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Complete set of deformation potentials for AlN determined by
reflectance spectroscopy under uniaxial stress
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Reflectance spectroscopy was performed for nonpolar and semipolar bulk aluminum nitride (AlN) substrates
under uniaxial stress. The exciton-polariton theory was applied to interpret the reflectivity spectra, while the Bir-
Pikus deformation potential theory was used to analyze the stress dependence of exciton transition energies. This
approach allowed all the deformation potentials in AlN to be determined without the quasicubic approximation.
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I. INTRODUCTION

Nitride semiconductors have received much attention as
candidates for solid-state light sources in the deep-ultraviolet
(DUV) spectral region due to a number of advantages, in-
cluding robustness, harmlessness, and wavelength tunability.1

Aluminum nitride (AlN), which has an energy gap of ∼6.0 eV,
is a key material to realize DUV optoelectronic devices.

Light emitting diodes (LEDs) have been demonstrated
using AlN p-i-n structures2 or AlGaN/AlN heterostructures3,4

in the DUV spectral region. However, the external quantum
efficiency of AlN-based DUV-LEDs remains low compared to
GaN-based LEDs in the blue or blue-green spectral region.5

Moreover, the shortest wavelength of laser diodes (LDs) has
been limited to 336 nm at room temperature.6 To realize highly
efficient DUV-LEDs or even shorter-wavelength DUV-LDs,
the electronic properties of AlN must be thoroughly under-
stood and both the crystalline quality and device fabrication
processes must be improved.

The valence band structure of AlN differs significantly
from those of conventional wurtzite semiconductors, such as
GaN. The topmost valence band in AlN has an irreducible
representation of �v

7 due to the giant negative crystal-field
splitting energy,7 whereas the lower valence bands are weakly
split into �v

9 and �v
7 due to the spin-orbit interaction. On the

other hand, from low to high electron energy, the valence
band ordering in GaN is �v

7-�v
7-�v

9.8 Consequently, when the
mixed alloy of AlxGa1−xN is formed, the highest valence band
may switch from �v

9 to �v
7 at a certain Al composition x.

However, theoretically estimating the critical composition x

is difficult because the crystal-field splitting and the spin-orbit
splitting energy in AlN remain controversial despite numerous
theoretical7,9–14 and experimental15–19 studies. Furthermore,
it has been experimentally demonstrated that strain-induced
effects and quantum-confinement effects significantly alter
the critical composition x in c-plane AlGaN films20,21 and c-
plane AlGaN/AlN quantum wells.22–25 Both these effects have
been theoretically investigated using an empirical calculation
method.26–28 However, due to the ambiguity of the material
parameters of AlN, it is difficult to reach a definite conclusion.

The Bir-Pikus theory,29,30 which uses deformation poten-
tials (Ci=1–6) as the essential material parameters, can well
describe the strain-induced effects in electronic band struc-
tures. However, few studies have experimentally determined
the deformation potentials in AlN.19,31 In addition, the few
reported works only extract the deformation potentials of

C1–4 under the assumption of the quasicubic approximation.29

The remaining deformation potentials, C5 and C6, are indis-
pensable parameters to predict the electronic band structures
of nonpolar32 and semipolar AlGaN/AlN heterostructures,
in which the internal electric field should be small.33 Fur-
thermore, our recent experimental work indicates that the
quasicubic approximation breaks down between C3 and C4 in
GaN, and we predict a deviation from the quasicubic relation
in AlN.34 Consequently, all the deformation potentials in AlN
should be experimentally investigated without assuming that
the quasicubic approximation holds.

In this paper, reflectance spectroscopy is performed for
m-plane and r-plane AlN substrates under uniaxial stress. The
excitonic resonances clearly depend on the uniaxial stress. The
exciton-polariton theory is applied to interpret the reflectivity
spectra, while the Bir-Pikus deformation potential theory is
used to analyze the stress dependence of exciton transition
energies. Herein we determine all the deformation potentials
in AlN without the quasicubic approximation. In addition, we
determine the crystal-field interaction, spin-orbit interaction,
and electron-hole exchange interaction energy. These findings
provide a deeper understanding and may realize more reliable
modeling of AlN-based optoelectronic devices.

II. EXPERIMENT

A. General

The samples used in this study were m-plane and r-plane
AlN substrates grown by the physical vapor transport method.
The samples were cut into cuboid shapes along the crystal
axes, and mechanically lapped until optically flat edge surfaces
were obtained. Typical dimensions of the samples were
3 × 3 × 0.5 mm3. The sample was set in the same uniaxial
stress-loading apparatus used in our previous work.34 The
incident light was linearly polarized by a Glan-Thompson
prism. The reflectivity spectra were calibrated by a reference
sample on a (0001) sapphire substrate. The experiments were
performed at a normal incidence condition at nearly 4.2 K.
Figure 1 summarizes the experimental configurations. The
refractive index of air, nair = 1.000 310, was used to transform
wavelength into energy. In this paper, uniaxial stress and
an electric polarization vector are defined as P and E,
respectively.
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FIG. 1. (Color online) Experimental configurations (a) P ‖ c,
E ‖ c, (b) P ⊥ c, E ‖ c, (c) P ‖ c, E ⊥ c, (d) P ⊥ c, E ‖ [112̄0] or
E ‖ [11̄01], and (e) P ‖ [11̄01], E ‖ [112̄0] or E ‖ [11̄01], where k is
a Poynting vector.

B. The A exciton

For the A-exciton (�c
7 ⊗ �v

9 = �A
1 ⊕ �A

2 ⊕ �A
5 , which is

the lowest energy transition) study, reflectance spectroscopy
under uniaxial stress was performed using a 30 W deuterium
lamp as the incident light. The reflection signals were dis-
persed by a 50 cm spectrometer with a holographic grating
(2400 grooves/mm) and detected by a charge-coupled device
cooled with liquid nitrogen. The experimental setup had a
resolution of about 0.045 nm.

Polarized reflectance measurements were performed on the
m-plane bulk AlN substrate under uniaxial stress parallel to

FIG. 2. Reflectance spectra of the m-plane bulk AlN substrate
under uniaxial stress P ‖ c,E ‖ c.

zz

FIG. 3. (Color online) Uniaxial stress dependence of the A-
exciton transition energy for P ‖ c,E ‖ c.

the c axis and the electric polarization vector parallel to the c

axis (P ‖ c,E ‖ c). Figures 1(a) and 2 show the experimental
configuration and result, respectively. As plotted in Fig. 3, the
A-exciton energy in this configuration is almost independent
of the uniaxial stress. If a reflection anomaly is composed of an
exciton, the stress dependence of the exciton transition energy
is well approximated by that of Eav and E(Rav), as defined
in Fig. 4. Herein, EA(Rav) is substituted for the A-exciton
transition energy due to the better definition. The least-square
fit with a linear function yields

∂EA(Rav)

∂Fzz

= −0.5 meV/GPa, (1)

where Fzz is the stress tensor along the c axis. The fitted line
is also depicted in Fig. 3.

peakR

dipR

dipEpeakE avE

avR

)( avRE

peakR
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avR
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FIG. 4. (Color online) Definition of the characteristic energies in
the reflection anomaly.
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FIG. 5. Reflectance spectra of the m-plane bulk AlN substrate
under uniaxial stress P ⊥ c,E ‖ c.

Polarized reflectance measurements were performed on the
m-plane bulk AlN substrate under uniaxial stress perpendicular
to the c axis and the electric polarization vector parallel to the
c axis (P⊥c,E ‖ c). Figures 1(b) and 5 show the experimental
configuration and result, respectively. Uniaxial stress causes
the A-exciton transition energy to shift to higher energies in
this configuration. Figure 6 plots both the experimental data
and least-square fit of the uniaxial stress dependence of the
A-exciton transition energy. In this case, the derivative of the
energy by the stress is obtained as

∂EA(Rav)

∂Fxx

= −21.8 meV/GPa, (2)

where Fxx is the stress tensor along the a axis.

FIG. 6. (Color online) Uniaxial stress dependence of the A-
exciton transition energy for P ⊥ c,E ‖ c.

FIG. 7. Reflectance spectra of the m-plane bulk AlN substrate
under uniaxial stress P ‖ c,E ⊥ c.

C. The B and C excitons

To enhance the light intensity in the DUV spectral region
in the B-exciton (�c

7 ⊗ �v
9 = �B

5 ⊕ �B
6 ) and C-exciton (�c

7 ⊗
�v

7 = �C
1 ⊕ �C

2 ⊕ �C
5 ) studies, a laser driven light source (EQ-

99, ENERGETIQ) served as the incident light. The optical path
was fully purged by dry nitrogen. The reflection signals were
dispersed by a 1-m spectrometer with a blazed-holographic
grating (2400 grooves/mm, λBL = 250 nm) and detected by
a charge-coupled device cooled with liquid nitrogen. The
experimental setup had a resolution of about 0.012 nm.

Polarized reflectance measurements were performed on the
m-plane bulk AlN substrate under uniaxial stress parallel to
the c axis and the electric polarization vector perpendicular
to the c axis (P ‖ c,E⊥c). Figures 1(c) and 7 show the
experimental configuration and result, respectively. Because

FIG. 8. (Color online) Uniaxial stress dependence of the reflec-
tion minimum composed of B and C excitons for P ‖ c,E ⊥ c.
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FIG. 9. (Color online) Reflectance spectra of the r-plane bulk
AlN substrate under uniaxial stress P ‖ c. Results for both electric
polarizations are summarized.

it is difficult to extract the precise value of Rpeak, the reflection
minimum was used as the characteristic energy in this case.
The uniaxial stress has a negligible influence on the energy
difference between the B- and C-exciton transition energies,
and equally shifts their energies. The physics are discussed
later. Consequently, the stress dependence of the B and C
excitons are assumed to be equivalent. Figure 8 plots the
uniaxial stress dependence of E

B,C
dip from the spectra and the

least-square fit. The derivative of the energy by the stress is
obtained as

∂E
B,C
dip

∂Fzz

= −24.5 meV/GPa. (3)

FIG. 10. (Color online) Uniaxial stress dependence of E(Rav)
composed of B and C excitons for P ⊥ c.

FIG. 11. (Color online) Reflectance spectra of the r-plane bulk
AlN substrate under uniaxial stress P ‖ [11̄01]. Results for both
electric polarizations are summarized.

Next, polarized reflectance measurements were performed
for r-plane bulk AlN substrates. The stress direction was
perpendicular to the c axis (P⊥ c). Figure 1(d) shows the
experimental configuration. Figure 9 shows the experimental
results of both electric polarizations (E ‖ [112̄0] and E ‖
[11̄01]). E ‖ [112̄0] and E ‖ [11̄01] polarizations exhibit
different stress dependences, suggesting that the reflection
anomaly must be composed of more than one eigenstate.
We attribute the eigenstates to �B

5 and �C
5 due to the small

oscillator strength of �B
6 , �C

1 , and �C
2 . Applying anisotropic

stress reveals that B and C excitons exist in the reflection
anomaly. It should be noted that their existence has not been
directly demonstrated via experiments but only suggested by
indirect procedures such as fitting analysis. Figure 10 plots the
stress dependence of the resonance, where the characteristic
energy is defined by E(Rav).

Finally, polarized reflectance measurements were per-
formed for r-plane bulk AlN substrates where the stress was
applied parallel to the [11̄01] direction. Figure 1(e) shows the
experimental configuration. Figure 11 shows the experimental
results of both electric polarizations (E ‖ [112̄0] and E ‖
[11̄01]). Shear stress was applied in this configuration.34

Figure 12 plots the stress dependence of the resonance using
E(Rav).

III. ANALYSIS

A. General

Here, the methods to determine the deformation potentials
in AlN are explained. The effective Hamiltonian for 1s

excitons in Wurtzite crystals is expressed as29

Hex = �1J
2
z + �2Jzσvz + �3(σ+vJ− + σ−vJ+)

+ (
C1 + C3J

2
z

)
εzz + (

C2 + C4J
2
z

)
(εxx + εyy)

−C5(J 2
−ε+ + J 2

+ε−) − 2C6([JzJ+]ε−z + [JzJ−]ε+z)

+Ebind + 1
2j (σe · σh). (4)
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FIG. 12. (Color online) Uniaxial stress dependence of E(Rav)
composed of B and C excitons for P ‖ [11̄01].

Ebind is an exciton binding energy and the other notations in
Eq. (4) are the same as those in Ref. 34. In this paper, C1,2

and C3,4 are called the hydrostatic and uniaxial deformation
potentials, respectively. Likewise, C5 and C6 are called the
anisotropic and shear deformation potentials, respectively.
The hydrostatic deformation potentials in AlN were initially
determined, and then the remaining parameters were extracted.

B. Hydrostatic deformation potentials

Previous studies have experimentally determined the hy-
drostatic and uniaxial deformation potentials in AlN as
follows.19,31 A series of c-plane AlN thin films with biaxial
strain was prepared by varying the film thickness, and optical
spectroscopic measurements were performed to experimen-
tally elucidate the relation between the exciton transition
energies and the strain. The relationship is theoretically
expressed by only two parameters,

δh = C1 − C33

C13
C2, (5)

δu = C3 − C33

C13
C4, (6)

where Cij denote the elastic stiffness constants. δh and δu are
determined by comparing experiments and theory. Obviously,
the deformation potentials cannot be determined by only these
equations, even if the elastic stiffness constants are known.
Therefore, part of the quasicubic approximation29 is usually
assumed:

C1 = C2 − C3, (7)

C3 = −2C4. (8)

Combining Eqs. (5)–(8) allows the hydrostatic and uni-
axial deformation potentials in AlN to be experimentally
determined.19,31

This paper adopts a different approach, in which uniaxial
stress conditions are utilized. Herein, the excitonic structures

FIG. 13. (Color online) Relation between C1 and C2 (a) Black
solid line: P ‖ c in our experiment; (b) black dashed line: P ⊥ c

in our experiment; (c) red dotted line: biaxial strain conditions in
Ref. 19; (d) red single-chain line: the quasicubic approximation in
Ref. 19; (e) blue double-chain line: reanalysis of the experimental
results in Ref. 19.

of AlN must be recalled. The A-exciton transition energy
vastly differs from the B- and C-exciton transition energies
(see Figs. 2 and 9). Therefore, the mixing terms between
them are so small that the angular momentum of the A
exciton can be regarded as a good quantum number (Jz = 0).
Applying this assumption to Eq. (4) allows the strain-related
terms of the effective Hamiltonian for the A exciton to be
expressed as

H A
ex = C1εzz + C2(εxx + εyy). (9)

Subsequently, the derivative of the A-exciton energy by the
uniaxial stress (P ‖ c, P ⊥ c) can be written as

−∂EA

∂Fzz

= S33C1 + 2S13C2, (10)

− ∂EA

∂Fxx

= S13C1 + (S11 + S12)C2, (11)

where Sij indicate the elastic compliance constants. Therefore,
if the elastic constants are known, the hydrostatic deformation
potentials in AlN can be determined by only the uniaxial stress
dependence of the A exciton along the two perpendicular
directions. It should be noted that this approach does not
require the quasicubic approximation.

Figure 13 shows the relation between C1 and C2 satisfying
Eqs. (10) and (11) using the elastic constants determined by
Brillouin spectroscopy on bulk AlN substrates.35 From our
experiments, the hydrostatic deformation potentials in AlN
are C1 = 4.3 eV and C2 = 11.5 eV, which is the intersection
of lines (a) and (b) in Fig. 13. Additionally, lines (c) and (d)
are from Ref. 19, and the values of C1 and C2 were determined
by the intersection of (c) and (d); the hydrostatic deformation
potentials in AlN were extracted using the elastic constants
determined by a first-principles study.36 Although the elastic
constants have been frequently used in theoretical calculations
of AlN-based heterostructures, if the experimental results in
Ref. 19 are reanalyzed using the elastic constants in Ref. 35,
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TABLE I. Exciton deformation potentials (eV) in AlN.

AlN C1 C2 C3 C4 C5 C6 C3/(−2C4)

Experimental:
Ikeda et al.a 8.4 15.6 8.19 −4.10 1
Gilb 6.04 −2.15 8.19 −4.10 1
Rossbach et al.c 6.9 15.2 8.3 −4.15 1
Present work 4.3 11.5 6.8 −3.6 −2.8 −4.5 0.9

Calculation:
Suzuki et al.d 4.49 −2.18 −2.58 −4.08 1.0
Kim et al.e 9.6 −4.8 1.0
Shimada et al.f 8.84 −3.92 −3.36 1.1
Wagner et al.g 3.39 11.81 9.42 −4.02 1.2
Vurgaftman et al.h 3.4 11.8 8.8 −3.9 −3.4 −3.4 1.1
Vurgaftman et al.i 3.4 11.8 9.4 −4.0 −3.3 −2.7 1.2
Yan et al.j 4.21 12.07 9.22 −3.74 −3.30 −4.49 1.2

aReference 31.
bReference 37.
cReference 19.
dReference 38.
eReference 10.
fReference 11.
gReference 13.
hReference 39.
iReference 40.
jReference 14.

line (e) is obtained in Fig. 13. Surprisingly, line (e) sweeps
the hydrostatic deformation potentials of C1 and C2 that we
determined. The results indicate that both the experimental
results under uniaxial stress (this work) and under biaxial strain
(Ref. 19) can be consistently described by our hydrostatic
deformation potentials and the elastic constants in Ref. 35. It
should be noted that if the elastic constants in Ref. 36 are used,
there is not a solution of C1 and C2 which can explain both
the results. Table I summarizes the hydrostatic deformation
potentials in AlN.

C. Bulk parameters

�1, �2, �3, and j in Eq. (4) are called bulk parameters,
and are determined in this section. Section II C demonstrates
the existence of the B and C excitons in the reflection anomaly
observed in Figs. 9 and 11. The reflectivity spectra must be
carefully resolved into the components of �B

5 and �C
5 excitonic

states to precisely determine the bulk parameters. Herein, we
analyze the reflectivity spectra using the dielectric function of
exciton polaritons as

ε(E) = εb +
∑

i

χiEi

E2
i − E2 − iE
i

, (12)

where εb is a background dielectric constant. Ei , 
i , and
χi are the eigenenergy, the empirical broadening width, and
the oscillator strength of ith transitions, respectively. The
dielectric function for E ‖ [11̄01] is expressed as

ε[11̄01] = ε[0001] sin2 θ + ε[112̄0] cos2 θ, (13)

where θ is the tilt angle from the c plane34 (θ = 42.8◦ in
this case). For ε[0001] (E ‖ [0001]), the A-exciton transition

with the 2LO-phonon and the A-exciton continuum are
considered,19 where the stress dependence of the lon-
gitudinal optic (LO)-phonon energy is neglected.41 For
ε[112̄0] (E ‖ [112̄0]), the B- and C-exciton transitions are
considered.

It should be noted that the spectral fitting without guidelines
does not directly yield a unique solution, which is why the
bulk parameters of AlN have yet to be precisely determined.
The energy difference between E(Rav) and Eav should be
noted; the E(Rav) is ∼4 meV higher than the Eav for the
reflection anomaly in the E ⊥ c configurations (Figs. 7,
9, and 11), in which the B- and C-exciton transitions are
involved. Obviously, the energy difference is larger than the
experimental resolution. Based on the analysis of Eq. (12), to
describe such an energy difference between E(Rav) and Eav ,
the oscillator strength of �C

5 must be several times larger than
that of �B

5 , and is due to the positive electron-hole exchange in-
teraction energy j in Eq. (4). Our photoluminescence study of
c-plane homoepitaxial AlN films42 supports this interpretation,
although a negative electron-hole exchange interaction energy
has been reported in the literature.43 Herein, the spectral fitting
yields bulk parameters of �1 = −211.5 meV, �2 = 6.0 meV,
�3 = 6.5 meV, and j = 6.0 meV. Table II summarizes the
bulk parameters in AlN.

D. Uniaxial, anisotropic, and shear deformation potentials

1. P ‖ c, E ⊥ c

The uniaxial stress dependence in Fig. 8 was analyzed.
Section III B describes how the angular momentum of the
A exciton can be regarded as Jz = 0. Similarly, the angular
momentum of the B and C excitons can be well approximated
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TABLE II. Bulk parameters in AlN in units of meV.

AlN (Experimental) �1 �2 �3 j

Chen et al.a −230 6.7 6.7
Silveira et al.b −225 12 12
Prinz et al.c −237 6.7 6.7
Ikeda et al.d −152.4 6.3 6.3
Taniyasu et al.e −165 6.3 6.3
Rossbach et al.f −212 5.3 5.3
Feneberg et al.g −4.0
Present work −211.5 6.0 6.5 6.0

aReference 16.
bReference 17.
cReference 44.
dReference 31.
eReference 45.
fReference 19.
gReference 43.

by Jz = ±1. Under this assumption, an interaction does
not cause mixing between the B and C excitons for P ‖ c.
Subsequently, the strain-related terms of the B- and C-exciton
Hamiltonian can be written as

H B,C
ex = (C1 + C3)εzz + (C2 + C4)(εxx + εyy). (14)

The uniaxial stress dependences of the B and C excitons for
P ‖ c are equivalent, and the derivative of the energy by the
uniaxial stress is expressed as

−∂EB,C

∂Fzz

= S33(C1 + C3) + 2S13(C2 + C4). (15)

Combining Eqs. (3) and (15), the first relation between uniaxial
deformation potentials is obtained as

αu = C3S33 + 2C4S13 = 24.0 meV/GPa, (16)

where αu is the same as in Ref. 34.

2. P ⊥ c, E ‖ [112̄0] or E ‖ [11̄01]

The uniaxial stress dependence of E(Rav) in Fig. 10 was
analyzed. When the uniaxial stress is applied perpendicular to
the c axis, the stress dependence of the B exciton differs from
that of the C exciton due to stress-induced mixing. Therefore,
the simple analysis used until this point cannot be used here.
An alternative approach must be adopted.

In the adopted approach, the exciton effective Hamiltonian
was numerically solved assuming a certain set of C3–5, where
the bulk parameters, hydrostatic deformation potentials, and
elastic constants were fixed. Then the eigenenergies and
the oscillator strength of all the excitons were obtained.
Substituting these values for Eq. (12) and assuming certain
values for the remaining parameters theoretically produced
the reflectivity spectra. Subsequently, we calculated the value
of E(Rav) for the reflection anomaly composed of the B and C
excitons. These processes were repeated until C3–5 minimized
the error between experiments and theory.

Before the fitting procedures, the fitting parameters such
as εb or χi in Eq. (12) were examined. To reproduce the
experimental reflectivity spectra by Eq. (12), the appropriate

values must be substituted into these parameters. The ex-
amination shows that these values are almost indepen-
dent of C3–5. Therefore, in the fitting procedures for E ‖
[112̄0], we can reduce the number of fitting parameters
to three, C3–5. For E ‖ [11̄01], the contributions from the
E ⊥ [0001] component were added. This significantly re-
duces the computational complexity and decreases the fitting
ambiguity.

The fitting procedures were performed on the stress
dependence in Fig. 10, yielding

βu = C3S13 + C4(S11 + S12) = −9.3 meV/GPa, (17)

βa = −C5(S11 − S12) = 11.5 meV/GPa, (18)

where βu and βa are the same as in Ref. 34. The second relation
between C3 and C4 is obtained. Although C5 can be deduced
from Eq. (18), it is determined below.

3. P ‖ [11̄01], E ‖ [112̄0] or E ‖ [11̄01]

The uniaxial stress dependence of E(Rav) in Fig. 12 was
analyzed. The deformation potentials of C3–6 were derived
via the same method discussed in the previous section. The
fitting procedures were performed on the stress dependences
in Fig. 12, yielding

γ u = C3(S13 cos2 θ + S33 sin2 θ )

+C4[(S11 + S12) cos2 θ + 2S13 sin2 θ ]

= 3.6 meV/GPa, (19)

γ a = −C5(S11 − S12) cos2 θ = 5.8 meV/GPa, (20)

γ s = 1
2C6S44 sin θ cos θ = −12.5 meV/GPa, (21)

where γ u, γ a , and γ s are the same as in Ref. 34. The
third relation between C3 and C4 is obtained. C5 and C6 are
determined below, but can also be deduced from Eqs. (20) and
(21), respectively.

3

4

FIG. 14. (Color online) Relations between C3 and C4, obtained
in our experiments under three different conditions: P ‖ c, P ⊥ c,
and P ‖ [11̄01]. Values of C3 and C4 in Ref. 19 are also plotted.
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) (b) (c)(a) (b) (c)

FIG. 15. (Color online) Comparison between the experimental (points) and theoretical (lines) stress dependence in each configuration
(a) P ‖ c, (b) P ⊥ c, (c) P ‖ [11̄01]. Stress dependence of EA

dip is the same as that of EA(Rav).

4. Determination of uniaxial, anisotropic,
and shear deformation potentials

Thus far, we have obtained three equations for the rela-
tionship between uniaxial deformation potentials [Eqs. (16),
(17), and (19)], two equations for anisotropic deformation
potential [Eqs. (18) and (20)], and one equation for shear
deformation potential [Eq. (21)]. To extract the four most
plausible parameters C3–6 from these six equations, C3 and
C4 were initially determined because they were observed in
all the experiments. Figure 14 plots the three relations between
C3 and C4. These three relations form a triangle, and selecting
the position close to the center simultaneously minimized the
errors in all the experiments. Thus, the values determined for
C3 and C4 are 6.8 and −3.6 eV, respectively.

βa , γ a , and γ s were reevaluated using the least-squares
fitting, where βu and γ u were fixed using the above values of
C3 and C4. Subsequently, C5 = −2.8 eV and C6 = −4.5 eV
are obtained.

Using the determined exciton deformation potentials, all
the stress dependences were calculated. Figure 15 shows the
results. All the experimental results are fully described by
the deformation potentials that we determined. The errors of
C1,2 and C3–6 are about 10% and 15%, respectively. Table I
summarizes all the deformation potentials in AlN.

E. Quasicubic approximation in wurtzite crystals

Figure 14 shows that the uniaxial deformation potentials in
AlN do not rigorously satisfy the quasicubic approximation. In
this final section, we consider the deviation from the quasicubic
approximation in wurtzite crystals.

Here, we relate the deviation from the quasicubic approx-
imation to the c/a in wurtzite crystals. c/a and u can be
mentioned as structural parameters in wurtzite crystals, where
a and c are lattice constants and u is an internal parameter. Gen-
erally, c/a is inversely correlated with u. Herein, c/a is chosen
as the structural parameter. The deviation from the quasicubic
approximation can be evaluated by the following equations:

ξ = −C1 − C2

C3
, (22)

ζ = − C3

2C4
, (23)

η = C3 + 4C5√
2C6

. (24)

If ξ = ζ = η = 1 holds, then the quasicubic approximation
is satisfied. Table III summarizes the values of c/a, u, ξ ,
ζ , and η in wurtzite crystals, and shows that the quasicubic

TABLE III. c/a, u, ξ , ζ , and η in wurtzite crystals.

Materials c/a u ξ ζ η

Experimental:
AlNa 1.6009 1.1 0.9 0.7
ZnOb 1.6024 0 0.3 |2.8|m

ZnOc 1.6024 0.2 0.5 3.8
CdSd 1.6235 1.3 0.2 |2.8|m

GaNe 1.6259 1.0 0.5 1.4
CdSef 1.6305 0.7 0.9 |4.2|m

Ideal 1.6330 0.3750

Calculation:
MgOg 1.5442 0.3919 1.0 1.5 0.4
CdOh 1.5715 0.3878 1.4 −3.1 3.2
AlNi 1.6025 03819 0.9 1.2 0.6
ZnOj 1.6047 0.3807 −1.3 0.3 1.8
InNk 1.6209 0.3796 0.4 0.8 1.3
GaNl 1.6257 0.3772 0.6 0.9 1.1

aPresent work.
bReference 46.
cReference 47.
dReference 46.
eReference 34.
fReference 46.
gReference 48.
hReference 48.
iReference 14.
jReference 48.
kReference 14.
lReference 14.
mThe sign could not be determined.
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approximation in AlN breaks, especially for η. However, we
cannot find an explicit relation between the deviation and
c/a. To reach a definite conclusion, both experimental and
theoretical studies are necessary. Thus, our conclusions from
this study are the quasicubic approximation does not hold for
AlN and it is not always applicable to wurtzite crystals.

IV. CONCLUSION

In conclusion, reflectance spectroscopy under uniaxial
stress reveals all the deformation potentials in AlN without
the quasicubic approximation. In addition, the crystal-field

interaction, the spin-orbit interaction, and the electron-hole
exchange interaction are elucidated. These parameters can
also explain previous experimental results. Furthermore, the
experimental results indicate that a part of the quasicubic
approximation is invalid for AlN.

ACKNOWLEDGMENTS

The authors would like to thank Jun Suda of Kyoto
University. This research was partially supported by a Grant-
in-Aid for the Japan Society for the Promotion of Science as
well as the Mizuho Foundation for the Promotion of Sciences.

*ryota.ishii@optomater.kuee.kyoto-u.ac.jp
†kawakami@kuee.kyoto-u.ac.jp
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