform a correction in order to extract
reliable entropy values. As the contributions of the imaginary
frequencies are set to zero for the calculation of the entropies,
we effectively have less degrees of freedom, which contribute
to the calculated thermodynamic quantities. To account for
this, we slightly modify Eq. (5) by rescaling the bulk entropy
to the same effective number of degrees of freedom as the
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FIG. 5. Excerpt of the phonon dispersion for the defect V′′′
Ga2 with

some some imaginary frequencies around the � point, which are
displayed here as negative frequencies.

defective entropy:

�fS
V,T (V′′′

Ga) = Svib(V′′′
Ga) − η[Svib(bulk) + SGa], (12)

with η = 1 − 0.0006 = 0.9994. For the oxygen vacancy V··
O2,

we perform the same correction procedure as we have 0.09%
of the volume of the first Brillouin zone contaminated by imag-
inary frequencies. In Fig. 6, the calculated �fS

p,T and �fS
V,T

are displayed for both vacancies as a function of temperature.
It is found that for constant volume, the formation entropy
stays essentially constant for T > 300 K, which has also
been observed for different formation entropies in In2O3.37

The stronger dependence of the constant pressure formation
entropy on temperature is due to the term αBT�Vrel, which
of course is also temperature dependent. The contribution
−T �fS

p,T to the Gibbs free energy of formation is −1.61
eV (V′′′

Ga2) and +0.25 eV (V··
O2) for T = 1273 K.

FIG. 6. (Color online) Defect formation entropies of V′′′
Ga2 and

V··
O2 for constant volume �fS

V,T and constant pressure �fS
p,T . In

addition, the Schottky formation entropy (per created defect) for
constant pressure is given.

FIG. 7. (Color online) Temperature dependence of the Gibbs
energy of Schottky disorder [see Eq. (11)].

2. Gibbs energy of Schottky disorder

As we have calculated the entropies of formation of the
oxygen and gallium vacancies from the reaction given in
Eq. (11), we can give values for the Gibbs energy of Schottky
disorder in gallium oxide. The big advantage of Schottky,
Frenkel, or anti-Frenkel Gibbs energies is that the external
chemical potentials, which are major contributions and sources
of error to the formation energies exactly cancel. So we
obtain an energy, which does not depend on thermodynamic
conditions and is considered as a general characteristic of the
defect chemistry of a certain material.

The formation entropy �fS
p,T of Schottky disorder is

simply obtained by adding the formation entropies for the
single defects in stoichiometric amounts and dividing the
obtained value by the number of created defects. In Fig. 6,
the temperature dependence of the corresponding entropy for
Schottky disorder is shown: it is essentially constant above
300 K with a value of about 4.5 kB. Adding the entropic
contribution −T �fS

p,T to the Schottky energy (see Table III)
one obtains the Gibbs free energy of Schottky disorder, which
is shown in Fig. 7. A linear decrease of the energy can be
observed from 3.66 eV at zero temperature to about 3.1 eV for
T = 1500 K.

D. Defect concentrations

It is shown in the previous section that entropic con-
tributions to the Gibbs energies can become important.
These contributions have to be taken into consideration for
(i) the calculation of the stability limits of β-Ga2O3 and
(ii) the computation of realistic defect concentrations. First,
we consider the limiting phases.

The chemical potentials we used for the calculation of the
formation energies, see Figs. 3 and 4, were constrained to
lie within the stability field of β-Ga2O3, which is given by
Eq. (4). Up to this point, the permitted range of chemical
potentials was determined using the total energy values of the
limiting phases: the O2 gas and the Ga metal. Although this
is common practice in the literature, these values are only
valid for T = 0 K. As we want to extend our analysis of the
defect properties of gallium oxide to the case of T > 0 K,
we also have to include the temperature dependence of the
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chemical potentials in our phase stability considerations. For
this purpose, we follow the approach of Osorio-Guillén et al.61

with two modifications. First, we take the T = 0 K total energy
of the oxygen molecule 1

2Etot(O2) to be approximately the
enthalpy under reference conditions, i.e., temperature T0 =
298.15 K and pressure P0 = 1 bar. The remaining temperature
and pressure dependence is taken from thermochemical tables,

μO(T ,pO2) = 1

2
Etot(O2) + �μO(T ,P0) + 1

2
kBT ln

(
pO2

P0

)
,

(13)

with �μO(T ,P0) being the change in chemical potential from
the reference temperature T0 to temperature T > T0. We
slightly generalize the approach proposed by Osorio-Guillén
et al.61 by also calculating μGa and μGa2O3 in this manner, in
order to get a reliable and coherent phase stability range for
the different temperatures. So all chemical potentials, which
are also major contributions to the formation energies [see
Eq. (3)], are determined on the same footing. In this way,
we can compute defect concentrations depending on partial
pressures pO2 and compare our results directly to experimental
data.

Due to the fact that we do not have a full set of formation
entropies and we want to avoid artificial trends by using
entropies only for certain charge states, we take the constant
volume formation entropies �fS

V,T calculated for V′′′
Ga2 and

V··
O2 as a reasonable (but untested) estimate for the formation

entropies of all charge states of all corresponding vacancy
types (gallium and oxygen). For all defects, i.e., vacancies and
interstitials, we take into account the contribution αBT�Vrel.
A further comment on the formation entropies is in place
here. As we now include the full chemical potentials, e.g., μO

from Eq. (13), in our formation energies, we must not correct
the obtained entropies with an additional term like the partial
entropy in Eqs. (5) and (12) for the calculation of our defect
concentrations.

1. Pure β-Ga2O3

In Fig. 8, we display the defect concentrations of pure
gallium oxide against the oxygen partial pressure for T =
1273 K. The calculated stability range is from pO2 = 1
bar to pO2 ≈ 10−16 bar. The lower boundary compares well
with the experimental value62 of 10−15 bar for T = 1273 K,
which validates our modified approach for the calculation of
the phase stability limits. The numerically determined Fermi
energy varies from 2.48 eV (oxygen-rich conditions) to 3.14
eV (oxygen-poor conditions). There are two majority defects:
electrons (dark yellow line) and oxygen vacancies (red straight
and dotted lines). The electrons are charge compensated
by doubly charged oxygen vacancies V··

O (denoted by“••”
in Fig. 8) over the whole pO2 range, i.e., [e′] = 2[V··

O].
The neutral oxygen vacancies (denoted by “×” in Fig. 8)
become more abundant than the doubly charged vacancies
under oxygen poor conditions, but the charged vacancies
still compensate the electrons, as is indicated by the dotted
red lines. The singly charged oxygen vacancies V·

O have
lower concentrations than V··

O over the whole pO2 range. The
stoichiometric point, i.e., [e′] = [h·] would be at pO2 ≈ 101

bar, but as the mobility of electron holes in gallium oxide is

much lower than the mobility of electrons,25 even at high pO2

no p-type conductivity in pure β-Ga2O3 can be expected. The
pO2 dependence of [e′] in Fig. 8 can easily be derived from
the mass action law of the reaction:

O×
O ←→ V··

O + 2e′ + 1
2 O2(gas). (14)

Using [e′] = 2[V··
O] results in a pO2 dependence of [e′] ∼

pO−1/6
2 .
The calculated concentration can be converted to a

electronic conductivity under the assumption of a pO2-
independent mobility of electrons. It follows that σ ∼ [e′] ∼
pO−1/6

2 contrary to the experimental finding of σ ∼ pO−1/4
2 .

We conclude that unintentional dopants must play an important
role to understand the conductivity behavior. This assumption
is obvious because the obtained intrinsic defect concentrations
for charged defects are very small, 1013–1014 cm−3. Therefore
even a small amount of charged dopants will dominate the
defect structure and the purely intrinsic regime is very unlikely
to be observed experimentally.

2. Donor doped β-Ga2O3

There is increasing evidence in the literature—both
theoretical27,63 and experimental15,16—that unintentional
donors like silicon are present in the material and might be
the cause for the n-type conductivity in gallium oxide. We
have shown in the previous section that purely intrinsic defect
concentrations are so small that already minor amounts of im-
purities will completely dominate the defect structure. So now
we investigate the effect of weak donor doping in β-Ga2O3.

In Fig. 9, we plot the defect concentrations of 10 ppm
donor doped gallium oxide against the oxygen partial pressure
for T = 1273 K. We chose an extrinsic donor concentration
of 10 ppm (1018 cm−3), because this value is an average of
typical impurity concentrations given in the literature.9,63 The

FIG. 8. (Color online) Defect concentrations of pure gallium
oxide plotted against oxygen partial pressure pO2 for T = 1273 K.
The phase stability limits are indicated by the vertical dashed lines.
Oxygen vacancies (red straight and dotted lines) compensate the
electrons (dark yellow) for all pO2, yielding a pO2 dependence of the
electron concentration with exponent −1/6. For low pO2, the neutral
oxygen vacancies (”×”) become more abundant than the doubly
charged vacancies (”••”), but the electrons are still compensated
by the charged vacancies (dotted red lines). Numbers indicate the
vacancy sites for VGa and VO.
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FIG. 9. (Color online) Defect concentrations of 10 ppm donor
doped gallium oxide plotted against oxygen partial pressure pO2

for T = 1273 K. The phase stability limits are indicated by the
vertical dashed lines. Gallium vacancies V′′′

Ga2 (black line) compensate
the donor (dashed grey line) in a large pO2 range. The electrons
are minority defects with [e] ∼ pO−1/4

2 , as found experimentally.
Numbers indicate the vacancy sites for VGa and VO.

numerically determined Fermi energy varies from 3.47 eV
(oxygen rich conditions) to 4.16 eV (oxygen poor conditions).
Gallium vacancies V′′′

Ga2 (black line denoted by “2”) compen-
sate the donor (dashed grey line) in a large pO2 range, i.e.,
3[V′′′

Ga] = [D·]. The electrons become minority defects already
for low pO2 and the resulting pO2 dependence of the electron
concentration is [e′] ∼ pO−1/4

2 , as found experimentally. Only
at very low pO2 the donor is compensated by electrons
resulting in [e′] ∼ pO0

2. The oxygen vacancies (red lines) are
neutral and their concentrations get high only for very low pO2.
From defect concentrations at different temperatures (T =
973–1273 K, pO2 = 0.2 bar), we determined an activation
energy of the electron concentration of 1.10 eV. For 100-ppm
donor concentration, we obtain a value of 1.08 eV, showing
that this energy does not strongly depend on the dopant level.
Taking the experimental value10 of 0.6 eV for the activation
energy of the electron mobility in gallium oxide, we arrive at
an activation energy of the conductivity σ of 1.7 eV. This is in
good agreement to most of the published experimental values,
ranging from 1.3 to 2.1 eV for high temperatures.9,10

Experimentally62 [e′] ∼ pO−1/4
2 is found down to a pO2 of

10−15 bar for T = 1273 K. The reason why our simulations
give the right exponent −1/4 only for pO2 > 10−11 bar might
be due to the assumption that the relaxation volume �V

p,T

rel
of the defects does not depend on temperature, which will be
the case, in general. There are reports on increasing, e.g., anti-

Frenkel formation volumes with increasing temperature.32,64

This quantity is identical to the sum of the relaxation volumes
of an oxygen vacancy and an oxygen interstitial and its tem-
perature dependence shows that also the relaxation volumes
of the individual defects will change with temperature. An
increase of �V

p,T

rel for the gallium vacancies would lower their
Gibbs energy of formation and therefore extend the range of
[e′] ∼ pO−1/4

2 to lower pO2 values.

V. CONCLUSION

We have calculated fully finite size corrected defect
formation energies for all point defects in gallium oxide using
the GGA and HSE06 functionals. Although there are rather
larger quantitative differences for the different functionals, we
showed that there is qualitative agreement in the ordering of the
energies. We determined Schottky, Frenkel, and anti-Frenkel
energies and saw that Schottky disorder has the lowest energy
for both functionals, although the anti-Frenkel disorder is only
slightly less favorable. We investigated the entropic contribu-
tion to the Gibbs free energy of formation for V′′′

Ga2 and V··
O2

and found a large formation entropy for the gallium vacancy of
14 kB for high temperatures. With the calculated entropies, we
were able to compute the Gibbs energy of Schottky disorder
in gallium oxide and obtained a decrease from 3.7 eV at
T = 0 K to 3.2 eV at T = 1273 K. Finally, we calculated defect
concentrations and showed that the concentrations of charged
defects in pure gallium oxide are very low (in agreement with
measurements of the nonstoichiometry of gallium oxide by
means of coulometric titration).65 Therefore already small
amounts of unintentional donors completely change the defect
structure. With only 10 ppm of donor impurities, we could
reproduce the experimental pO2 dependence of the electron
concentration with exponent −1/4 over a wide pO2 range. In
addition, we find an activation energy of the conductivity σ of
1.7 eV, which is in good agreement with experimental values.
We propose the defect model 3[V′′′

Ga] = [D·] with the electrons
being minority defects.
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33G. A. Baraff and M. Schlüter, Phys. Rev. Lett. 55, 1327 (1985).
34S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).
35C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851

(2004).

36C. Persson, Y.-J. Zhao, S. Lany, and A. Zunger, Phys. Rev. B 72,
035211 (2005).

37P. Ágoston and K. Albe, Phys. Chem. Chem. Phys. 11, 3226 (2009).
38Y. Mishin, M. R. Sorensen, and A. F. Voter, Philos. Mag., Part A

81, 2591 (2001).
39C. R. A. Catlow, J. Corish, P. W. M. Jacobs, and A. B. Lidiard, J.

Phys. C: Solid State 14, L121 (1981).
40P. Erhart and K. Albe, J. Appl. Phys. 104, 044315 (2008).
41G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
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59P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, Phys. Rev.
Lett. 103, 245501 (2009).

60B. Grabowski, T. Hickel, and J. Neugebauer, Phys. Rev. B 76,
024309 (2007).

61J. Osorio-Guillén, S. Lany, S. V. Barabash, and A. Zunger, Phys.
Rev. Lett. 96, 107203 (2006).
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