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In symmetric quantum dots (QDs), it is well known that the spin hot spot (i.e., the cusplike structure due to
the presence of degeneracy near the level or anticrossing point) is present for the pure Rashba case but is absent
for the pure Dresselhaus case [Bulaev and Loss, Phys. Rev. Lett. 95, 076805 (2005)]. Since the Dresselhaus
spin-orbit coupling dominates over the Rashba spin-orbit coupling in GaAs and GaSb QDs, it is important to
find the exact location of the spin hot spot or the cusplike structure even for the pure Dresselhaus case. In this
paper, we present analytical and numerical results that show that the spin hot spot can also be seen for the pure
Dresselhaus spin-orbit coupling case by inducing large anisotropy through external gates. At or nearby the spin
hot spot, the spin transition rate increases and the decoherence time decreases by several orders of magnitude
compared to the case with no spin hot spot. Thus one should avoid such locations when designing QD spin based
transistors for possible implementation in quantum logic gates, solid-state quantum computing, and quantum
information processing. It is also possible to extract the exact experimental data [Amasha, MacLean, Radu,
Zumbühl, Kastner, Hanson, and Gossard, Phys. Rev. Lett. 100, 046803 (2008] for the phonon mediated spin-flip
rates from our developed theoretical model.
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I. INTRODUCTION

Manipulation of a single electron spin with the application
of gate controlled electric fields in confined semiconductor
quantum dots (QDs) is a promising way for developing spin
based quantum logic gates, spin memory devices for various
quantum information processing applications.1–12 Sufficiently
short gate operation time combined with long decoherence
time is one of the requirements for quantum computing.1,13,14

When a qubit is operated on by a classical bit, then its decay
time is given by a spin-relaxation time which is also supposed
to be longer than the minimum time required to execute
one quantum gate operation.2,13,15–17 Long spin relaxations
have been measured experimentally in both symmetric and
asymmetric QDs.4,5,15 Balocchi et al.18 have recently measured
larger spin-relaxation times (30 ns) in GaAs QDs. More
specifically, both isotropic and anisotropic spin relaxations
can be tuned with spin-orbit coupling by choosing the growth
direction parallel to the crystallographic axis [001], [110], and
[111] of III-V zinc-blende semiconductor QDs.6,18–20 In addi-
tion to the lengthening spin coherence time, the electric-field
tuning of spin relaxation forms the basis for turning the spin
current on and off in some spin transistor proposals that can
help to initialize electron-spin based quantum computers.16,21

These experimental studies confirm that the manipulation of
spin-flip rates mediated by phonons due to spin-orbit coupling
is an important ingredient for the design of robust spintronics
logic devices. The spin-orbit coupling is mainly dominated
by the Rashba22 and the linear Dresselhaus23 terms in III-V
semiconductor QDs.17,24–33 The Rashba spin-orbit coupling
arises from structural inversion asymmetry along the growth
direction, while the Dresselhaus spin-orbit coupling arises
from the bulk inversion asymmetry of the crystal lattice.22,23

In Refs. 34 and 35, the authors report that the cusplike
structure in the phonon mediated spin transition rate can be
seen for the pure Rashba case. For the pure Dresselhaus

case, the spin transition rate is a monotonous function of the
magnetic fields and QD radii. Since the Dresselhaus spin-orbit
coupling dominates over the Rashba spin-orbit coupling in
some materials such as GaAs and GaSb QDs,25 it is important
to find the exact location of the spin hot spot or the cusplike
structure even for the pure Dresselhaus case. The cusplike
structure implies shorter spin-relaxation and decoherence time,
which is hazardous for spin based applications such as quan-
tum logic gates, solid-state quantum computing, and quantum
information processing. For these applications, the spin hot
spot in the phonon mediated spin-relaxation rate is something
to avoid during the design of QD spin based transistors. Very
recently, the authors in Ref. 36 measured the spin hot spot in
the phonon mediated spin-relaxation rate in silicon QDs with
the application of tuning very weak spin-orbit coupling when
Zeeman energy and valley splittings induce degeneracy. At the
spin hot spot in silicon QDs, the dramatic rate enhancement
decreases the decoherence time, which is not supposed to be
the ideal location for the qubit operation.37–40 In this paper, we
obtain analytical and numerical results for the behavior of the
spin-relaxation rate in anisotropic III-V semiconductor QDs.
We show that the spin hot spot in the phonon mediated spin
transition rate can be seen for the pure Dresselhaus case by
creating large anisotropy through external gates. Note that such
a location (the spin hot spot) is hazardous for quantum comput-
ing and quantum information processing and must therefore
be avoided during the design of spin based transistors.

The paper is organized as follows. In Sec. II, we develop a
theoretical model for anisotropic spin relaxation mediated by
piezo phonons that will allow us to investigate the interplay
between the Rashba and the linear Dresselhaus spin-orbit
coupling in QDs. In Sec. III, we provide details of the
diagonalization technique used for finding the energy spectrum
and the matrix elements of the phonon mediated spin transition
rate in QDs. In Sec. IV, we plot both isotropic and anisotropic
spin-relaxation rates vs magnetic fields and QD radii for the

235202-11098-0121/2013/87(23)/235202(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.076805
http://dx.doi.org/10.1103/PhysRevLett.100.046803
http://dx.doi.org/10.1103/PhysRevB.87.235202


PRABHAKAR, MELNIK, AND BONILLA PHYSICAL REVIEW B 87, 235202 (2013)

pure Rashba and the pure Dresselhaus case in III-V semicon-
ductor materials of zinc-blende structures such as GaAs, GaSb,
InAs, and InSb. Finally, in Sec. V, we summarize our results.

II. THEORETICAL MODEL

We consider two-dimensional anisotropic semiconductor
QDs in the presence of a magnetic field along the growth
direction. The total Hamiltonian of an electron in anisotropic
QDs including spin-orbit interactions can be written as26,34,42

H = Hxy + HSO, where HSO = HR + HD is the Hamiltonian
associated with the Rashba-Dresselhaus spin-orbit coupling
and Hxy is the Hamiltonian of the electron in anisotropic QDs.
Hxy can be written as

Hxy =
�P 2

2m
+ 1

2
mω2

o(ax2 + by2) + 1

2
goμBσzB, (1)

where �P = �p + e �A is the kinetic momentum operator,
�p = −ih̄(∂x,∂y,0) is the canonical momentum operator, �A =
B(−y

√
b,x

√
a,0)/(

√
a + √

b) is the vector potential in the
asymmetric gauge, m is the effective mass, μB is the Bohr
magneton, �σ = (σx,σy,σz) are the Pauli spin matrices, g0 is
the bulk g factor, ω0 = h̄/(m�2

0) is the parabolic confining
potential, and �0 is the radius of the QDs. The energy spectrum
of Hxy can be written as26,43

ε0
n+,n−,± = (n+ + n− + 1) h̄ω+ + (n+ − n−) h̄ω− ± �

2
, (2)

where ω± = 1
2 [ω2

c + ω2
0(

√
a ± √

b)2]1/2, � = g0μBB, and n±
are the eigenvalues of the Fock-Darwin number operators
a
†
±a±. Here, a± and a

†
± are the usual annihilation and

creation operators. Also, we label the Fock-Darwin states as
|n+,n−,±〉, with ± being the eigenvalues of the Pauli spin
matrix along the z direction.24,26

Finally, HSO can be written as26

HSO = αR

h̄
(σxPy − σyPx) + αD

h̄
(−σxPx + σyPy), (3)

where

αR = γReE, αD = 0.78γD

(
2meE

h̄2

)2/3

. (4)

Here γR and γD are the Rashba and Dresselhaus spin-orbit
coefficients. In Fig. 1, we have plotted the contribution of
the Rashba-Dresselhaus spin-orbit coupling (αR/αD) with the
variation of applied electric fields (E) along the z direction.
It can be seen that the Rashba spin-orbit coupling dominates
in InAs and InSb QDs, whereas the Dresselhaus spin-orbit
coupling dominates in GaAs and GaSb QDs. In Sec. IV we will
focus our investigation on the phonon mediated spin relaxation
in both symmetric and asymmetric QDs.

The Hamiltonian Eq. (3) can be written in terms of raising
and lowering operators as

HSO = αR (1 + i) [b1/4κ+ (s+ − i) a+ + b1/4κ+ (s− + i) a−
+a1/4η− (i − s−) a+ + a1/4η− (i + s+) a−]

+αD (1 + i) [a1/4κ− (i − s−) a+ + a1/4κ− (i + s+) a−
+ b1/4η+ (−i + s+) a+ + b1/4η+ (i + s−) a−] + H.c.,

(5)

f

FIG. 1. (Color online) Interplay between Rashba-Dresselhaus
spin-orbit coupling vs the applied electric field along the z direction.
The Rashba spin-orbit coupling is seen to dominate in InAs and InSb
QDs, whereas the Dresselhaus spin-orbit coupling is seen to dominate
in GaAs and GaSb QDs.

where

s± = ω+

ωc

(
b
a

) 1
4
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⎩

√
b

a
− 1 ±

⎡
⎣ω2

c

√
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ω2+
+
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√
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⎤
⎦
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κ± = 1

2 (s+ − s−)

{
1

�
σx ± i

eB�

h̄

(
1√

a + √
b

)
σy

}
, (7)

η± = 1

2 (s+ − s−)

{
1

�
σy ± i

eB�

h̄

(
1√

a + √
b

)
σx

}
. (8)

H.c. represents the Hermitian conjugate, � = √
h̄/m� is the

hybrid orbital length, and � =
√

ω2
0 + ω2

c/(
√

a + √
b)2 .

At low electric fields and small QD radii, we treat the
Hamiltonian associated with the Rashba and linear Dressel-
haus spin-orbit coupling as a perturbation. Using second-order
nondegenerate perturbation theory, the energy spectrum of the
two lowest electron-spin states in QDs (for details, see Ref. 43)
is given by

ε0,0,+ = h̄
+ − α2
Rξ+ + α2

Dς+
h̄ωx − �

− α2
Rς− + α2

Dξ−
h̄ωy − �

, (9)

ε0,0,− = h̄
− − α2
Rς+ + α2

Dξ+
h̄ωx + �

− α2
Rξ− + α2

Dς−
h̄ωy + �

, (10)

where 
± = ω+ ± ωz/2, ωz = �/h̄ is the Zeeman frequency,
ωx = ω+ + ω−, and ωy = ω+ − ω−. Also,

ξ± = 1

2(s+ − s−)

{
± 1

s±
α2

± + 2α±β± ∓ 1

s∓
β2

±

}
, (11)

ς± = 1

2(s+ − s−)

{
± 1

s±
α2

∓ − 2α∓β∓ ∓ 1

s∓
β2

∓

}
, (12)

α± = a1/4

{
1

�
± eB�

h̄

1

(
√

a + √
b)

}
, (13)

β± = b1/4

{
1

�
± eB�

h̄

1

(
√

a + √
b)

}
. (14)
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We now turn to the calculation of the phonon induced spin-
relaxation rate at absolute zero temperature between the two
lowest energy states in QDs. Following Refs. 26,27,42, and 44,
the interaction between the electron and piezo phonon can be
written45

u
qα

ph(r,t) =
√

h̄

2ρV ωqα

ei(q·r−ωqαt)eAqαb†qα + H.c., (15)

where ρ is the crystal mass density and V is the vol-
ume of the QD. b

†
qα creates an acoustic phonon with

wave vector q and polarization êα , where α = l,t1,t2 are
chosen as one longitudinal and two transverse modes of
the induced phonon in the dots. Aqα = q̂i q̂keβijke

j
qα is the

amplitude of the electric field created by phonon strain,
where q̂ = q/q and eβijk = eh14 for i �= k,i �= j,j �= k. The
polarization directions of the induced phonon are êl =
(sin θ cos φ, sin θ sin φ, cos θ ), êt1 = (cos θ cos φ, cos θ sin φ,

− sin θ ), and êt2 = (− sin φ, cos φ,0). Based on the Fermi
golden rule, the phonon induced spin transition rate in the
QDs is given by26,44

1

T1
= 2π

h̄

∫
d3q

(2π )3

∑
α=l,t

|M (qα) |2δ(h̄sαq − εf + εi), (16)

where sl ,st are the longitudinal and transverse acoustic
phonon velocities in QDs. The matrix element M (qα) =
〈ψi |uqα

ph (r,t) |ψf 〉 with the emission of one phonon qα has
been calculated perturbatively and numerically.41,44,46 Here
|ψi〉 and |ψf 〉 correspond to the initial and final states of
the Hamiltonian H . Based on second-order nondegenerate
perturbation theory, after long algebraic transformations, we
have

1

T1
= c(|Mx |2 + |My |2), (17)

where

c = 2 (eh14)2 (gμBB)3

35πh̄4ρ

(
1

s5
l

+ 4

3

1

s5
t

)
, (18)

Mx = (is− + 1)�1(h̄ωx + �) + (−is− + 1)�3(h̄ωx − �)

a1/4[(h̄ωx)2 − �2]
+ (−is+ + 1)�2(h̄ωy + �) + (is+ + 1)�4(h̄ωy − �)

a1/4[(h̄ωy)2 − �2]
, (19)

My = (is+ + 1)�1(h̄ωx + �) + (−is+ + 1)�3(h̄ωx − �)

b1/4[(h̄ωx)2 − �2]
+ (is− − 1)�2(h̄ωy + �) + (−is− − 1)�4(h̄ωy − �)

b1/4[(h̄ωy)2 − �2]
, (20)

�1 = �

2 (s+ − s−)2
{αR [(s+ + i) β+ + (1 − is−) α+] + αD [(−s− − i) α− + (−1 + is+) β−]} , (21)

�2 = �

2 (s+ − s−)2
{αR [(s− − i) β+ + (1 + is+) α+] + αD [(s+ − i) α− + (1 + is−) β−]} , (22)

�3 = �

2 (s+ − s−)2
{αR [(s+ − i) β− + (−1 − is−) α−] + αD [(−s− + i) α+ + (1 + is+) β+]} , (23)

�4 = �

2 (s+ − s−)2
{αR [(s− + i) β− + (−1 + is+) α−] + αD [(s+ + i) α+ + (−1 + is−) β+]} . (24)

In the above expression, we use c = clIxl + 2ct Ixt , where
cα = q2e2

(2π)2h̄2sα
|εqα|2, |εqα|2 = q2h̄

2ρωqα
, and q = gμBB

h̄sα
.

Also, g = ε0,0,−−ε0,0,+
μBB

is the Landé g factor. For

longitudinal phonon modes,13,44 we have |Aq,l|2 =
36h2

14 cos2 θ sin4 θ sin2 φ cos2 φ, and thus we find Ixl =
16πh2

14/35. For transverse phonon modes, we have |Aq,t |2 =
2h2

14[cos2 θ sin2 θ + sin4 θ (1 − 9 cos2 θ ) sin2 φ cos2 φ], and
thus we find Ixt = 32πh2

14/105.
For isotropic QDs (a = b = 1, s+ = 1 and s− = −1), the

spin-relaxation rate is given by

1

T1
= 2(eh14)2(gμBB)3

35πh̄4ρ

(
1

s5
l

+ 4

3

1

s5
t

)
(|MR|2 + |MD|2),

(25)

where MR and MD are the coefficients of matrix elements as-
sociated with the Rashba and Dresselhaus spin-orbit coupling
in QDs and are given by

MR = αR√
2h̄�

⎡
⎣ 1

1 − �

h̄(�+ ωc
2 )

− 1

1 + �

h̄(�− ωc
2 )

⎤
⎦ , (26)

MD = αD√
2h̄�

⎡
⎣ 1

1 + �

h̄(�+ ωc
2 )

− 1

1 − �

h̄(�− ωc
2 )

⎤
⎦ . (27)

Since � = g0μBB is negative, we see that the degeneracy only
appears in the Rashba case [see the second term of Eq. (26)]
and the degeneracy is absent in the Dresselhaus case. The
degeneracy in the Rashba case induces the level crossing point
and cusplike structure in the spin-flip rate in QDs. The spin-
relaxation rate for isotropic QDs can be written in a more
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convenient form as

1

T1
= 2 (eh14)2 (gμBB)3

35πh̄4ρ

(
1

s5
l

+ 4

3

1

s5
t

)
2�2m4

h̄8

× (
α2

R + α2
D

)
�8

0[1 + O(ωc/ωo)2]. (28)

From Eq. (28), it is clear that the spin-flip rate vanishes like
B5 and �8

0 (see Ref. 26).

III. COMPUTATIONAL METHOD

We suppose that a QD is formed at the center of a
400 × 400-nm2 geometry. Then we diagonalize the total
Hamiltonian H numerically using the finite element method.41

The geometry contains 24 910 elements. Since the geometry is
much larger compared to the actual lateral size of the QD, we
impose Dirichlet boundary conditions and find the eigenvalues,
eigenfunctions, and the matrix elements M (qα) of the total
Hamiltonian H . From Figs. 2–7, the analytically obtained
spin-flip rates from Eq. (17) (solid and dashed-dotted lines) are
seen to be in excellent agreement with the numerical values
(open circles and squares). The material constants are taken
from Table I.

IV. RESULTS AND DISCUSSIONS

In Fig. 2, we compare theoretically obtained spin-flip rates
from Eq. (17) to the experimentally reported values in Ref. 15.
Theoretical and experimental data are in excellent agreement.
Inset plots (from left to right) show realistic in-plane wave
functions of QDs for the spin states |0,0, + 1/2〉, |0,0,−1/2〉,
and |0,1, + 1/2〉. It can be seen that anisotropy breaks the in-
plane rotational symmetry. As a result, we find that the in-plane
wave functions of anisotropic QDs for the states |0,1, + 1/2〉
split into two, which has a direct consequence on inducing

1.2 1.6 2.0 2.4 2.8

102
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Sp
in

-fl
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 [1
/s

]

Ey (meV)

 Theory (obtained from Eq.18)
 Experiment (see Ref.5, Fig.3(b))

Asymmetric QDs

Symmetric QDs

FIG. 2. (Color online) Relaxation rate vs anisotropy in QDs. We
choose B = 3T , �0 = 10 nm, λR = λD = 1.7 μm, and a = 5. Here
we define λR = h̄2/mαR , λD = h̄2/mαD , Ex = h̄ω0

√
a, and Ey =

h̄ω0

√
b. The choice of these parameters mimics the experimentally

reported values in Ref. 15. It can be seen that the theoretically obtained
spin-relaxation rate is in excellent agreement with the experimentally
reported values in Ref. 15. For symmetric QDs, (lower panel, inset
plot), we chose a = b = 5.

f

FIG. 3. (Color online) Contributions of the Rashba and the
Dresselhaus spin-orbit coupling to the phonon induced spin-flip rate
as a function of magnetic fields. Material constants are chosen the
same as in Fig. 1, but h̄ω0 = 1.1 meV and λR = λD = 8 μm. Solid
lines (blue) are obtained from Eq. (17). Open circles and squares
are obtained numerically from Eq. (16) by an exact diagonalization
scheme implemented via finite element method.41 Notice that a
cusplike structure can be seen for the pure Dresselhaus case in
asymmetric QDs [Fig. 2(iii), a �= b] but not for symmetric QDs
[Fig. 2(i), a = b]. Also, the spin-flip rate vanishes like B5 [see
Eq. (25)]. Figure 2(i) is the Loss et al. proposal for symmetric QDs
(see Ref. 34). Figure 2(iii) is our proposal for asymmetric QDs. We
also expect a similar cusplike structure for the pure Dresselhaus case
with heavy holes in asymmetric QDs, which is different from Ref. 34.

accidental degeneracy even for the pure Dresselhaus spin-orbit
coupling case in the phonon mediated spin-flip rate. This will
be separately discussed from Figs. 3–7.

In Fig. 3(i) we see that the cusplike structure is absent (i.e.,
the spin-flip rate is a monotonous function of the magnetic
field) for the pure Dresselhaus case in symmetric QDs.
However in Fig. 3(iii) we see that the cusplike structure is
present for the pure Dresselhaus case in asymmetric QDs.
In Fig. 4, again we see that the cusplike structure is absent
in isotropic QDs (a = b) but is present in anisotropic QDs

FIG. 4. (Color online) Same as Fig. 2 but 1/T1 vs �0. Here we
chose B = 1T . Again, notice that the cusplike structure can only be
seen for the pure Dresselhaus case in asymmetric QDs [Fig. 3(iii),
a �= b] but not for symmetric QDs [Fig. 3(i), a = b]. Also, the spin-
flip rate vanishes like �8

0 [see Eq. (25)].
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f

FIG. 5. (Color online) Same as Figs. 2 and 3 but for InAs QDs.
We chose E = 105 V/cm. Again, notice that the cusplike structure
can also be seen for the pure Dresselhaus case in asymmetric QDs
(a �= b) but not for symmetric QDs (a = b).

(a �= b) for the pure Dresselhaus case. The cusplike structure
in anisotropic QDs is thus due to the fact that the anisotropy
induces the accidental degeneracy in the matrix elements
[M (qα)] near the level crossing or anticrossing point. The
accidental degeneracy point where the cusplike structure
appears is referred to as the spin hot spot, while tuning on the
spin-orbit coupling removes the degeneracy.46 Thus, we apply
degenerate perturbation theory, and the energy spectra of the
unperturbed spin states |0,0,−〉 and |0,1,+〉 for anisotropic
QDs are given by

ε0
0,0,− = 3

2h̄ω+ − 1
2h̄ω− + (

α2
Rξ− + α2

Dζ−
)1/2

, (29)

ε0
0,1,+ = 3

2h̄ω+ − 1
2h̄ω− − (

α2
Rξ− + α2

Dζ−
)1/2

. (30)

We have substituted Eqs. (29) and (30) into Eq. (17) and
found the spin-flip rate at the level crossing point from

f

FIG. 6. (Color online) Same as Figs. 2 and 3 but for GaSb QDs.
We chose E = 105 V/cm. Again, notice that the cusplike structure
can also be seen for the pure Dresselhaus case in asymmetric QDs
(a �= b) but not for symmetric QDs (a = b).

f

FIG. 7. (Color online) Same as Figs. 2 and 3 but for InSb QDs.
We chose E = 104 V/cm. Again, notice that the cusplike structure
can also be seen for the pure Dresselhaus case in asymmetric QDs
(a �= b) but not for symmetric QDs (a = b).

Figs. 2–7. Lifting the degeneracy with the application of
spin-orbit coupling mixes spin-up and spin-down states where
the phonon mediated spin transition rate between states of
opposite magnetic moment will involve spin flips with a much
more enhanced probability compared to the normal states.
For example, the spin hot spot for the pure Dresselhaus
case in symmetric GaAs QDs [Figs. 3(i) and 4(i)] cannot
be observed while tuning the anisotropy (a �= b) but can be
observed at B = 5.1T and �0 = 69 nm, as shown in Figs. 3(iii)
and 4(iii), respectively. Notice that the spin-flip rates of
the pure Dresselhaus case found near the spin hot spot in
Figs. 3(iii) and 4(iii) are six orders of magnitude larger than
those values found in Figs. 3(i) and 4(i). This result (i.e., the
spin hot spot in asymmetric QDs for the pure Dresselhaus case
yet to be experimentally verified) provides small relaxation
and decoherence times, which should be avoided during the
design of spin based transistors for possible implementation
in quantum logic gates, quantum computing, and quantum
information processing. From Figs. 4–7, we investigated the
spin-relaxation rate in InAs, GaSb, and InSb QDs. Analyzing
all plots, the spin hot spot and associated cusplike structure
can be seen in the pure Dresselhaus spin-orbit coupling case
in anisotropic QDs (a �= b).

TABLE I. The material constants used in our calculations, taken
from Refs. 26 and 47.

Parameters GaAs InAs GaSb InSb

g0 −0.44 −15 −7.8 −50.6
m 0.067 0.0239 0.0412 0.0136

γR (Å
2
) 4.4 110 33 500

γD (eV Å3) 26 130 187 228
eh14 (10−5 erg/cm) 2.34 0.54 1.5 0.75
sl (105 cm/s) 5.14 4.2 4.3 3.69
st (105 cm/s) 3.03 2.35 2.49 2.29
ρ (g/cm3) 5.3176 5.667 5.6137 5.7747
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V. CONCLUSIONS

We have shown that the anisotropy breaks the in-plane
rotational symmetry. As a result, we found that the cusplike
structure (i.e., where the spin hot spot is located) is present in
the phonon mediated spin transition rate in anisotropic QDs
for the pure Dresselhaus spin-orbit coupling case. In contrast,
for isotropic QDs, the spin transition rate is a monotonous
function of magnetic fields and QD radii (i.e., where the
spin hot spot is absent) for the pure Dresselhaus spin-orbit
coupling case. These results (yet to be experimentally verified)
provide information for finding the spin hot spot in anisotropic
spin relaxation for the pure Dresselhaus case during the
design of QD spin transistors. At or nearby the spin hot

spot, the relaxation and decoherence time are smaller by
several orders of magnitude. One should avoid such locations
during the design of QD spin based transistors for possible
implementation in quantum logic gates, quantum computing,
and quantum information processing.
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21M. E. Flatté, Physics 4, 73 (2011).
22Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
23G. Dresselhaus, Phys. Rev. 100, 580 (1955).
24S. Prabhakar and J. E. Raynolds, Phys. Rev. B 79, 195307

(2009).

25S. Prabhakar, J. Raynolds, A. Inomata, and R. Melnik, Phys. Rev.
B 82, 195306 (2010).

26R. de Sousa and S. Das Sarma, Phys. Rev. B 68, 155330 (2003).
27S. Prabhakar, R. V. N. Melnik, and L. L. Bonilla, Appl. Phys. Lett.

100, 023108 (2012).
28J. A. Folk, S. R. Patel, K. M. Birnbaum, C. M. Marcus, C. I. Duruöz,
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